柴油馏分在工业NiW/Al_2O_3催化剂上的加氢处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环保要求的进一步提高,世界各国对柴油中硫含量的要求越来越严格。目前,催化加氢脱硫(HDS)技术仍是实现柴油低硫化的关键所在,各国学术界和工业界对开发新加氢催化剂及新型加氢反应器技术十分关注。HDS 过程的动力学不仅是研究各种硫化物在催化剂上加氢机理的重要手段、对指导新HDS 催化剂研制有重要意义,而且也是反应器开发和不同操作条件下脱硫率的预测及工艺优化的基础。
    本论文分别以柴油中难脱除的二苯并噻吩(DBT)为含硫模型化合物、喹啉为含氮模型化合物,在中压滴流床反应装置中研究了工业NiW/Al_2O_3催化剂RN-10上的加氢脱硫和加氢脱氮反应的动力学规律,详细考察了反应温度、氢分压、氢油比、液时空速等工艺条件对加氢反应结果的影响,同时研究了喹啉对DBT的HDS反应的抑制影响。系统探讨了直馏柴油(常二)、DCC柴油、FCC柴油、焦化柴油等四种油品的HDS动力学规律,并分别采用适当的动力学模型对上述几个反应过程得到的实验数据进行拟合。
    首先以DBT/十氢萘为模型体系,研究DBT 在RN-10 上的加氢反应规律,实验结果表明:当氢分压(>3.1 MPa)和氢油比(>500, v/v)较大时,两者变化对DBT的转化率基本无影响;温度对DBT 的转化率影响较大,提高温度可有效提高DBT的转化率,但随着温度的升高,DBT 转化率的增加趋势逐渐变缓。采用2 级平推流反应动力学模型对不同温度范围的实验数据进行了拟合,求得了表观反应速率常数,结果表明高温区DBT 的HDS 反应的表观活化能明显低于低温区的表观活化能,经检验模型拟合良好。
    以喹啉为含氮模型化合物的加氢脱氮动力学研究结果表明:反应温度和氢分压对喹啉的脱氮率影响较大,提高温度或增大氢分压均可有效提高喹啉的脱氮率;当氢分压和氢油比较大时,其变化对喹啉的脱氮率基本无影响。采用修正的n (n<1)级反应动力学模型对实验数据进行拟合,得到了反应的表观活化能为180.4 kJ/mol,反应级数为0.83。经检验,模型计算结果与实验结果能较好的吻
More and more strict environment legislation limit the content of sulfur in diesel oil all over the world, which attracts attention of both researchers and refiners. Hydrodesulfurization (HDS) is still the key to produce the high quality fuel with low sulfur content. Development of novel catalyst and new reactor systems for HDS plays an important role in fuel hydrotreatment. Studies on kinetics of HDS are helpful to understand the mechanism of HDS over various catalysts, improve the design of HDS reactor, optimize the HDS process, and predict the sulfur content in product.
    In this thesis the kinetics of HDS of dibenzothiophene (DBT), as the model compound for S-bearing organics, and the kinetics of hydrodenitrogenation (HDN) of quinoline, as the model compound for N-bearing organics, were studied over the commercial NiW/Al_2O_3 catalyst (RN-10) in a pressured trickle-bed reactor, respectively. The effect of reaction conditions, such as hydrogen partial pressure, reaction temperature, hydrogen/oil ratio and weight hourly space velocity on the catalytic behavior was investigated in detail. The influence of quinoline on HDS of DBT was also studied. HDS of various diesel oils, such as atmospheric distillation diesel, DCC, FCC and coking diesel oil were carried out under various kinds of reaction conditions. Different kinetic models were obtained on the basis of experimental data.
