多级孔道沸石分子筛的合成、表征及催化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多级孔道沸石分子筛同时具有沸石分子筛及介孔材料的优点,具有很高的酸性、水热稳定性及多级孔道结构,同时具有很好的择形性能和传质能力,被认为是潜在的下一代催化材料,有望在重油裂化、大分子催化等领域中发挥重要作用。它的合成、表征及催化应用已经得到了广泛的研究。但是多级孔道沸石分子筛合成中的诸多关键问题仍未解决:如沸石分子筛的晶化、介孔形成机理及第二模板的作用等。而且目前多级孔道沸石分子筛的合成路线大部分是基于纳米复制技术开发的,合成工艺相对复杂,合成成本较高。所合成的介孔沸石中介孔孔道的有序程度也有待于进一步改善。本文通过吸收纳米技术、无机合成化学及沸石分子筛机理的最新研究结果,致力于这些关键问题的解决,形成更经济的多级孔道沸石分子筛合成方法,制备具有优良结构特征的多级孔道沸石分子筛。论文中详细研究了沸石分子筛在硬模板,软模板及无第二模板存在条件的晶化过程,开发了硬模板,软模板及无第二模板存在条件的多级孔道沸石分子筛的合成路线,认识不同合成路线所蕴含的共同点,并对所合成的多级孔道沸石分子筛样品进行详细的表征,同时考察了典型材料的催化性能。
     不同结构炭材料为模板制备沸石分子筛的研究表明炭材料模板的结构特征对沸石分子筛的晶化过程有着很大的影响,通过控制炭材料的结构可以在很大程度上控制沸石分子筛的晶化过程。采用炭气凝胶为模板时不需要控制晶化条件即可合成含有晶体内介孔的沸石分子筛,所得介孔沸石的孔结构与炭材料模板具有良好的对应关系。在炭材料为模板的条件下更容易生成含无序介孔的纳米沸石团聚体,对比炭材料模板及沸石产物的结构发现某些条件下炭材料模板并没有起到占据孔道造孔的功能,因而在合成这一类沸石材料的过程中,介孔模板可能不是必须的。
     采用具有不同初始炭纳米颗粒大小的炭气凝胶可以合成具有可调控介孔结构(尺寸10-100 nm)的介孔沸石。炭材料纳米复制法表征结果表明不同炭气凝胶合成的沸石样品具有不同的介孔连接性。
     采用原位生成的CMK-5或常规表面活性剂及硅烷化类似物的混合物为模板可以实现均有序介孔沸石的合成。所得的有序介孔沸石具有很好的水热稳定性,产品经过120小时沸水处理及在水蒸气条件下850℃焙烧4小时后仍能保持所有的结构特征。两种合成路线中有序介孔沸石分子筛的形成均经历了无定形有序介孔二氧化硅的生成、初始二氧化硅相的溶解、沸石的成核及晶化等过程。在合成过程中对沸石的生长进行一定的限制是实现成功合成的关键因素,但限制作用并非越强越好,而需要控制在一个合适的范围,使得沸石分子筛的成核、生长能够与介孔相的生长、保持实现最优的匹配。
     具有介孔的纳米沸石团聚体确实在较大分子尺寸化合物的催化反应中体现出比常规沸石分子筛更好的催化性能。采用CMK-3为模板合成的介孔TS-1纳米沸石团聚体在噻吩类含硫模型化合物的催化氧化反应中体现出比常规TS-1更好的催化性能,而且二苯并噻吩比噻吩更容易被氧化脱除。具有介孔的纳米ZSM-12沸石团聚体及ZSM-5团聚体可在没有第二模板存在的条件下通过纳米沸石分子筛的原位自组装成功合成。
     多级孔沸石分子筛的合成通常是经历了基于颗粒团聚的沸石生长机理,多级孔道沸石分子筛的形成是沸石的晶化过程在特定的条件下终止而生成的动力学控制产物,而多级孔道的形成并不一定需要介孔形成模板的参与。
     在2,6-二甲基萘选择合成的催化反应中,量子化学计算的结果表明目标产物2,6-二甲基萘的分子尺寸要略大于主要的副产物2,7-二甲基萘,但从本征的化学反应性上看2,6-二甲基萘比2,7-二甲基萘更有利于生成。基于这些计算结果,开发了Zr同晶取代的ZSM-5作为这一催化体系的催化剂。基于有序介孔沸石(OMZ-1)的催化剂在2-甲基萘选择甲基化反应中具有比常规ZSM-5更好的催化性能。在反应条件为反应温度为400℃,当2-MN的质量空速为0.5 h~(-1)和2-MN/甲醇/均三甲苯摩尔比为1:1:3时,经过8小时反应,2-甲基萘的转化率、β,β选择性、2,6-/2,7-DMN比、2,6-DMN的选择性及收率分别可达到44%、78%、2.7、49%和17%。
Hierarchical zeolite has advantages of zeolites (high thermal, hydrothermal stability and ordered microposity) and ordered mesoporous materials (large mesopore structure) simultaneity, is a proven strategy to combine shape selectivity with efficient mass transport. These features make it highly desirable in catalysis and adsorption, especially in bulk molecule processes. Its synthesis, characterization and performance in catalytic reaction have gathered a lot of research interests. However, some fundamental questions in hierarchical zeolite synthesis such as the zeolite crystallization and mesopore formation mechanism are still unresolved. Also, recently mesoporous zeolites are generally synthesized based on a nanocasting route with carbon materials as secondary template. This nanocasting route, though very effective, is industrially unfavorable because of its high cost and complex process. Moreover, the structure order in mesopore scale is need further improve. In the doctor thesis, with the recently development in nanotechnology, inorganic synthesis chemistry and zeolite crystallization mechanism, we hope to overcome above motioned question in hierarchical zeolite synthesis, develop cost effective mesoporous zeolite synthesis method, improve the properties of zeolite products and test typical zeolites in model catalytic reaction.
     In chapter 1, detailed literature review on hierarchical zeolite synthesis, characterization and catalytic application is given. The detailed experimental methods are given in chapter 2. In chapter 3 with the purpose to understand the influence of carbon template structure on zeolite crystallization, typical carbon materials with difference structure properties was used as template for zeolite synthesis. The final product and materials obtained with different crystallization time were carefully characterized. The results show that the structure of carbon materials has large influence on the zeolite crystallization and the structure of zeolite product can be controlled by varying structure of carbon template. Mesoporous zeolite single crystal can be synthesized with ambient drying carbon aerogel as template without any control on crystallization conditions. The structure of so called mesoporous zeolite single crystal successfully cast the nanostructure of carbon aerogel template. With carbon