生物滴滤器处理挥发性有机物的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物滴滤器(Bio-trickling Filters, BTFs)是一种处理低浓度挥发性有机物(Volatile Organic Compounds, VOCs)的有效手段,它通过生长在填料表面的生物膜内的微生物捕获并降解污染物来实现污染物的治理,具有成本低、操作简便、无二次污染等优点,它克服了传统生物过滤器运行过程中出现的气体短流、营养液分布不均等问题,能一定程度上减轻反应器内生物膜的过度蓄积或堵塞。对不同操作条件下生物滴滤器去除VOCs、生物膜生长动力学、生物膜时空分布规律、生物膜蓄积率等进行模拟研究,对于了解生物法处理机理、促进生物膜反应器在VOCs控制方面的研发与应用,具有重要的理论和实际意义。
     本研究在气液双膜理论的基础上,依据质量守恒定律和莫诺特动力学方程,建立了挥发性有机物在生物滴滤器气相、水相和生物膜相中的传质降解模型。模型考虑了因生物膜增长而导致的介质比表面积和空隙率变化,及其对去除效率的影响。通过忽略液相传质阻力来简化模型,分别运用配置法、解析法、龙格—库塔法来数值求解生物膜相和气相的传质降解和生物膜的增长模型方程,并在MATLAB软件环境编程求解。
     模型研究结果表明:甲苯去除效率随气体停留时间的增加而增加,随进气有机负荷的增加而减小,在进气口处甲苯降解速度最大,随着到进气口轴向距离的增大,去除效率增加速率呈递减趋势;进气口处填料孔隙率随气体停留时间的增加而下降,随进气有机负荷的增加而下降;生物滴滤器内生物膜蓄积率随气体停留时间的增加而增加,随进气有机负荷的增加而增加;生物滴滤器内甲苯浓度分布模拟曲线说明进气口处的填料层对甲苯去除起最重要的作用,甲苯的去除效率增加速度随到进气口轴向距离的增加而减小。
     试验结果证明该模型能较好地模拟生物滴滤器去除VOCs的动态运行性能。有助于更好的理解系统运行机理并优化系统设计参数,为实现生物过滤法在废气治理中的应用和推广奠定基础。
Bio-trickling Filters (BTFs) is an effectively control means for volatile organic compounds (VOCs), which utilizes microbe attached on the packing media to capture volatile organic compounds (VOCs) and biodegrade them. It has advantages in some aspects such as low cost, handy operation costs and no recontamination. Additional, the technology can overcome the disadvantages including the short of gas flow, the uneven distribution of organic loading and nutrients in conventional biofilters, and to an extent released the biomass excess accumulation or clogging in the filter bed. It would be important theory and practical significance in the research and application of bioreactors for VOCs removal to simulate the complex processes, such as the BTFs for VOC removal at different operating conditions, the dynamic kinetics of biomass growth, the spatial and temporal changes in biomass distribution, and the biomass accumulation rate.
     A mathematical model was developed on the basis of mass transport and mass balance equations in a BTF, the two-film theory, and the Monod kinetics. This model took account of mass transfer and biodegradation of VOC in the gas-water-biofilm three-phase system in the biofilter, and could simulate variations of VOC removal efficiency with a changing specific surface area and porosity of the media due to the increasing of biofilm thickness in the biofilter. This model was further simplified by neglecting the water phase due to the small mass transfer resistence. The equations for the biofilm phase, gas phase, and biofilm accumulation in this model were solved using collocation method, analytic method, and the Runge-Kutta method separately. A computer program was written down as MATLAB to solve this model.
     The results of numerical solutions show that toluene removal efficiency increased with the gas resistence time increased and decreased with the organic loading increased. The porosity of the packing in the inlet decreased with the gas resistence time increased and decreased with the organic loading increased. The biomass accumulation rate in the bio-trickling filter increased with the gas resistence time increased and increased with the organic loading increased. The concentration profile of toluene in bio-trickling filter revealed that the packing layer which is the closest to inlet played the most important role in toluene biodegradation.
     The dynamic removal efficiencies from this model correlated reasonably well with experimental results for toluene removal in a BTF. It provides the basis for the spreading and application of biofiltration on the waste gas treatment.