    The kinetics of HDS of DBT over the RN-10 catalyst was studied. The result showed that the hydrogen pressure and volume ratio of hydrogen/oil exerted little influence on the conversion of DBT at the high level of hydrogen pressures and volume ratios of hydrogen/oil. At low reaction temperatures, the conversion of DBT increased drastically with the increase of reaction temperature up to 330 ℃, while at high reaction temperatures it increased slowly. A kinetic model of HDS was established according to a second-order kinetic model at various reaction temperatures, and the parameters of the model were calculated. The correlation coefficient of the
    model was above 0.989. The apparent activation energy of the high reaction temperature region was less than that of the low temperature region, which was 13.4 and 121.4 kJ/mol, respectively. The kinetics of HDN of quinoline showed that the conversion of quinoline increased drastically with the increase of reaction temperature, and the hydrogen pressure also had a significant effect on HDN of quinoline. However, at the high hydrogen pressures and high volume ratios of hydrogen/oil, the conversion of quinoline was almost unaltered. Experimental data were fitted by a n-order (n<1) kinetic model at various reaction conditions, and kinetic parameters of the model were calculated. The apparent activation energy of 180.4 kJ/mol and the reaction order of 0.83 were achieved for this reaction. The experimental data were in good agreement with the model ones. In the presence of quinoline, which is considered as an inhibitor in HDS of DBT, the consumption kinetic model equation of DBT was studied at 0.5% (wt), 1%, and 1.5% concentration of quinoline, respectively. The result showed that quinoline strongly inhibited HDS of DBT. With the increase of concentration of quinoline, the inhibition became strong, but the decreasing rate of DBT conversion reduced when the concentration of quinoline was above 1%. In HDS of DBT, the hydrogenation (HYD) route was inhibited by quinoline more severely than the direct desulfurization (DDS) route. Experimental data were fitted by a pseudo first-order kinetic model with adsorption constant of quinoline, and kinetic parameters of the model were calculated. The experimental data were in good agreement with the model ones. The kinetics of HDS of the four diesel oils, i.e., atmospheric distillation diesel oil, DCC, FCC and coking diesel oil, were investigated under various reaction conditions in detail, such as reaction temperature, pressure, volume ratio of hydrogen/oil and weight hourly space velocity. Experimental data were fitted by a BP artificial neural network kinetic model, and the content of sulfur in product was predicted by BP artificial neural network under other reaction conditions. The model result indicates that the order of oil physical properties influencing HDS of diesel oil is as the following: density > 90% distillation range> content of nitrogen > content of sulfur >
    viscosity, and the order of reactions conditions influencing HDS of diesel oil is as the following: reaction temperature > weight hourly space velocity > volume ratio of hydrogen/oil > reaction pressure. This model can precisely predict the content of sulfur in diesel oils after HDS.
引文
[1] Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurizationof oil refinery streams: a review[J]. Fuel, 2003, 82: 607~631.
    [2] Breysse M, Mariadassou D G, Pessayre S, et al. Deep desulfurization: reactions, catalystsand technological challenges[J]. Catal Today, 2003, 84: 129~138.
    [3] 罗国华, 徐新, 杨春育. 车用燃料油精制脱硫的研究与发展[J]. 现代化工, 2002, 22(5):19~22.
    [4] Romanow S. Cleaner fuels –it’s just not that simple[J]. Hydrocarb Process, 2000, 79(9):17~19.
    [5] Topsφe H, Clausen B S, Massoth F E. Hydrotreating catalysis in Catalysis: Science andTechnology[M]. Berlin: Springer, 1996.
    [6] 孙仲超, 王瑶, 王安杰, 等. 氮化钼深度加氢脱硫催化剂研究进展[J]. 现代化工, 2003,23(5): 17~20.
    [7] Rodriguez P, Brito J L, Albornoz A, et al. Comparison of vanadium carbide and nitridecatalysts for hydrotreating[J]. Catal Comm, 2004, 5(2): 79~82.
    [8] Furimsky E. Metal carbides and nitrides as potential catalysts for hydroprocessing[J]. ApplCatal A: General, 2003, 230(1): 1~28.
    [9] Oyama S T. Novel catalyst for advanced hydroprocessing: transition metal phosphieds[J]. JCatal, 2003, 216: 343~352.
    [10] 王军, 李文钊, 张盈珍. 铂对硫芴加氢脱硫钼基催化剂的促进作用[J]. 催化学报, 1997,18(2): 77~78.