materials as template, mesoporous aggregate of zeolite nanocrystals is often formed as product or intermediate phase for mesoporous zeolite single crystal synthesis, determining on the structure of carbon template, the structure of zeolite nanocrystals have no obvious relationship with carbon template thus the carbon template is not strictly needed in the synthesis of this type mesoporous zeolite. In chapter 4, we show by changing the structure of carbon aerogel through controlling the catalyst concentration during synthesis, zeolite with tunable intracrystal nanoporsity over larger range (10 nm-100 nm) can be synthesized. A method based on nanocasting concept for test the interconnectivity of mesopore channel in mesoporous zeolite single crystal was developed in this chapter. The result indicate that mesoporous zeolite synthesized with different carbon template have different mesopore interconnectivity. In chapter 5, ordered mesoporous zeolite was synthesized with hard or soft template. It was found that the pore wall of SBA-15 can be recrystallized into ZSM-5 zeolite with in-situ formed carbon material (CMK-5) as template. Zeolite with intracrystal wormhole like mesopore channel can be synthesized with mixture of common cationic surfactant and its silylated analogue as template. Ordered mesoporous zeolite synthesized with both two method have very high thermal and hydrothermal stability, which is stable after treatment in steam at 850℃for 4 h or refluxing in boiling water for 120 h. The formation process of ordered mesoporous zeolite in the two synthesis methods is similar, which is, the formation and dissolve of initial mesopore phase, zeolite nucleation and the formation of ordered mesoporous zeolite. In both synthesis routes, the confine effect of secondary template on zeolite growth is needed and should be controlled in a certain degree. Ordered mesoporous zeolite can only be synthesized when a good match between zeolite growth kinetic and ordered mesopore structure formation is reached. In our synthesis method, ordered mesoporous zeolite can only be synthesized with CMK-5 have moderate thickness or mixture of common cationic surfactant and its silylated analogue as template. In chapter 6, we test the catalytic performance of mesoporous aggregate of zeolite nanocrystals in bulk molecular containing reaction and the possibility to synthesis of mesoporous aggregate of zeolite nanocrystals without secondary template. It was found that mesoporous zeolite aggregate actually show better performance in bulky molecular containing reaction, for instance, catalytic oxidative desulfurization. Hierarchical TS-1 synthesized with CMK-3 as template show improved catalytic performance for thiophene removing compare with common TS-1 and is able to catalytic oxidation remove of large sulfur containing molecular such as DBT. Mesoporous aggregate of ZSM-12 nanocrystals and ZSM-5 nanocrystals was successfully synthesized without secondary through in-situ assembly of zeolite nanocrystals into mesoporous aggregate of zeolite nanocrystals with single crystal like morphology. We further compare the synthesis method and formation process of mesoporous zeolite in different route and found that the hierarchical zeolite generally crystallization through a nanoparticles based aggregation formation mechanism. Stabilize of zeolite nanoparticles with different size and its further assembly leading to the formation of different type of mesoporous zeolite. Hence the hierarchical zeolite is generally kinetically favored product at the given condition. A general crystallization map of hierarchical was given in this chapter. In chapter 7, we test the performance of OMZ-1 in methylation of 2-methylnaphthalene. In 2,6-dimethylnaphthalene synthesis, based on quantum chemical calculation, 2,6-DMN is slightly bulkier and chemical reactivity more favored product than 2,7-DMN. OMZ-1 show better catalytic performance on this reaction than ZSM-5. With Zr/OMZ-1 as catalyst, after 8 h reaction at 400℃, the conversion of 2-methylnaphthalene, selectivity ofβ,β-DMN, ratio of 2,6- and 2,7-DMN and selectivity of 2,6-DMN is 44%, 78%, 2.7,49% and17%, respectively.