引文
[1] USEPA. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. EPA: 625/R–96/010b, 1999:
    [2] USEPA. Generic verification protocol for bioreaction system control technologies for volatile organic compound emissions. EPA: Cooperative Agreement No CR826152–01–3, 2003:
    [3] USEPA. Control Techniques for volatile organic compound emissions from stationay Sources. Emission Standards Division: EPA/453/R–92–018, 1992:
    [4]郝吉明,马广大.大气污染控制工程.北京:高等教育出版社, 2002, ( ): 378–130.
    [5]李国文,胡洪营,郝吉明等.生物滴滤塔中挥发性有机物降解模型及应用.中国环境科学, 2001, 21(1): 81–84.
    [6] Devinny J S, Deshusses M A, Webster T S. Biofiltration for air pollution control. Boca Raton, 1999, ( ): 1–40.
    [7] Metcalf & Eddy. Wastewater Engineering Treatment and Reuse. McGraw–Hill: New York, 2003: 887–969.
    [8] USEPA. The plain English guide to the Clean Air Act. EPA: 400–K–93–001, 1993:
    [9] USEPA. Consumer and Commercial Products: Schedule for Regulation. Federal Register, 1999, 64(52):
    [10]中国国家环保总局,国家技术监督局. .中华人民共和国国家标准环境空气质量标准: GB/T 3095–1996, :
    [11]中国国家环保总局. .中华人民共和国国家标准大气污染物综合排放标准: GB 16297–1996, :
    [12]中国国家质量监督检验检疫总局,卫生部,国家环境保护总局.中华人民共和国国家标准室内空气质量标准. GB/T 18883–2002.
    [13]中国中国国家环保总局.中华人民共和国国家标准炼焦炉大气污染排放标准. GB 16171–1996.
    [14] USEPA. EPA air pollution control cost manual. Sixth edition. EPA/452/B–02–001. 2002.
    [15] Khan F I., Ghoshal A K. Removal of volatile organic compounds from polluted air. J. Loss Prevent. Proc. 2000, 13(6): 527–529
    [16] Engleman V S. Updates on choices of appropriate technology for control ofVOC emissions. J. Metal Finishing, 2000, 98(6): 433–445
    [17] Giraudet S, PréP, Tezel H, et al. Estimation of adsorption energies using the physical characteristics of activated carbons and the molecular properties of volatile organic compounds. Carbon, 2006, 44(12): 2413–2421
    [18] Spadavecchia J, Ciccarella G, Rella R. Optical characterization and analysis of the gas/surface adsorption phenomena on phthalocyanines thin films for gas sensing application. Sensors Actuat. B–Chem., 2005, 106(1): 212–220
    [19] Wang C, Lin S, Chen C, Weng H. Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons Chemosphere, 2006, 64(3): 503–509
    [20] Parthasarathy G, El-Halwagi M M. Optimum mass integration strategies for condensation and allocation of multicomponent VOCs. Chem. Eng. Sci., 2000, 55(5): 881–895
    [21] Heymes F, Demoustier P M, Charbit F, et al. Treatment of gas containing hydrophobic VOCs by a hybrid absorption–pervaporation process: The case of toluene. Chem. Eng. Sci., 2007, 62(9): 2576–2589
    [22] Liu Y, Feng X, Lawless D. Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control. J. Membrane Sci., 2006, 271(1–2): 114–124
    [23] Vane L M, Alvarez F R. Vibrating pervaporation modules: Effect of module design on performance. J. Membrane Sci., 2005, 255(1–2): 213–224
    [24] Bunce N J, Nakai J S, Yawching M. A model for estimating the rate of chemical transformation of a VOC in the troposphere by two pathways: Photolysis by sunlight and hydroxyl radical attack. Chemosphere, 1991, 22(3–4): 305–315
    [25] Wang X, Koyama Y, Wada Y, Sasaki S, et al. A dye-sensitized solar cell using pheophytin–carotenoid adduct: Enhancement of photocurrent by electron and singlet-energy transfer and by suppression of singlet–triplet annihilation due to the presence of the carotenoid moiety. Chem. Phys. Lett., 2007, in Press.