    [11] Wang J, Li W Z, Pérot G, et al. Studies on the role of platinum in PtMo/Al2O3 forhydrodesulfurization of dibenzothiophene[J]. Stud Surf Sci Catal, 1997, 112: 171~178.
    [12] 于春英, 李文钊, 王军, 等. Pt 对Mo 基催化剂还原-硫化过程的影响[J]. 物理化学学报,1998, 14(5): 439~443.
    [13] Navarro R, Pawelec B, Fierro J L, et al. Deep hydrodesulfurization of DBT and diesel fuelon supported Pt and Ir catalysts[J]. Appl Catal A: General, 1996, 137(2): 269~286.
    [14] Breysse M, Afanasiev P, Geantet C, et al. Overview of support effects in hydrotreatingcatalysts[J]. Catal Today, 2003, 86(1): 5~16.
    [15] Furimsky E. Selection of catalysts and reactors for hydroprocessing[J]. Appl Catal A:General, 1998, 171(2): 177~206.
    [16] 石亚华,李大东. 加氢脱硫技术的进展[J]. 炼油设计, 1999, 20(8): 16~22.
    [17] Bataille F, Pérot G, Kasztelan S, et al. Alkyldibenzothiophenes HydrodesulfurizationPromoter Effect, Reactivity, and Reaction Mechanism[J]. J Catal, 2000(2), 191: 409~422.
    [18] Vanrysselberghe V, Froment G F. Hydrodesulfurization of Dibenzothiophene on aCoMo/Al2O3 Catalyst: Reaction Network and Kinetics[J]. Ind Eng Chem Res, 1996, 35:3311~3318.
    [19] Whitehurst D D, Farag H, Nagamatsu T, et al. Assessment of limitations and potentials forimprovement in deep desulfurization through detailed kinetic analysis of mechanistic pathways[J].Catal Today, 1998, 45(1~4): 299~305.
    [20] Whitehurst D D, Isoda T, Mochida I, et al. Present state of the art and future challenges inthe hydrodesulfurization of polyaromatic sulfur compounds[J]. Adv Catal, 1998, 42: 345~471.
    [21] Daage M, Chianelli R R. Structural studies of catalytically stabilized model andindustrial-supported hydrodesulfurization catalysts[J]. J Catal, 2004, 225(2): 288~299.
    [22] Labruyere F, Lacroix M, Schweich D, et al. High-Pressure Temperature-ProgrammedReduction of Sulfided Catalysts[J]. J Catal, 1997, 167(2): 464~469.
    [23] 凌凤香, 姚银堂, 马波, 等. 气相色谱-原子发射光谱联用技术测定柴油中硫化物[J].燃料化学学报, 2002, 30(6): 535~539.
    [24] Depauw G A, Froment G F. Molecular analysis of the sulphur components in a light cycleoil of a catalytic cracking unit by gas chromatography with mass spectrometric and atomicemission detection[J]. J Chromatogr, 1997, 761: 231~247.
    [25] Costa P D, Potvin C, Manoli J M, et al. New catalysts for deep hydrotreatment of diesel fuelKinetics of 4,6-dimethyldibenzothiophene hydrodesulfurization over alumina-supportedmolybdenum carbide[J]. J Mol Catal A: Chemical, 2002, 184: 323~333.
    [26] 龚树文, 陈皓侃, 李文, 等. 二苯并噻吩在γ~Al_2O_3 负载的β~Mo2N0.78催化剂上加氢脱硫的研究[J]. 石油化工, 2004, 33(2): 118~121.
    [27] 柳云骐, 刘晨光, 阙国和. 二苯并噻吩在CoMoNx催化剂上的加氢脱硫[J]. 催化学报,2000, 21(4): 337~340.
    [28] 左东华, 谢玉萍, 聂红, 等. 4,6-二甲基二苯并噻吩加氢脱硫反应机理的研究Ⅰ: NiW体系催化剂的催化行为[J]. 催化学报, 2002, 23(3): 271~275.
    [29] Orozco E O, Vrinat M. Kinetics of dibenzothiophene hydrodesulfurization over MoS2supported catalysts: modelization of the H2S partial pressure effect[J]. Appl Catal A: General,1998, 170(2): 195~206.