引文
[1]徐如人,庞文琴.分子筛与多孔材料化学.北京:科学出版社,2004.
    [2]高滋 沸石催化与分离技术.北京:中国石化出版社,1999.
    [3]Weiz P B.J Phys Chem,1960 64,382.
    [4]Jule A.Rabo,Zeolite chemistry and catalysis,1976.
    [5]Degnan T F.The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries.Journal of Catalysis.2003,216:32-46.
    [6]曾昭槐,择形催化.北京:中国石化出版社,1994.
    [7]Corma A,Nemeth L T,Renz M et al.Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations.Nature.2001,41:423-425.
    [8]Taramasso M,Perego G,Notari B.Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides.U.S.Pat.4,410,501,1983.
    [9]Sheldon R A,Downing R S.Heterogeneous catalytic transformations for environmentally friendly production.Appl.Catal.A,1999,189:163-183.
    [10]Sheldon R A,Dakka J.Heterogeneous catalytic oxidations in the manufacture of fine chemicals.Catal.Today,1994,19(2):215-246.
    [11]Corma A.State of the art and future challenges of zeolites as catalysts.Journal of Catalysis.2003,216:298-312.
    [12]Tao Y S,Kanoh H,Abrams L et al.Mesopore-Modified Zeolites:Preparation,Characterization,and Applications.Chem.Rev.2006,106:896-910.
    [13]Kresge C T,Leonowicz M E,Roth W J et al.Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism.Nature.1992,359:710-712.
    [14]Mercier L and Pinnavaia T J.Access in mesoporous materials:Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation.Adv.Mater.1997,9:500.
    [15]Corma A,Martinez A,martinezsoria et al.Hydrocracking of Vacuum Gas-Oil on the Novel Mesoporous MCM-41 Aluminosilicate Catalyst.J Catal.1995,153:25-31.
    [16]Coma A,Navarro M T,Pariente J P et al.Synthesis of an Ultralarge pore Titanium Silicate Isomorphous to MCM-41 and Its Application as a Catalyst for Selective Oxidation of Hydrocarbons,J Chem Soc-Chem Commun.1994,147-148.
    [17]Waller P,Shan Z P,Marchese Let al.Zeolite Nanocrystals Inside Mesoporous TUD-1:A High-Performance Catalytic Composite.Chem.Eur.J.2004,10:4970-4976.
    [18]Davis M E,Ordered porous materials for emerging applications Nature,2002,417,813-821
    [19]Saldarriaga C,Montes C,Garces J,Crowdert C,A molecular sieve with eighteen-membered rings.Nature.1988,331,698-699
    [20]Occelli M,Kessler H,Balkus K J et al.Synthesis of porous materials.Marcel Dekker,NY,1996,77.
    [21]Wagner P,Yoshikawa M,Lovallo Met al.CTI-5:a high-silica zeolite with 14-rings pores.Chem Commum.1997,2179-2180.
    [22]Corma A,Di'az-Cabanas M J,Marti'nez-Triguero Jet al.A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst.Nature,2002,481:514-517.
    [23]Corma A,Diaz-Cabanas M J,Jorda J L.High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings.Nature.2006,443:842-845.
    [24]Castaneda R,Corma A,Fornes V et.al Synthesis of a mew zeolite structure ITQ-24 with intersecting Co-and 12-membered ring proes.J.Am.Chem.Soc.2003,125:7820-7821.
    [25]Wang XS,Wang GR,Guo HC,Wang XQ,Ethylation of Ethylbenzene to Produce para-Diethylbenzene,Stud.Surf.Sci.Catal.,1997,105,1357-1364.
    [26]王永睿.纳米β分子筛催化材料的制备,第十一届全国催化学术会议论文集.2002,979.
    [27]Liu Y,Zhang W Z and Pinnavaia T J.Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds.J.Am.Chem.Soc.2000,122:8791-8792.
    [28]Yu Liu,Wenzhong Zhang,and Thomas J.Pinnavaia.Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds.Angew.Chem.Int.Ed.2001,40:1255-1258.
    [29]Zhang Z T,Han Y,Xiao F S et al.Mesoporous Aluminosilicates with Ordered Hexagonal Structure,Strong Acidity,and Extraordinary Hydrothermal Stability at High Temperatures.J.Am.Chem.Soc.2001,123:5014-5021.
    [30]Sakthivel A,Huang S J,Chen W H et al.Replication of Mesoporous Aluminosilicate Molecular Sieves(RMMs)with Zeolite Framework from Mesoporous Carbons(CMKs).Chem.Mater.2004,16:3168-3175.
    [31]Do Y O,NossovA,Springuel-Huet M A et al.Zeolite Nanoclusters Coated onto the Mesopore Walls of SBA-15.J.Am.Chem.Soc.2004,126:14324-14325.
    [32]Ogura M,Zhang Y W,Elangovan S P et al.Formation of ZMM-n:The composite materials having both natures of zeolites and mesoporous silica materials.Microporous and Mesoporous Materials.2007,101:224-230.
    [33] Cundy C S and Cox P A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials. 2005 82: 1-78.
    