    [26] Devinny J S, Ramesh J.A phenomenological review of biofilter models. Chem. Eng. J., 2005, 113(2–3): 187–196
    [27] Deshusses M A. Biological waste air treatment in biofilters. Curr. Opin. Biotech., 1997, 8(3): 335–339
    [28] Steven T. S. Design and management of conventional fluidized-sand biofilters. Aquacult. Eng., 2006, 34(3): 275–302
    [29] Moe W M, Li C. A design methodology for activated carbon load equalizationsystems applied to biofilters treating intermittent toluene loading. Chem. Eng. J., 2005, 113(2–3): 175–185
    [30] Center for Waste Reduction Technologies of the American Institute of Chemical Engineers (CWRT-AIChE). Biofiltration: project report, and scale-up and design guide. New York, AIChE, 1999
    [31] Pemoroy R D. Deodorizing gas streams by use of microbiological growths. U.S. Patent No. 2793096. 1957
    [32] Cox H H J, Deshusses M A. The effect of starvation on the performance and the re-acclimation of biotrickling filters for air pollution control. Environ. Sci. Technol., 2002, 36: 3069–3073
    [33] Cox H H J, Deshusses M A. Co-treatment of H2S and toluene in a biotrickling filter. Chem. Eng. J., 2002, 87(1): 101–110
    [34] Sakuma T, Hattori T, Deshusses M A. Comparison of different packing materials for the biofiltration of air toxics. J. Air Waste Manage., 2006, 56(11): 1567–1575
    [35] Chang D P Y, Devinny J S, Bohn H. Foreword. Chem. Eng. J., 2005, 113(2–3): 83–84
    [36] Wright W F, Schroeder E D, Chang D P Y. Regular transient loading response in a vapor-phase flow-direction-switching biofilter. J. Environ. Eng., 2005, 131(12): 1649–1658
    [37] Wright W F, Schroeder E D, Chang D P Y. Transient response of flow-direction-switching vapor-phase biofilters. J. Environ. Eng., 2005, 131(7): 999–1009
    [38] Nukunya T, Devinny J S, Tsotsis T T. Application of a pore network model to a biofilter treating ethanol vapor. Chem. Eng. Sci., 2005, 60(3): 665–675
    [39] Schwarz B C E, Devinny J S, Tsotsis T T. A biofilter network model-importance of the pore structure and other large-scale heterogeneities. Chem. Eng. Sci., 2001, 56(2): 475–483
    [40] Cai Z, Kim D, Sorial G A. A comparative study in treating two VOC mixtures in trickle bed air biofilters. Chemosphere, 2007, in Press
    [41] Kim D, Sorial G A. Role of biological activity and biomass distribution in air biofilter performance. Chemosphere, 2007, 66(9): 1758–1764
    [42] Kim D, Cai Z, Sorial G A., et al. Integrated treatment scheme of a biofilter preceded by a two-bed cyclic adsorption unit treating dynamic toluene loading. Chem. Eng. J., 2007, In Press
    [43] Qi B, Moe W M, Kinney K A. Biodegradation of volatile organic compounds by five fungal species. Appl. Microbiol. Biot., 2002, 58(5): 684–689
    [44] Song J, Kinney K A. A model to predict long-term performance of vapor-phase bioreactors: A cellular automaton approach. Environ. Sci. Technol., 2002, 36(11): 2498–2507
    [45] Song J, Ramirez J, Kinney K A. Nitrogen utilization in a vapor-phase biofilter. Water Res., 2003, 37(18): 4497–4505
    [46] Li C, Moe W M. Assesment of microbial populations in methyl ethyl ketone degrading biofilters by denaturing gradient gel electrophoresis. Appl. Microbiol. Biot., 2004, 64(4): 568–575
    [47] Li C, Moe W M. Sequencing batch operated biofilters for treatment of methyl ethyl ketone (MEK) contaminated air. Environ. Technol., 2003, 24(5): 531–544
    [48] Moe W M, Qi B. Performance of a fungal biofilter treating gas-phase solvent mixtures during intermittent loading. Water Res., 2004, 38(9): 2259–2268
    [49] Moe W M, Li C. Comparison of continuous and sequencing batch operated biofilters for treatment of gas-phase methyl ethyl ketone, J. Environ. Eng., 2004, 130(3): 300–314.