    [30] Mijoin J, Pérot G, Bataille F, et al. Mechanistic considerations on the involvementofdihydrointermediates in the hydrodesulfurization of dibenzothiophene-type compounds overmolybdenum sulfide catalysts[J]. Catal Lett, 2001, 71(3): 139~145.
    [31] 李翔, 王安杰, 韩涤非. 以全硅MCM-41 为载体制备W 系深度加氢脱硫催化剂[J]. 石油学报(石油加工), 2001, 17(6): 11~15.
    [32] Kabe T, Ishihara A, Zhang Q. Deep desulfurization of light oil. Part 2: hydrodesulfurizationof dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Appl CatalA: General, 1993, 97(1): L1~L9.
    [33] Egorova M, Prints R. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMo/Al2O3, CoMo/Al2O3 Mo/Al2O3 catalysts[J]. J Catal, 2004,225: 417~427.
    [34] Vanrysselberghe V, Gall R L, Froment G F. Hydrodesulfurization of 4-Methyl-dibenzothiophene and 4,6-Dimethyldibenzothiophene on a CoMo/Al2O3 Catalyst: ReactionNetwork and Kinetics[J]. Ind Eng Chem Res, 1998, 37: 1235~1242.
    [35] Kwak C, Lee J J, Bae J S, et al. Hydrodesulfurization of DBT, 4-MDBT, and 4,6-DMDBTon fluorinated CoMoS/Al2O3 catalysts[J]. Appl Catalysis A:General, 2000, 200(2): 233~242.
    [36] Sakanishi K, Nagamatsu T, Mochida I, et al. Hydrodesulfurization kinetics and mechanismof 4,6-dimethyldibenzothiophene over NiMo catalyst supported on carbon[J]. J Mol Catal A:Chemical, 2000, 155(2): 101~109.
    [37] Ozaki H. Recent studies of hydrotreating catalysts in Japan[J]. Catal Surv form Japan, 1997,1: 143~155.
    [38] Fujikawa T, Chiyoda O, Tsukagoshi M, et al. Development of a high activity HDS catalystfor diesel fuel:from basic research to commercial experience[J]. Catal Today, 1998, 45: 307~312.
    [39] Stanislaus A, Khan S, Cooper B H, et al. Hydroprocessing of vacuum residues: relation between catalyst activity, deactivation and pore size distribution[J]. Fuel, 1995, 74(8): 1211~1215.
    [40] Isoda T, Ma X L, Mochida I. In: ACS Proceedings of Petr. Chem Div Preprints, ACSWashington, D C Meeting. 1994, 39: 584.
    [41] Mochida I, Isoda T, Ma X L, et al. Deep hydrodesulfurization of diesel fuel: Design ofreaction process and catalysts[J]. Catalysis Today, 1996, 29(2): 185~189.
    [42] Vrinat M, Meille V, Schulz E, et al. Hydrodesulfurization of Alkyldibenzothiophenes over aNiMo/Al2O3Catalyst: Kinetics and Mechanism[J]. J Catal, 1997, 170(1): 29~36.
    [43] Michael J, Girgis, Gates B C. Reactivities, reaction networks, and kinetics in high-pressurecatalytic hydroprocessing[J]. Ind Eng Chem Res, 1991, 30(9): 2021~2058.
    [44] Lamure-Meille V, Schultz E, Vrinat M, et al. Effect of experimental parameters on therelative reactivity of dibenzothiophene and 4-methyldibenzothiophene[J]. Appl Catal A: General,1995, 131(1): 143~157.
    [45] Isoda T, Nagao S, Mochida I, et al. Catalytic activities of NiMo and CoMo/Al2O3 ofvariable Ni and Co contents for the hydrodesulfurization of 4,6-dimethyldibenzothiophene in thepresence of naphthalene[J]. Appl Catal A: General, 1997, 150(1): 1~11.
    [46] Vrinat M L. The kinetics of the hydrodesulfurization processs –A review[J]. Appl Catal,1983, 6: 137~158.
