青海阿尼玛卿-巴颜喀拉造山带动力学演化及大场金锑矿床成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尼玛卿—巴颜喀拉造山带位于东昆仑地区昆南断裂带以南,经历了较为复杂的地质演化历史,其地质演化对整个东昆仑地区也产生了重要影响。阿尼玛卿洋存在于早二叠世,早二叠世末阿尼玛卿洋的闭合使阿尼玛卿一带转入陆内活动阶段;巴颜喀拉三叠纪沉积盆地形成于早三叠世,晚三叠世晚期闭合成为造山带,三叠纪末该区发生了强烈的壳—幔相互作用,构造体制从挤压向伸展体制转化,大场金矿形成于该动力背景下。大场金锑矿床的赋矿围岩为中三叠统巴颜喀拉山群砂岩、板岩互层,含有大量有机碳,吸附了大量的Au,为后期热液成矿提供矿质。通过成矿深度计算(约为6km)、成矿流体来源探讨及与典型造山型金矿床对比,认为该矿床属于典型中成造山型金矿床,而叠加的晚期金(锑)矿化属于造山型浅成金矿。大场金矿床成因模型是:晚三叠世巴颜喀拉洋的闭合该区进入陆内造山过程,发生了强烈的构造、岩浆活动,岩浆热液沿断裂构造上侵,从围岩中萃取成矿物质,在条件适合部位聚集成矿。对矿区外围及深部进行了成矿潜力评价。
A'nyemaqen-Bayan Har orogenic belt is located on the south of South Eastern Kunlun fault in the Eastern Kunlun Mountain. The strata are composed of Pre-Carboniferous, Carboniferous-Permian, Triassic and Quaternary in the study area. Dominant Triassic Bayan Har group occurs in Bayan Har region, which belongs to carbonaceous turbidite series. Regional magmatic activities were strong, whose active stages focused in Caledon, Hercynian and Indosinian-Yanshanian in the study area. Yindosinian acid intrusive activities are strongest and related close to gold regional metallogenesis. There exist two pieces of NEE-striked structural belts, i.e. A’nyemaqen mélange belt and Bayan Har fault zone, which commenced in Hercynian. While orogenic activities almost happened in Indosinian. A series of large-scale shear zone developed in the edge of Bayan Har fault zone became regional channel way or ore hosting structures for orogenic gold deposits in the region.
    The magnetic field in Triassic Bayan Har sedimentary basin is characterized by quiet negative magnetic field. Several apparent magnetic anormaly belts, around which there are dense positive anormaly regions. The gravitational field in Bayan Har belt shows gravity low anormalies, which reflect there are thick Triassic flysch constructions in it.
    A'nyemaqen-Bayan Har region underwent a complicated geological evolutional history, which strongly affected whole Eastern Kunlun mountain. A’nyemaqen mélange belt was situated in the north margin of Paleo-tethys in early Permian. It was thought that there existed a deep-water basin, A'nyemaqen Ocean, in A'nyemaqen district in early Permian because of the discovery of abyssal radiolaria siliceous rock in early Permian. And it was considered that the A'nyemaqen Ocean close in the late stage of early Permian, because reliable late Permian strata didn’t be found on the south of South Eastern Kunlun fault. During A'nyemaqen Ocean plate commenced to subduct northward, the total study area changed from a stretching orogenic system to a compressing one, while a plenty of volcanic rock erupted and magmatic rock intruded. When A'nyemaqen Ocean died out and closed ultimately, A'nyemaqen district transformed into an intracontinental stage. Up to late Indosinian, strong crust-mantle interaction happened in the area, and mantle-derived magmatic activities developed extensively to form a series of mafic-ultramafic intrusive bodies. There exist an ancient basement in Bayan Har orogenic belt, which belongs to a remnant of a paleo-continental block (South China plate?). During A’nyemaqen Ocean died out and closed, the Bayan Har block on the south of it was stretched,extended and resulted in the formation of Bayan Har Sea. Triassic Bayan Har sedimentary basin is an early active-basin-type of the middle-Tethys after the north Paleo-Tethys rift-type trench closed in late Permian. Triassic sedimentary basin formed in early Triassic, and it closed to become an orogenic belt till late stage of Triassic or early stage of Jurassic. It means that Indosinian movement affected this area from Early Triassic carbonate precipitation to late Triassic active sandy flysch construction. During this process, the north margin of Bayan Har Sea changed from convergence to divergence environment.