    [50] Qi B, Moe W M. Performance of low pH biofilters treating a paint solvent mixture: Continuous and intermittent loading. J. Hazard. Mater., 2006, 135(1–3): 303–310
    [51] Moe W M, Irvine R L. Effect of nitrogen limitation on performance of toluene degrading biofilters. Water Res., 2001, 35(6): 1407–1414
    [52] Miller M J, Allen D G. Biodegradation ofα-pinene in model biofilms in biofilters. Environ. Sci. Technol., 2005, 39(15): 5856–5863
    [53] Zhang Y, Liss S N, Allen D G. Enhancing and modeling the biofiltration of dimethyl sulfide under dynamic methanol addition. Chem. Eng. Sci., 2007, 62(9): 2474–2481
    [54] Miller M J, Allen D G. Modelling transport and degradation of hydrophobic pollutants in biofilter biofilms. Chem. Eng. J., 2005, 113(2–3): 197–204
    [55] Miller M J, Allen D G. Transport of hydrophobic pollutants through biofilms in biofilters. Chem. Eng. Sci., 2004, 59(17): 3515–3525
    [56] Mohseni M, Allen D G. Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds. Chem. Eng. Sci., 2000, 55(9): 1545–1558
    [57] Vinage P R. Biological waste gas treatment with a modified rotating biological contactor. I. Control of biofilm growth and long-term performance. Bioprocessand Biosystems Engineering, 2003a, 26(1): 69–74
    [58] Vinage P R. Biological waste gas treatment with a modified rotating biological contactor.Ⅱ. Effect of operating parameters on process performance and mathematical modeling. Bioprocess and Biosystems Engineering, 2003b, 26(1): 75–82
    [59]李琳,刘俊新.真菌降解挥发性有机污染物的特性与影响因素.环境污染治理技术与设备, 2003, 4(3): 1–5
    [60]李琳,崔福义,刘俊新.真菌降解废气中邻二甲苯试验研究.环境科学学报, 2005, 10(1): 99–104
    [61]朱国营,刘俊新.真菌降解挥发性有机物动力学模型研究.环境科学学报, 2005, 25, (10):1320–1324
    [62]朱国营,刘俊新.处理乙硫醇废气生物滤池中微生物的初步鉴定.环境科学学报, 2004, 24(2): 333–337
    [63] Li G W, Hu H Y, Hao J M, et al. Use of biological activated carbon to treat mixed gas of toluene and benzene in biofilter. Environmental Technology, 2002, 23 (4): 467–477
    [64] Xi J Y, Hu H Y, Qian Y. Effect of operating conditions on long-term performance of a biofilter treating gaseous toluene: Biomass accumulation and stable-run time estimation. Biochemical Engineering Journal, 2006, 31(2): 165–172
    [65]李国文,胡洪营,郝吉明,等.生物炭降解苯和甲苯混合废气性能研究.环境科学, 2002, 23(5): 13–18
    [66]席劲瑛,胡洪营,姜健,等.生物过滤塔中微生物群落的代谢特性.环境科学, 2005, 26(4): 165–170
    [67] Liu Y H, Quan X, Sun Y M, et al. Simultaneous removal of ethyl acetate and toluene in air streams using compost-based biofilters. J. Hazard. Mater., 2002, 95 (1–2): 199–213
    [68] Quan X, Zhao Y Z, Chen S. Removal of p-xylene from an air stream in a hybrid biofilter. J. Hazard. Mater., 2006, 136(2): 288–295
    [69] Wu D, Quan X, Zhang Y B, et al. Long-term operation of a compost-based biofilter for biological removal of n-butyl acetate, p-xylene and ammonia gas from an air stream. Biochem. Eng. J., 2006, 32(2): 84–92
    [70]刘永慧,孙玉梅,全燮,等.生物过滤床处理甲苯和乙酸乙酯混合废气.化工学报, 2002, 53(8): 853–856
    [71]孙玉梅,全燮,陈景文,等.填料初始湿度对气态乙酸乙酯过滤的影响.环境科学学报, 2002, 22(5): 576–580
    [72]孙玉梅,全燮,杨凤林,等.气态有机物组成对生物过滤及菌体密度的影响.应用与环境生物学报, 2005, 11(1): 82–85
    [73]刘波,姜安玺,程养学,等.两级滴滤去除硫化氢和甲硫醇混合恶臭气体.中国环境科学, 2003, 23(6): 618–621