    [47] Pille R C, Yu C, Froment G F. Kinetic study of the hydrogen sulfide effect in theconversion of thiophene on supported Co-Mo catalysts[J]. J Mol Catal A: Chemical, 1994, 94(3):369~387.
    [48] Kasztelan S, Guillaume D. Inhibiting effect of hydrogen sulfide on toluene hydrogenationover a molybdenum disulfide/alumina catalyst[J]. Ind Eng Chem Res, 1994, 33(2): 203~210.
    [49] Ho T C. Inhibiting effects in hydrodesulfurization of 4,6-diethyldibenzothiophene[J]. JCatal, 2003, 219: 442~451.
    [50] Steiner P, Blekkan E A. Catalytic hydrodesulfurization of a light gas oil over a NiMocatalyst: kinetics of selected sulfur components[J]. Fuel Process Technol, 2002, 79(1): 1~12.
    [51] 王瑶, 孙仲超, 王安杰, 等. Co-Mo/MCM-41上二苯并噻吩加氢脱硫反应动力学研究[J].大连理工大学学报, 2004, 44(2): 206~211.
    [52] Wang Y, Sun Z C, Wang A J, et al. Kinetics of hydrodesulfurization of dibenzothiophenecatalyzed by sulfided Co-Mo/MCM-41[J]. Ind Eng Chem Res, 2004, 43(10): 2324~2329.
    [53] 李翔, 王安杰, 孙仲超,等. 全硅MCM-41 担载的Ni-W 催化剂上二苯并噻吩加氢脱硫反应动力学研究[J].石油学报(石油加工), 2003, 19(4): 1~7.
    [54] Vradman L, Landau M V, Herskowitz M. Deep desulfurization of diesel fuels: kineticmodeling of model compounds in trickle-bed[J]. Catal Today, 1999, 48: 41~48.
    [55] Andari M K, AbuSeedo F, Stanislaus A. Kinetics of individual sulfur compounds in deephydrodesulfurization of Kuwait diesel oil[J]. Fuel, 1996, 75(14): 1664~1670.
    [56] Chen J W, Ring Z. HDS reactivities of dibenzothiophenic compounds in a LC-finer LGOand H2S/NH3 inhibition effect[J]. Fuel, 2004, 83(3): 305~313.
    [57] Farag H, Sakanishi K, Kouzu M. Dibenzothiophene hydrodesulfurization over synthesizedMoS2 catalysts[J]. J Mol Catal A: Chemical, 2003, 260(2): 399~408.
    [58] Chen J, Te M, Yang H, et al. Hydrodesulfurization of Dibenzothiophenic Compounds in aLight Cycle Oil[J]. Petrol Sci Technol, 2003, 21(5): 911~935.
    [59] Chu C, Wang I. Kinetic Study on Hydrotreating[J]. Ind Eng Chem Process Des Dev, 1982,27: 338~344.
    [60] 朱泽霖, 李承烈. 噻吩在Mo-Ni-Co/Al2O3催化剂上的加氨脱硫动力学[J]. 1996, 22(4):412~416.
    [61] 罗雄麟,李瑞丽. 石油馏分加氢脱硫反应动力学模型[J]. 石油学报, 1995, 11(2): 15~23.
    [62] 齐艳华, 黄海涛, 石玉林等. 加氢裂化动力学模型及其工业应用[J]. 石油学报(石油加工), 1999, 15(2): 80~84.
    [63] 黄海涛, 齐艳华,石玉林. 催化裂化柴油深度加氢脱硫反应动力学模型的研究[J]. 石油炼制与化工, 1999, 30(1): 55~59.
    [64] Broderick D H, Gates B C. Hydrogenolysis and hydrogenation of dibenzothiophenecatalyzed by sulfided cobalt(II) oxide~molybdenum(VI) oxide/γ-aluminum oxide: the reactionkinetics[J]. AIChE J, 1981, 27(4), 663~673.
    [65] Ho T C, Sobel J E. Kinetics of dibenzothiophene hydrodesulfurization[J]. J Catal, 1991,128(2): 581~584.