    Bayan Har Ocean plate subducted northward caused a plenty of volcanic eruption in the North Eastern Kunlun belt, which carried many clastic material to the south margin of the Bayan Har basin. Plate subduction induced earthquake and triggered continental clastic substance to form seafloor turbidite. The latest subduction belt subducted southwestward under the Triassic Bayan Har group sediments or volcanic arc belt. After late Triassic lateral compression and intracontinental convergence, Triassic Bayan Har sediments were concreted and subsequently folded. Strong crust-mantle interaction happened till the end of Triassic. Then lithosphere was detached, and mantle magma diapir became very apparent. The tectonic system changed from compression to extension system. It means that Indosinian was another important tectonic active epoch in the Eastern Kunlun mountain. Many mantle-derived material and energy was concerned with structural and magmatic activities and metallogenesis. Dachang Au, Sb deposit is located in Songpan-Ganzi Indosinian fold system in the third class tectonic units in north Bayan Har belt. Strata is really simple in the mine area, which consist of the early Permian Ma’erzheng formation in Buqingshan group and the sandstone, slate formation of middle Bayan Har group. The latter formation is the ore-hosting wall rock for Dachang Au, Sb deposit. This carbonaceous turbidite carries organic Carbon and abundant Au, so it is an Au-bearing source bed and supplies mineral matter for the late stage of hydrothermal metallogenesis. A NEE-striked fault is the most important ore-controlling structure in the mine area, which is a part of Gande-Maduo deep fault. 27 pieces of Au, Sb veins were recognized in the mine area, where the shape of ore bodies are simple, including similar bedded, banded and podiform. The ore types consist of major alteration-rock-type with minor quartz-vein-type.
    According to fluid inclusion analysis, the primary fluid inclusions can be divided into three types, i.e. a. gas-liquid phase fluid inclusions, i.e. NaCl-H20 type. b. CO2-bearing three phase fluid inclusions, i.e. C02-H2O-NaCl type. c. C02-enriched fluid inclusions. Based on analysis of fluid inclusions in quartz and calcite samples, the homogeneous temperatures mostly focus on 160~260 ℃, and average value is 217.6℃, which belongs to mesothermal deposit. The average salinity is 5.7 wt%NaCl in metallogenic fluid, and average density is 0.88g/cm3 in it. It means that the metallogenic fluid is of low salinity and low density fluid in Dachang Au, Sb deposit. The components of fluid are composed of major H2O, with minor gas phase, i.e. CO2, CO, H2, CH2, C2H2, CH4 etc. In a word, according to analysis of fluid inclusions, it was thought that the metallogenic hydrothermal fluid consist of dominant magmatic water in the early stage of metallogenesis, and major meteoric water with a few mixed fluid of construction water and deep derived magmatic water in the metallogenic stage. Based on analysis of metallogenic geodynamic settings, regional ore-controlling geological conditions and comparison of typical orogenic gold deposits, it was thought that Dachang Au, Sb deposit belongs to typical orogenic gold deposit. The metallogenic depth was 6km by calculation of relationship of pressure and depth. And it was thought that Dachang Au, Sb deposit belong to mesozonal orogenic gold deposit, with late epizonal orogenic Au (Sb) mineralization. It was concluded that the metallogenic model consists of follows: after late Triassic Bayan Har Ocean closed, there were strong tectonic and magmatic activities. Magmatic hydrothermal fluid inflowed along fault structure, and leached partial gold mineral matter from Bayan Har flysch sedimentary construction. At the same time, meteoric fluid convection happened, and Au mineral matter was