    [74]汪群慧,田书磊,谢维民,等.生物滴滤塔处理药厂含醋酸丁酯、正丁醇和苯乙酸的挥发性混合废气.环境科学, 2005, 26(2): 55–59
    [75]谢维民,张兰河,汪群慧,等.高效填料塔生物反应器处理制药废水处理厂含硫臭气.环境科学, 2003, 24(6): 74–78
    [76]张兰河,谢维民,汪群慧,等.生物滴滤法去除硫化氢与苯乙酸混合废气.南京理工大学学报(自然科学版) , 2006, 30(3): 371–374
    [77]徐桂芹,姜安玺,闫波,等.低温生物处理含硫含氮气体效能和机理研究.哈尔滨工业大学学报, 2005, 37(2): 167–169
    [78] Zhou Q, Huang Y L, Tseng D H, et al. Trickling fibrous-bed bioreactor for biofiltration of benzene in air. Journal of Chemical Technology and Biotechnology, 2000, 73(4): 359–368
    [79]羌宁,吴志超,麦穗海.生物法去除H2S恶臭设备的现场工业化试验研究.同济大学学报(自然科学版) , 2005, 33(5): 640–643
    [80]李国文,樊青娟,刘强,等.挥发性有机废气(VOCs)的污染控制技术.西安建筑科技大学学报, 1998, 30(4): 399–402
    [81]王宝庆,马广大,王莉,等.生物过滤床净化含乙苯废气的实验研究.西安建筑科技大学学报(自然科学版), 2005, 37(1): 64–68
    [82]雷艳梅,孙佩石,吴献花,等.生物膜填料塔净化低浓度苯乙烯废气的实验研究.环境污染治理技术与设备, 2006, 7(3): 36–39
    [83]孙佩石,黄兵,黄若华,等.生物法净化挥发性有机废气的吸附—生物膜理论模型与模拟研究.环境科学, 2002, 23(3): 14–17.
    [84] Chen Y X, Yin J, Fang S. Biological removal of air loaded with a hydrogen sulfide and ammonia mixture. J. Environ. Sci., 2004, 16(4): 656–661
    [85] Chen Y X, Yin J, Wang K X, Fang S. Effects of periods of nonuse and fluctuating ammonia concentration on biofilter performance. J. Environ. Sci. Healt. A, 2004, 39(9): 2447–2463
    [86] Chen J M, Ma J F. Abiotic and biological mechanisms of nitric oxide removal from waste air in biotrickling filters. J. Air Waste Manage. Assoc., 2006, 56(1): 32–36
    [87] Chen J M, Wang J D, Ma J F. Effects of gas flow-rate and inlet concentration on nitric oxide removal in an autotrophic biofilter. J. Chem. Technol. Biot., 2006,81(5): 812–816
    [88] Chen J M, Wu C Q, Wang J D, et al. Performance evaluation of biofilters packed with carbon foam and lava for nitric oxide removal. J. Hazard. Mater., 2006, 137(1): 172–177
    [89]陈建孟, Hershman L,陈浚,等.自养型生物过滤器硝化氧化一氧化氮.环境科学, 2003, 24(2): 1–6
    [90]张海杰,罗阳春,王家德,等.生物转鼓反硝化净化一氧化氮废气.中国环境科学, 2006, 26(3): 262–265
    [91]王家德,高增粱,褚淑祎,等.填料湿度、pH值对BF系统处理H2S废气的影响.环境科学学报, 2006, 26(4): 589–594
    [92] Yang C, Suidan M T, Zhu X, et al. Removal of a volatile organic compound in a hybrid rotating drum biofilter. J. Environ. Eng., 2004, 130(3): 282–291
    [93] Yang C, Suidan M T, Zhu X, et al. Comparison of single-layer and multi-layer rotating drum biofilters for VOC removal. Environ. Prog., 2003, 22(2): 87–94
    [94] Yang C, Suidan M T, Zhu X, et al. Biomass accumulation patterns for removing volatile organic compounds in a rotating drum biofilter. Wat. Sci. Technol., 2003, 48(8): 89–96
    [95] Yang C. Rotating Drum Biofiltration: [Department of Civil & Environmental Engineering, University of Cincinnati, Ph.D. Dissertation]. Cincinnati: University of Cincinnati, 2000: 1–152
    [96] Atoche J C, Moe W M. Treatment of MEK and toluene mixtures in biofilters: effect of operating strategy on performance during transient loading, Biotechnol. Bioeng., 2004, 86(4): 468–481
    [97] Li C, Moe W M. Activated carbon load equalization of discontinuously generated acetone and toluene mixtures treated by biofiltration. Environ. Sci. Tech., 2005, 39(7): 2349–2356
    [98] Mohseni M, Zhao J L. Coupling ultraviolet photolysis and biofiltration for enhanced degradation of aromatic air pollutants. J. Chem. Technol. Biot., 2006, 81(2): 146–151