    [66] Vanrysselberghe V, Froment G F. Kinetic Modeling of Hydrodesulfurization of OilFractions: Light Cycle Oil[J]. Ind Eng Chem Res, 1998, 37: 4231~4240.
    [67] Schulz H, Bohringer W, Waller P, et al. Gas oil deep hydrodesulfurization: refractorycompounds and retarded kinetics[J]. Catal Today, 1999, 49: 87~97.
    [68] Borgna A, Hensen E J, Van J A, et al. Intrinsic kinetics of thiophene hydrodesulfurizationon a sulfided NiMo/SiO2 planar model catalyst[J]. J Catal, 2004, 221(2): 541~548.
    [69] Laredo G C, Cortes C A. Kinetics of hydrodesulfurization of dimethyldibenzothiophenes ina gas oil narrow-cut fraction and solvent effects[J]. Appl Catal A: General, 2003, 252(2):295~304.
    [70] Berger D, Landau M V, Herskowitz M, et al. Deep hydridesulfurization of atmospheric gasoil:Effect of operationg conditions and modeling by artificeial neural network techniques[J]. Fuel,1996, 75(7): 907~911.
    [71] 周轶峰, 石玉林, 胡志海. 人工神经网络在柴油馏分油加氢脱硫中的数学模拟[J]. 石油学报(石油加工), 2000, 16(1): 81~83.
    [72] Froment G F, Depauw G A, Vanrysselberghe V. Kinetic modeling and reactor simulation inhydrodesulfurization of oil fractions [J]. Ind Eng Chem Res, 1994, 33(12): 2975~2988.
    [73] Ma X L, Sakanishi K, Mochida I. Hydrodesulfurization reactivities of various sulfurcompounds in diesel fuel[J]. Ind Eng Chem Res, 1994, 33(2): 218~222.
    [74] Gates B C, T?psφe H. Reactivities in deep catalytic hydrodesulfurization: challenges,opportunities, and the importance of 4-methyldibenzothiophene 4,6-dimethyldibenzothiophene.Polyhedron, 1997, 16(18): 3213~3217.
    [75] Kooyman P J, Waller P, Van D, et al. Stability of MCM-41-supported CoMo hydrotreatingcatalysts[J]. Catal Lett, 2003, 90: 131~135.
    [76] 杨锡尧, 夏晓球, 徐云鹏. 以钼酸盐阴离子柱撑镁铝水滑石为前驱物的加氢脱硫催化剂Ⅱ: MoS2/Mg(Al)O的吸附性能及HDS催化活性[J]. 催化学报, 2001, 22(4): 361~364.
    [77] 徐永强, 商红岩, 刘晨光. 压力和温度对4-甲基二苯并噻吩和二苯并噻吩加氢脱硫反应的影响[J]. 燃料化学学报, 2004, 32(2): 199~204.
    [78] Shafi R, Hutchings G. Hydrodesulfurization of hindered dibenzothiophenes: an overview[J].Catal Today, 2000, 59: 423~442.
    [79] Marafi A, Fukase S, Marri M A, et al. A comparative study of the effect of catalyst type onhydrotreating kinetics of kuwaiti atmospheric residue[J]. Energy Fuels, 2003, 17: 661~668.
    [80] 王丹红, 李伟, 陶克毅. 氟改性Co-Mo/TiO2催化剂的加氢脱硫活性与反应动力学的研 究[J]. 石油学报(石油加工), 1998, 14(4): 12~16.
    [81] 徐征利, 吴辉, 李承烈. 加氢脱氮动力学模型[J]. 华东理工大学学报, 2001, 27(1):42~45.
    [82] 曲良龙, 建谋, 李大东. Ni-W-F/γ-Al2O3催化剂的加氢脱氮反应动力学Ⅰ吡啶的加氢[J].石油学报(石油化工), 1991, 7(3): 28~34.
    [83] Szymanska A, Lewandowski M, Sayag C, et al. Kinetic study of the hydrodenitrogenationof carbazole over bulk molybdenum carbide[J]. J Catal, 2003, 218(1): 24~31.