    [34] Xia Y D, Mokaya R, Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds J. Mater. Chem, 2004,3427-3435
    
    [35] Janssen A H, Koster A J and de Jong K P. On the Shape of the Mesopores in Zeolite Y: A Three-Dimensional Transmission ElectronMicroscopy Study Combined with Texture Analysis. J. Phys. Chem. B 2002,106: 11905-11909.
    
    [36] Kortunov P, Vasenkov S, Karger J et al. The Role of Mesopores in Intracrystalline Transport in USY Zeolite: PFG NMR Diffusion Study on Various Length Scales.J. Am. Chem. Soc. 2005, 127: 13055-13059.
    
    [37] Groen J C, Peffer L A A, Moulijn J A et al. Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent. Chem. Eur. J. 2005,11: 4983-4994.
    
    [38] Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, de Jong K. P., Moulijn J. A, Perez-Ramirez J, Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals. J. Am. Chem. Soc, 2005, 127: 10792-10793.
    
    [39] Groen J C, Zhu W D, Brouwer S et al. Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite Obtained via Controlled Desilication.J. Am. Chem. Soc. 2007, 129: 355-360.
    
    [40] Groen J C, Sano T, Moulijn J A et al. Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. Journal of Catalysis. 2007,251: 21-27.
    
    [41] Schuth F. Endo- and Exotemplating to Create High-Surface-Area Inorganic Materials. Angew. Chem. Int. Ed. 2003,42: 3604-3622.
    