    [99] Sakuma T, Hattori T, Deshusses M A. Comparison of different packing materials for the biofiltration of air toxics. J. Air Waste Manage., 2006, 56(11): 1567–1575
    [100] Smith F L, Sorial G A, Suidan M T, et al. Development and demonstration of an explicit lumped-parameter biofilter model and design equation incorporating Monod Kinetics. J. Air Waste Manage., 2002, 52(2): 208–219
    [101] Schroeder E D. Trends in application of gas-phase bioreactors. Re/Views in Environmental Science Bio/Technology, 2002, 1: 65–74
    [102] Wang J D, Wu C Q, Chen J M. Denitrification removal of nitric oxide in a rotating drum biofilter. Chemical Engineering Journal, 2006, 121(1): 45–49
    [103] Rittmann B E. International specialty conference on the microbial ecology of biofilms. Water Science and Technology, 1999, 39(7): 1–3
    [104] Van Gronestijn J W, Liu J X. Removal of alpha-pinene from gases using biofilters containing fungi. Atmospheric Environment, 2002, 36(35): 5501–5508
    [105] Maestre J P, Gamisans X, Gabriel D, et al. Fungal biofilters for toluene biofiltration: Evaluation of the performance with four packing materials under different operating conditions. Chemosphere, 2007, 67(4): 684–692
    [106] Jin Y, Guo L, Veiga M C, et al. Fungal biofiltration ofα-pinene: Effects of temperature, relative humidity, and transient loads. Biotechnol. Bioeng., 2007, 96(3): 433–443
    [107] Zhu X Q, Suidan M T, Alonso C, et al. Biofilm structure and mass transfer in a gas phase trickle-bed biofilter. Water Sci. Technol., 2001, 43(1): 285–293
    [108]王建龙.荧光原位杂交(FISH)技术检测水体中大肠菌群研究.中国生物工程杂志, 2004a, 24(2): 70–73
    [109]王建龙. PCR技术检测水体中大肠菌群的研究.中国生物工程杂志, 2004b, 24(7): 60–64
    [110]王建龙.核酸杂交技术用于废水处理的微生物学研究.中国给水排水, 2003, 19(5): 23–27
    [111] Ottengraf S P P, van den Oever A H C. Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol. Bioeng. 1983, 25: 3089–3102
    [112] Ottengraf S P P. Exhaust gas purification. In: Rehm H J, Reed G (eds) Biotechnology, VCH-Verlagsgesell. schaft, Weinheim, 1986, 8: 425–452
    [113] Ottengraf S P P. Theoretical model for a submerged biological filter. Biotechnol. Bioeng., 1997, 19: 1411–1417
    [114] Alonso C, Suidan M T, Kim B R, et al. Dynamic mathematical model for the biodegradation of VOCs in a biofilter: biomass accumulation study. Environ. Sci.Technol., 1998, 32(20): 3118–3123
    [115] Alonso C, Zhu X Q, Suidan M T, et al. Parameter estimation in biofilter system. Environ. Sci. Technol., 2000, 34(11): 2318–2323
    [116] Alonso C, Zhu X Q, Suidan M T, et al. Mathematical model of biofiltration ofVOCs: effect of nitrate concentration and backwashing. J. Environ. Eng., 2001, 127(7): 655–664
    [117] Morales M, Hernandez S, Cornabe T, et al. Effect of drying on biofilter performance: modeling and experimental approach. Environ. Sci. Technol., 2003, 37(5): 985–992
    [118] Okkerse W J H, Ottengraf S P P, Osinga-Kuipers B, et al. Biomass accumulation and clogging in biotrickling filters for waste gas treatment. Evaluation of a dynamic model using dichloromethane as a model pollutant. Biotechnol. Bioeng., 1999, 63(4): 418–430.