    [84] Qu L L, Flechsenhar M, Prins R. Kinetics of the hydrodenitrogenation of o-toluidine overfluorinated NiMoS/Al2O3 and NiMoS/ASA catalysts[J]. J Catal, 2003, 217(2): 284~291.
    [85] Rangwala H A, Dalla-Lana I G, Otto F D, et al. Influence of catalyst properties andoperating conditions on hydrodenitrogenation of quinoline[J]. Energy & Fuels, 1990, 4(5):599~604.
    [86] Satterfield C N, Yang S H. Catalytic hydrodenitrogenation of quinoline in a trickle-bedreactor. Comparison with vapor phase reaction[J]. Ind Eng Chem Proc Des Dev, 1984, 23(1):11~19.
    [87] 何国锋, 关北峰, 王燕芳, 等. 低温热解焦油中油馏分加氢脱氮和芳烃加氢宏观动力学的研究[J]. 煤炭转化, 1998, 21(1): 54~58.
    [88] Stern E W. Comparison of Hydrodenitrogenation of Basic and Nonbasic NitrogenCompounds Present in Oil Sands Derived Heavy Gas Oil[J]. J Catal, 1979, 57: 390.
    [89] Shabtai J, Yeh J C, Russell C. Pyridine Hydrodenitrogenation over Molybdenum CarbideCatalysts[J]. Ind Eng Chem Res, 1989, 23(2): 139.
    [90] 谭汉森, 方向晨. 重油馏分加氢脱氮反应动力学模型的研究[J]. 石油学报(石油化工),1992, 8(1): 1~9.
    [91] Satterfield C N, Cocchetto J F. Reaction network and kinetics of the vapor-phase catalytichydrodenitrogenation of quinoline[J]. Ind Eng Chem Process Des Dev, 1981, 20(1): 53~62.
    [92] Jian M, Prins R. Kinetics of the Hydrodenitrogenation of Decahydroquinoline overNiMo(P)/Al2O3 Catalysts[J]. Ind Eng Chem Res, 1998, 37(3): 834~840.
    [93] Jian M, Prins R. Mechanism of the Hydrodenitrogenation of Quinoline overNiMo(P)/Al2O3Catalysts[J]. J Catal, 1998, 179(1): 18~27.
    [94] Massoth F E, Kim S C. Kinetics of the HDN of Quinoline under Vapor-PhaseConditions[J]. Ind Eng Chem Res, 2003, 42(5): 1011~1022.
    [95] Satterfield C N, Gultekin S. Effect of hydrogen sulfide on the catalytichydrodenitrogenation of quinoline[J]. Ind Eng Chem Process Des Dev, 1981, 20(1): 62~68.
    [96] 方向晨, 谭汉森, 赵玉琢, 等. 重馏分油加氢脱氮反应动力学模型的研究[J]. 石油学报(石油化工), 1996, 12(2): 19~28.
    [97] Machida M, Sakao Y, Ono S. Influence of hydrogen partial pressure onhydrodenitrogenation of pyridine, aniline and quinoline[J]. Appl Catal A: General, 1999, 187(1):L73~L78.
    [98] Giola F, Lee V. Effect of hydrogen pressure on catalytic hydrodenitrogenation ofquinoline[J]. Ind Eng Chem Proc Des Dev, 1986, 25(4): 918~925.
    [99] Skara D U, Saban M D, Jovanovic J A, et al. A pilot plant designed for the process study ofhydrodenitrogenation and hydrogen consumption[J]. Ind Eng Chem Res, 1988, 27(7): 1186~1193.
    [100] 孙仲超, 王瑶, 王安杰, 等. MCM-41 担载的镍钼硫化物上二苯并噻吩的加氢脱硫反应动力学[J]. 催化学报, 2004, 25(6): 439~444.
    [101] Egorova M, Prins R. Mutual influence of the HDS of dibenzothiophene and HDN of2-methylpyridine[J]. Journal of Catalysis, 2004, 221: 11~19.
    [102] Shin S, Yang H J, Sakanishi K, et al. Inhibition and deactivation in stagedhydrodenitrogenation and hydrodesulfurization of medium cycle oil over NiMoS/Al2O3catalysts[J]. Applied Catalysis A: General, 2001, 205: 101~108.