    [42] Kim J Y, Yoon S B, and Yu J S. Template Synthesis of a New Mesostructured Silica from Highly Ordered Mesoporous Carbon Molecular Sieves. Chem. Mater. 2003, 15: 1932-1934.
    
    [43]Liu Q, Wang A, Wang X, Zhang T, Ordered Crystalline Alumina Molecular Sieves Synthesized via a Nanocasting Route.Chem. Mater, 2006,18: 5153-5155.
    
    [44] Lai X Y, Li X, Geng W C, Tu J C, Li J, Qiu S, Ordered Mesoporous Copper Oxide with Crystalline Walls. Angewandte Chemie International Edition, 2007,46: 738-741
    
    [45] Schmidt I, Madsen C, and Jacobsen C J H. Confined Space Synthesis. A Novel Route to Nanosized Zeolites. Inorg. Chem. 2000, 39: 2279-2283.
    
    [46] Kim S S, Shah J and Pinnavaia T J. Colloid-Imprinted Carbons as Templates for the Nanocasting Synthesis of Mesoporous ZSM-5 Zeolite. Chem. Mater. 2003,15: 1664-1668.
    [47] Tao Y S, Kanoh H and Kaneko K. ZSM-5 Monolith of Uniform Mesoporous Channels.J. Am. Chem. Soc. 2003, 125: 6044-6045.
    
    [48] Tao Y S, Kanoh H, and Kaneko K. Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating. J. Phys. Chem. B. 2003,107: 10974-10976.
    
    [49] Tao Y S, Hattori Y, Matumoto A et al. Comparative Study on Pore Structures of Mesoporous ZSM-5 from Resorcinol-Formaldehyde Aerogel and Carbon Aerogel Templating. J. Phys. Chem. B.2005,109:194-199
    
    [50] Tao Y S, Kanoh H and Kaneko K. Synthesis of Mesoporous Zeolite A by Resorcinol-Formaldehyde Aerogel Templating. Langmuir. 2005, 21: 504-507.
    
    [51] Yang Z X, Xia Y D and mokaya R. Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template. Adv. Mater. 2004, 16: 727-732.
    
    [52] Tao Y, Kanoh H, Kaneko K, Comment: Questions Concerning the Nitrogen Adsorption Data Analysis for Formation of Supermicropores in ZSM-5 Zeolites. Advanced Materials,2005, 17: 2789-2791
    
    [53] Li W C, Lu A H, Schuth F. Hierarchically Structured Monolithic Silicalite-1 Consisting of Crystallized Nanoparticles and Its Performance in the Beckmann Rearrangement of Cyclohexanone Oxime, J. Am. Chem. Soc. 2005, 127, 12595-12600
    
    [54] Cho S, Choi S D, Kim J H et al. Synthesis of ZSM-5 Films and Monoliths with Micro/Mesoscopic Structures. Adv. Funct. Mater. 2004, 14: 49-54.
    
    [55] Jacobsen C H, Madsen C, Houzvicka J et al. Mesoporous Zeolite Single Crystals.J. Am. Chem. Soc. 2000, 122: 7116-7117.
    
    [56] Kustova M Y, Hasselriisb P, and Christensen C H. Mesoporous MEL-type zeolite single crystal catalysts. Catalysis Letters. 2004, 96: 3-4.
    
    [57] Schmidt I, Krogh A, Wienberg K, Carlsson A, Brorson M, Jacobsen C J H. Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite.Chem.Commun, 2000,21,2157-2158
    
    [58] Schmidt I, Boisen A, Gustavsson E et al. Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals. Chem. Mater. 2001, 13: 4416-4418.
    
    [59] Janssen A H, Schmidt I, Jacobsen C J H et al. Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous and Mesoporous Materials. 2003, 65: 59-75.
    
    [60] Zhu K K, Egeblad K, Christensen C H, Mesoporous Carbon Prepared from Carbohydrate as Hard Template for Hierarchical Zeolites. European Journal of Inorganic Chemistry. 2007, 25:3955-3960.
    [61] Kustova M, Egeblad K, Zhu K, Christensen C H, Versatile Route to Zeolite Single Crystals with Controlled Mesoporosity: in situ Sugar Decomposition for Templating of Hierarchical Zeolites. Chem. Mater., 2007, 19: 2915-2917.
    