    [119] Zhu X Q. A fundamental study on the biofiltration process for VOC removal from waste gas streams. [Deaprtment of Civil & Environmental Engineering, University of Cincinnati, Ph.D. Dissertation]. Cincinnati, USA: University of Cincinnati, 2000:1–52
    [120] Zhu X Q, Suidan M T, Yang C P, et al. Effect of substrate Henry’s constant on biofilter performance. J. Air Waste Manage., 2004, 54(4): 409–418
    [121]饶佳家,陈柄灿,孙兴福,等.生物法处理挥发性有机废气的研究.环境污染治理技术与设备, 2004, 5(9): 56–60
    [122] Nielsen D R, Daugulis A J, McLellan P, J. Dynamic Simulation of Benzene Vapor Treatment by a Two-Phase Partitioning Bioscrubber. Part I: Model Development, Parameter Estimation, and Parametric Sensitivity. Biochem. Eng. J., 2007, In Press
    [123] Nielsen D R, Daugulis A J, McLellan P, J. Dynamic simulation of benzene vapor treatment by a two-phase partitioning bioscrubber: Part II: Model calibration, validation, and predictions. Biochem. Eng. J., 2007, In Press
    [124] Potivichayanon S, Pokethitiyook P, Kruatrachue M. Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochem., 2006, 41(3): 708–715
    [125] Prado O J, Veiga M C, Kennes C. Treatment of gas-phase methanol in conventional biofilters packed with lava rock. Wat. Res., 2005, 39(11): 2385–2393
    [126] Delhomenie M, Bibeau L, Heitz M. A study of the impact of particle size and adsorption phenomena in a compost-based biological filter. Chem. Eng. Sci., 2002, 57(24): 4999–5010
    [127] Hicham E, Nathalie B, Zarook S, et al. Biofiltration of xylene emissions: bioreactor response to variations in the pollutant inlet concentration and gasflow rate. Chem. Eng. J., 2004, 100(1–3): 149–158
    [128] Delhoménie M, Bibeau L, Gendron J, et al. A study of clogging in a biofilter treating toluene vapors. Chem. Eng. J., 2003, 94(3): 211–222
    [129] Gibson M J, Trevors J T, Otten L. Population estimates of Thiobacillus thioparus in composting biofilters by PCR analysis. J. Microbiological Methods, 2006, 65(2): 346–349
    [130] Wan N, Joon-Seok P, Jean S V. Biofiltration of gasoline vapor by compost media. Environ. Pollution, 2003, 121(2): 181–187
    [131] Melse R W, Vanderwerf A W. Biofiltration for mitigation of methane emission from animal husbandry. Environ. Sci. Technol., 2005, 39(14): 5460–5468
    [132]张华,赵由才.矿化垃圾反应床反硝化处理NO废气的初步研究.环境工程, 2005, 23(2): 39–42
    [133]李国文,胡洪营,郝吉明,等.生物过滤塔、生物滴滤塔降解苯和甲苯的性能比较.环境科学学报, 2001, 21(增刊): 122–126
    [134]王鹏飞,王艺,宫曼丽,等.生物滴滤塔处理“三苯”废气的影响因素研究.哈尔滨工业大学学报, 2003, 35(1): 73–76
    [135]范立维,童志权.生物滴滤塔处理低浓度CS2废气的研究.化工进展, 2005, 24(3): 291–294
    [136]陈建孟,王家德,庄利,等.生物滴滤池净化二氯甲烷废气的实验研究.环境科学, 2002, 23(4): 8–12
    [137] Chen J M, Chen J, Lance H, et al. Autotrophic Biofilters for Oxidation of Nitric Oxide. Chinese J. Chem. Eng., 2004, 12(1): 113–117
    [138]杨虹,徐晓军,史本章.生物滴滤器处理味精厂挥发性恶臭废气的试验研究.环境污染治理技术与设备, 2005, 6(6): 72–75
    [139]羌宁,季学李,顾国维.气体生物滴滤池载体性能比较实验研究.环境科学, 2000, 21(1): 45–48
    [140]羌宁,季学李,都基峻.苯系混合气体生物滴滤器非稳态工况性能.环境科学, 2005, 26(1): 16–19
    [141]都基峻,季学李,羌宁.生物膜净化含苯废气的性能研究.环境科学学报, 2005, 25(3): 401–404
    [142]孙珮石,杨显万,黄若华,等.生物法净化再生胶生产废气工业试验研究.环境污染与防治, 2002, 24(1): 8–12
    [143] Seignez C, Atti A, Adler N, et al. Effect of biotrickling filter operating parameters on chlorobenzenes degradation. J. Environ. Eng., 2002, 128 (4): 360–366