    [103] Kogan V M, Gaziev R G, Lee S W, et al. Radioisotopic of CoMo/Al2O3 sulfide catalystsfor HDS Part 3: Poisoning by N-containing compounds[J]. Applied Catalysis A: General, 2003,251: 187~198.
    [104] Rana M S, Navarro R, Leglise J. Competitive effects of nitrogen and sulfur content onactivity of hydrotreating CoMo/Al2O3 catalysts: a batch reactor study[J]. Catalysis Today, 2004,98: 67~74.
    [105] Kim H, Lee J J, Moon S H, et al. Effect of fluoridine addition on the poisoning ofNiMo/Al2O3 catalysts by nitrogen compounds during the hydrodesulfurization of dibenzothiphenecompounds[J]. Applied Catalysis B: Environmental, 2004, 50: 17~24.
    [106] Kwak C, Lee J J, Moon S H, et al. Poisoning effect of nitrogen compounds on theperformance of CoMoS/Al2O3 catalyst in the hydrodesulfurization of dibenzothiophene,4-methyldibenzothiophene, and 4,6-dimethyldibenzothiophene[J]. Applied Catalysis B:Environmental, 2001, 35: 59~68.
    [107] Rabarihoela V, Brunet S, Berhault G, et al. Effect of acridine and of octahydroacridine onthe HDS of 4,6-dimethyldibenzothiophene catalyzed by sulfided NiMoP/Al2O3[J]. AppliedCatalysis A: General, 2004, 267: 17~25.
    [108] Laredo G C, Altamirano E, Reyes J A. Inhibition effects of nitrogen compounds on thehydrodesulfurization of dibenzothiophene: Part 2[J]. Applied Catalysis A: General, 2003, 243:207~214.
    [109] Choi K H, Korai Y, Mochida I, et al. Impact of removal extent of nitrogen species in gasoil on its HDS performance: an efficient approach to its ultra deep desulfurization[J]. AppliedCatalysis B: Environmental, 2004, 50: 9~16.
    [110] Laredo G C, Reyes J A, Cano J, et al. Inhibition effects of nitrogen compounds on thehydrodesulfurization of dibenzothiophene[J]. Applied Catalysis A: General, 2001, 207: 103~112.
    [111] Turaga U T, Ma X L, Song C S. Influence of nitrogen compounds on deephydrodesulfurization of 4,6-dimethyldibenzothiophene over Al2O3-and MCM-41 supportedCo-Mo sulfide catalysts[J]. Catalysis Today, 2003, 86: 265~275.
    [112] Egorova M, Prins R. Competitive hydrodesulfurization of 4,6-dimethyldibenzothiophene,hydrodenitrogenation of 2-methyldibenzothiophene, and hydrogenation of naphthalene oversulfided NiMo/γ-Al2O3[J]. Journal of Catalysis, 2004, 224: 278~287.
    [113] Yang H, Chen J W, Fairbridge C, et al. Inhibition of nitrogen compounds on thehydrodesulfurization of substituted dibenzothiophene in light cycle oil[J]. Fuel ProcessingTechnology, 2004, 85: 1415~1429.
    [114] Laredo G C, Montesinos A, Reyes J A. Inhibition effects observed betweendibenzothiophene and carbazole during the hydrotreating process[J]. Applied Catalysis A: General,2004, 265: 171~183.
    [115] 焦李成. 神经网络系统理论[M]. 西安: 西安电子科技大学出版社, 1990.
    [116] 马正飞, 殷翔. 数学计算方法与软件的工程应用[M]. 北京: 化学工业出版社, 2002.
    [117] 张晓晨, 周家驹. 改进的人工神经网络算法(1):网络结构的优化和收敛判据[J]. 计算机与应用化学, 1995, 12(3): 186~191.
    [118] 周山花, 张晓彤, 孙兆林, 等. 人工神经网络在石油分析中的应用研究(1):BP 神经网络预测石油馏分临界性质[J]. 石油化工高等学校校报, 1998, 11(1): 23~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700