    [62] Xiao F S, Wang L F, Yin C Y et al. Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers. Angew. Chem. Int. Ed. 2006, 45: 3090-3093.
    
    [63] Serrano D P, Aguado J, Escola J M., Rodriguez J M, Peral A, Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds. Chem. Mater., 2006.18: 2462-2464.
    
    [64] Wang H and Pinnavaia T J. MFI Zeolite with Small and Uniform Intracrystal Mesopores. Angew. Chem. Int. Ed. 2006,45: 7603-7606.
    
    [65] Choi M, Cho H S, Srivastava R et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature materials. 2006, 5:718-723
    
    [66] Hartmann M. Hierarchical Zeolites: A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport. Angew. Chem. Int. Ed. 2004,43: 5880-5882
    
    [67] Christensen C H, Johannsen K, Schmidt I et al. Catalytic Benzene Alkylation over Mesoporous Zeolite Single Crystals: Improving Activity and Selectivity with a New Family of Porous Materials.J Am. Chem. Soc. 2003,125: 13370-13371.
    
    [68] Srivastava R, Choi M and Ryoo R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chem. Commun. 2006, 4489-4491
    
    [69] Christensen C H., Schmidt I, Carlsson Anna et al. Crystals in Crystals : Nanocrystals within Mesoporous Zeolite Single Crystals..J. Am. Chem. Soc. 2005,127: 8098-8102
    
    [70] Christensen C H, Schmidt and Christensen C H. Improved performance of mesoporous zeolite single crystals in catalytic cracking and isomerization of n-hexadecane. Catalysis Communications. 2004, 5: 543-546.
    
    [71]Taylor B, Lauterbach J, Delgass W. N, The effect of mesoporous scale defects on the activity of Au/TS-1 for the epoxidation of propylene Catalysis Today.2007,123: 50-58
    
    [72] Kustov A L, Hansen T W, Kustova M et al. Selective catalytic reduction of NO by ammonia using mesoporous Fe-containing HZSM-5 and HZSM-12 zeolite catalysts: An option for automotive applications. Applied Catalysis B: Environmental. 2007, 76: 311-319.
    
    [73] Christensen C H, Johannsen K, Tornqvist E et al. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today. 2007,128,(3-4):l 17-122
    