    [144] Morgenroth E, Wilderer P A. Influence of detachment mechanisms on competition in biofilms. Wat. Res., 2000, 34(2): 417–426
    [145] Bhat T R, Divya V, Ravic V, et al. An improved differential evolution method for efficient parameter estimation in biofilter modeling. Biochem. Eng. J., 2006, 28(2): 167–176
    [146] Den W, Huang C, Li C. Biotrickling filtration for control of volatile organic compounds from microelectronics industry. J. Environ. Eng., 2003, 129(7): 610–619
    [147] David Gabriel, Huub H J C, Marc A D. Conversion of full-scale wet scrubbers to biotrickling filters for H2S control at publicly owned treatment works. J. Environ. Eng., 2004, 130(10): 1110–1117
    [148] Swanson W J, Loehr R C. Biofiltration: fundamentals, design and operations principles, and applications. J. Environ. Eng., 1997, 128(6): 538–546
    [149] Ottengraf S P P. Apparatus for biological treatment of waste gases. Atmos. Environ. (1967), 1989, 23(6): 41-46.
    [150] Yang H, Allen D G. Potential improvement in biofilter design through the use of heterogeneous packing and a conical biofilter geometry. J. Environ. Eng., 2005, 131 (1): 504–511
    [151] Wright W F. Transient response of vapor-phase biofilters. Chem. Eng. J., 2005, 113(7): 161–173
    [152] Duan H, Yan R, Chiaw Koe L C, et al. Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration. Chemosphere, 2007, 66(9): 1684–1691
    [153] Ottengraf S P P. Biological systems for waste gas elimination. Trends Biotechnol., 1987, 5(5): 132–136.
    [154] Hodge D S, Devinny J S. Modeling removal of air contaminants by biofiltration. J. Envirion. Eng., 1995, 121(1): 21–32
    [155] Shareefdeen Z, Baltzis B C, Oh Y S, et al. Biofiltration of methanol vapor. Biotechnol. Bioeng., 1993, 41(5): 512–524
    [156] Shareefdeen Z, Baltzis B C. Biofiltration of toluene vapor under steady-state and transient conditions: theory and experimental results, Chem. Eng. Sci., 1994, 49(24A): 4347–4360
    [157] Deshusses M A, Hamer G, Dunn I J. Behavior of biofilters for waste air biotreatment. 1. Dynamic model development, Environ. Sci. Technol., 1995, 29(4): 1048–1058
    [158] Deshusses M A, Hamer G, Dunn I J. Behavior of biofilters for waste air biotreatment. 2. Experimental evaluation of a dynamic model. Environ. Sci. Technol., 1995, 29(4): 1059–1068
    [159] Alonso C, Suidan M T, Sorial G A, et al. Gas treatment in trickle-bed biofilters: biomass, how much is enough? Biotechnol. Bioeng., 1997, 54(6): 583–594
    [160] Huang J, Jih C. Deep-biofilm kinetics of substrate utilization in anaerobic filters. Water Res., 1997, 31(9): 2309–2317
    [161]雷艳梅,孙佩石,吴献花,等.低浓度苯乙烯废气生物净化过程的动力学模型验证.云南化工, 2005, 32(6): 8–11
    [162] Liao Q, Chen R, Zhu X. Theoretical model for removal of volatile organic compound (VOC) air pollutant in trickling biofilter. Sci. China E, 2003, 33(5) : 435–442
    [163]廖强,朱寿礼,朱恂.生物滴滤床降解有机废气净化效率的理论模型.中国环境科学, 2004, 24(1): 58–62
    [164]廖强,朱寿礼,朱恂.生物膜填料床内含有生化反应的多相传输模型.化工学报, 2005, 56(9): 1743–1749
    [165]廖强,田鑫,陈蓉.有机废气净化生物膜滴滤塔代谢产热的理论模型.自然科学进展, 2006, 16(6): 727–732

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700