    [74] Sun Y Y and Prins R. Friedel-Crafts alkylations over hierarchical zeolite catalysts. Applied Catalysis A: General. 2007, doi:10.1016/j.apcata.2007.08.015.
    [75]Kustova M Y,Rasmussen S B,Kustov A L et al.Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts:Improved performance with hierarchical zeolites.Applied Catalysis B:Environmental.2006,67:60-67.
    [76]Jun S,Joo S H,Ryoo R et al.Synthesis of New,Nanoporous Carbon with Hexagonally Ordered Mesostructure.J.Am.Chem.Soc.2000,122:10712-10713.
    [77]Joo S H,Choi S J,Oh I et al.Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles.Nature.2001,412:169-172.
    [78]Lee J W,Yoon S H,Hyeon T et al.Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors.Chem.Commun.,1999,2177-2178.
    [79]Jansen J.C,van der Gaag F.J.,van Bekkum H.,Zeolites 1984,369.
    [80]Nikolakis V,Vlacho D G.and Tsapatsis M.Modeling of zeolite crystallization:the role of gel microstructure.Microporous and Mesoporous Materials.1998,21:337-346.
    [81]S.A.Al-Muhtaseb,J.A.Ritter,Adv.Mater.2003,15,101.
    [82]Reichenauer G,.and.Scherer G.W,Extracting the pore size distribution of compliant materials from nitrogen adsorption.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001.187:41-50.
    [83]Li W C,Lu A H;Schuth F,Preparation of Monolithic Carbon Aerogels and Investigation of Their Pore Interconnectivity by a Nanocasting Pathway.Chem.Mater;2005;17:3620-3626.
    [84]朱玉东,大连理工大学博士论文,2006.
    [85]Jacobsen C J H,Madsen S,Skibsted J,et.al,Zeolites by confined space synthesis -characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and ~(27)Al/~(29)Si-MAS NMR spectroscopy,Microporous and Mesoporous Materials,2000,39(1-2):393-401.
    [86]Li C,Xiong G,Liu J,Ying P,Xin Q,Feng Z,Identifying Framework Titanium in TS-1Zeolite by UV Resonance Raman Spectroscopy.J.Phys.Chem.B.2001,105:2993-2997.
    [87]Li G Y,Lee Y M,Porter J F,The synthesis and characterization of titanium silicalite-1.Journal of Materials Science,2002,37:1959-1965.
    [88]郭新闻等,钛硅沸石中非骨架钛的紫外谱图研究.石油学报,2001,17:61-68.
    [89]Drews T O and Tsapatsis M.Model of the evolution of nanoparticles to crystals via an aggregative growth mechanism.Microporous and Mesoporous Materials.2007,101:97-107.
    [90]Zhao D Y,Feng J L,Huo Q S et al.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.Science.1998,279:548-552.
    [91]Sonwane C G.,Li Q,J.Phys.Chem.B.2005,109,17993-17997.
    [92]王世荣等,表面活性剂化学.北京:化学工业出版社,2005.
    [93]Snyder M A,Tsapatsis M,Hierarchical Nanomanufacturing:From Shaped Zeolite Nanoparticles to High-Performance Separation Membranes.Angewandte Chemie International Edition,2007,46:7560-7573
    [94]侯芙升。“提高科技创新实力实现我国炼油工业的持续发展”。中国石油炼制大会论文集,2003,P3-14。大连
    [95]EPA-Diesel RIA,Regulatory Impact Analysis:Heavy-Duty Engine and Vehicle Standards and Highway Diesel fuel Sulfur Control Requirements,United States Environmental Protection Agency,Air and Radiation,EPA420-R-00-026,December 2000.
    [96]罗新华,徐新,杨春育。车用燃料油精制脱硫的研究与发展,现代化工,2002,22,(5):19-22
    [97]Babich I V,Moulijn J A.Science and technology of novel processes for deep desulfurization of oil refinery streams:a review,Fuel,2003,82:607-631
    [98]Li C.et.al.Ultra-Deep Desulfurization of Diesel:Oxidation with a Recoverable Catalyst Assembled in Emulsion.Chem.Eur.J.2004,10,2277 -2280
    [99]Blasco T,Corma A,Navaro M T,et al.Synthesis,Characterization,and Catalytic Activity of Ti-MCM-41 Structures.J.Catal.,1995,156:65
    [100]Koyano K A,Tatsumi T,et al.Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure.J Chem Soc.Chem.Commun,1996,145
    [101]Tuel A T,Ben Y.A new template for the synthesis of titanium silicalites with the ZSM-48 structure.Zeolites,1995,15:164
    [102]Peter T T,Malama C,Thomas J P.Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds.Nature,1994,368:321
    [103]Vander Waal J C,Rigutto M S,Van Bekkum H,et al.Zeolite titanium beta as a selective catalyst in the epoxidation of bulky alkenes.Appl.Catal.A,1998,167:331
    [104]Mild Oxidation of Thiophene over TS-1/H_2O_2.Kong L Y,Li G.,Wang X S,Catal.Today,2004,93-95:341-345
    [105]Robson H Lillerud K P MTW ZSM-12 Si(97),Al(3)Verified Synthesis of Zeolitic Materials.J.Mater.Chem,2001:220-221
    [106]Gopal S,Yoo K Smimiotis G,Synthesis of Al-rich ZSM-12 using TEAOH as template.Microporous and Mesoporous Materials,2001,49:149-156
    [107]Yoo K,Kashfi R,Smimiotis G,et.al,TEABr directed synthesis of ZSM-12 and its NMR characterization.Microporous and Mesoporous Materials,2003,60:57-68
    [108]Agger J R;HanifN,Cundy C S,et.al,Silicalite Crystal Growth Investigated by Atomic Force Microscopy.J.Am.Chem.Soc,2003,125(3):830-839.
    [109]Wei X T and Smimiotis P G.Synthesis and characterization of mesoporous ZSM-12 by using carbon particles.Microporous and Mesoporous Materials.2006,89:170-178.
    [110]Burkett S L and Dars M Z.Mechanism of structure direction in the synthesis of pure-silica zeolites 2:hydrophobic hydration and structure specificity.Chem Mater.1995,7:1455-1465.
    [111]Kumar R,Mukherjee P,Pandey R K.Role of oxyanions as promoter for enhancing nucleation and crystallization in the synthesis of MFI-type microporous materials.Microporous and Mesoporous Materials.1998,22:23-31.
    [112]宋厚春,陆军.聚萘二甲酸乙二醇酯的研究与进展.合成技术与应用,2003,18:17-20
    [113]日本工业科学技术研究院资源和环境研究所.低成本的二甲基萘提纯法[J].石油化工,1997,26:575
    [114]Inamasa K,Fushimi N,Takagawa M.Process for Producing 2,6-Dimethylnaphthalene [P].US 5321178,1994-06-14
    [115]Vahteristo K,Halme E,Koskimies S,et al.Manufacturing of 2,6-Dimethylnaphthalene [P].US 59522534,1999-09-14
    [116]Jakkula J,Niemi V,Vahteristo K,et al.Process of Producing 2,6-Dimethylnaphthalene by dehydrocyclizing 1-(p-Tolyl)-2-methlbutane and/or 1-(p-Toly)-2-methylbutene using a Reduced Vanadium Catalyst[P].US 6127589,2000-10-03
    [117]Motoyuki M,Yamamoto K,Sapre A V,et.al.Process for preparing 2,6-dialkylnaphthalene.US6018080,2000
    [118]Pu S B and Inui T.Synthesis of 2,6-dimethylnaphthalene by methylation of methylnaphthalene on various medium and large-pore zeolite catalysts.Applied Catalysis A:General.1996,146:305-316.
    [119]Aguilar-P J,Cormaa A.,de los Reyesb J A et al.Naphthalene alkylation with methanol employing solid catalysts.
    [120]Subrahmanyam Ch,Viswanathan B and Varadarajan T K.Alkylation of naphthalene with alcohols over acidic mesoporous solids.Journal of Molecular Catalysis A:Chemical.2005 226:155-163.
    [121]Fraenkel D,Cherniavsky M,Ittah B,et al.Shape-Selective Alkylation of Naphthalene and Methylnaphthalene with Methanol over H-ZSM-5 Zeolite Catalyts[J].J.Of Catal.,1986,101:273-83
    [122]Wang J,Park J H,Park Y K et al.On the isopropylation of naphthalene over zeolite catalysts in the high-pressure fixed-bed flow reactor.Catalysis Today.2004,97:283-289.
    [123]Weitkamp J,Neuber M.Shape Selective Reactions of Alkylnaphthalenes in Zeolite Catalysts[J].Stud.Surf.Sci.Catal.,1991,60:291-301
    [124]Millini R,Frigerio F,Bellussi Get al.A priori selection of shape-selective zeolite catalysts for the synthesis of 2,6-dimethylnaphthalene.Journal of Catalysis.2003,217:298-309.
    [125]Demuth T,Raybaud P,Lacombe S et al.Effects of zeolite pore sizes on the mechanism and selectivity of xylene disproportionation-a DFT study.Journal of Catalysis.2004,222:323-337.
    [126]Song C S,Ma X L,Schmitz A D et al.Shape-selective isopropylation of naphthalene over mordenite catalysts:Computational analysis using MOPAC.Applied Catalysis A:General.1999,182:175-181.
    [127]Tasi G,Mizukarni F,Palinko Iet al.Positional Isomerization of Dialkylnaphthalenes:A Comprehensive Interpretation of theSelective Formation of 2,6-DIPN over HM Zeolite.J.Phys.Chem.A.2001,105:6513-6518.
    [128]靳立军,大连理工大学博士学位论文,2006
    [129]郑晓玲,大连理工大学硕士学位论文,2005
    [130]Liu X S and Thomas J M.J.Chem.Soc.Chem.Commun.1985:1544-1545.
    [131]Yashima T,Yamagishi k and Namba S.Stud.Surf.Sci.Catal.1991,60:171.
    [132]Xie Y C,Tang Y Q.Spontaneous Monolayer Dispersion of Oxides and Salt s onto Surfaces of Support s:Applications to Heterogeneous Catalysis.Adv Catal,1990,37:1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700