引文
1.翟裕生.金属成矿学研究的若干进展[J].地质与勘探,1997,33(1):5-8
    2.翟裕生.关于矿床学研究前景的探讨[J].矿床地质,1999,18(2):146-152
    3.涂光炽.超大型矿床的探寻与研究的若干进展[J].地学前缘,1994,1(3-4):45-53
    4.涂光炽.过去20年矿床事业发展的概略回顾[J].矿床地质,2001,20(1):1-9
    5.涂光炽.中国层控矿床地球化学(第一卷)[M].北京:科学出版社,1984,1-53
    6.涂光炽.论改造成矿兼评现行矿床成因分类中的弱点[A].见:《地球化学文集》[C].北京:科学出版社,1986,127-130
    7.孙丰月.太古代脉状金矿研究的某些新进展[J].地质科技情报,1995,14(3):61-66
    8.姜春发.中央造山带主要地质构造特征[J].地学研究1993,(27):103-108
    9.殷鸿福,张克信.东昆仑造山带的一些特点[J].地球科学——中国地质大学学报,1997,22(4):339-342
    10.青海省地质矿产局.青海省岩石地层[M].武汉:中国地质大学出版社,1997,1-340
    11.姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992
    12.边千韬,罗小全,李红生,等.阿尼玛卿山早古生代和早石炭-早二叠世蛇绿岩的发现[J],地质科学,1999,34(4):523-524
    13.王永标,黄继春,骆满生,等.海西-印支早期东昆仑造山带南侧古海洋洋盆地的演化[J],地球科学-中国地质大学学报,1997,22(4):369-372
    14.姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000
    15. 朱云海,Pan Yuanming,张克信,等.东昆仑造山带蛇绿岩矿物学特征及其岩石成因讨论[J].矿物学报,2000,20(2):128-14
    16. 朱云海,张克信,Pan Yuanming,等.东昆仑造山带不同蛇绿岩带的厘定及其构造意义[J]. 地球科学-中国地质大学学报,1999,24(2):134-138
    17. 朱云海,Pan Yuan-ming,王国灿,等.东昆仑巴颜喀拉浊积盆地二叠纪火山岩[J]. 地球科学—中国地质大学学报,2004,29(6):703-710
    18. 张以弗,庞存廉,李长利,等.可可西里-巴颜喀拉三叠纪沉积盆地的形成和演化[M].西宁:青海人民出版社,1997,136-140
    19. 张以弗.可可西里-巴颜喀拉三叠纪沉积盆地的划分及演化[J].青海地质,1996,5(1):1-17
    20. 张以弗.对巴颜喀拉三叠纪地层系统的认识[J].中国区域地质,1995,1:21-30
    21. 徐强,潘桂棠,许志琴,等.东昆仑地区晚古生代到三叠纪沉积环境和沉积盆地演化[J].特提斯地质,1998,22:76-89
    22. 徐强,潘桂棠,江新胜.松潘—甘孜带:是弧前增生还是弧后消减?[J].矿物岩石,2003,23(2):27-31
    23. 张德全,丰成友,李大新,等.柴北缘-东昆仑地区的造山型金矿床[J].矿床地质,2001,20(2): 137-146
    24. 孙丰月,金魏,李碧乐,等.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学报,2000,30(增刊):27-30
    25. 崔春龙.硅质岩研究中的若干问题[J].矿物岩石,2001,21(85):100-104
    26. 于晓飞.山东招远灵北断裂控矿特征及灵山沟金矿矿化富集规律研究[D].长春:吉林大学,2003
    27. 王力.山东招远金岭金矿矿化富集规律及成矿预测[D].长春:吉林大学,2003
    28. 包存义,许国武,李玉春,等.大场地区金矿成因类型及成矿潜力分析[J].青海国土经略,2003, 3:17-22
    29. 单卫国,钟维敷,宋懿红,段辉. 黑色岩系成矿作用及相关金属矿床找矿[J].云南地质,2004,23(2):125-139
    30. 叶杰,范德廉. 黑色岩系型矿床的形成作用及其在我国的产出特征 [J].矿物岩石地球化学通报,2000,19(2):95-101
    31. 陈永清,夏庆霖,刘红光.黑色页岩建造中的贵金属矿产评价研究[J].地球物理学进展,2003,18(2):261-268
    32. 黄继春,张克信,朱艳明,等.东昆仑造山带海西—印支期构造古地理演化的古地磁证据[J].地球科学—中国地质大学学报,1999,24(2):155-159
    33. 王国灿,贾春兴,朱云海,等.阿拉克湖幅地质调查新成果及主要进展[J].地质通报,2004,23(5-6):549-554
    34. 陈亮,孙勇,柳小明,等.青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义[J].岩石学报,2000,16(1):106-110
    35. 田军,张克信,龚一鸣,等. 东昆仑造山带海西—印支期东昆南前陆盆地构造岩相古地理[J].现代地质,2001,15(1):21-26
    36. 蔡雄飞,王国灿,李德威.青海省境内巴颜喀拉山群研究的新进展[J].地学前缘,2004,11(2):1
    37. 丰成友,张德全,王富春,等.青海东昆仑复合造山过程及典型造山型金矿地质[J].地球学报,2004,25(4):415-422
    38. 边千韬,罗小全,陈海泓,等.阿尼玛卿蛇绿岩带花岗—英云闪长岩锆石U—Pb 同位素定年及大地构造意义[J].地质科学,1999,34(4):420-426
    39. 张克信,黄继春,骆满生,等.东昆仑阿尼玛卿混杂岩带沉积地球化学特征[J]. 地球科学—中国地质大学学报,1999,24(2):111-114
    40. 杨宗让.川西—甘孜弧前盆地的形成及演化[J].沉积与特提斯地质,2002,22(3):53-58
    41. 林启祥,王永标,徐桂荣,等.东昆仑—阿尼玛卿地区早二叠世的沉积古地理[J].沉积学报,2001,19(3):340-343
    42. 王永标,杨浩. 东昆仑—阿尼玛卿—巴颜喀拉地区早二叠世的生物古地理特征[J].中国科学,2003,33(8):775-780
    43. 李秋生,彭苏萍,高锐,等.青藏高原北部巴颜喀拉构造带基底隆起的地震学证据[J].地质通报,2003,22(10):782-787
    44. 陈文,N. Arnaud. 巴颜喀拉地体POG 型花岗岩同位素年代学研究[J].地球学报,1997,18(3):261-265
    45. 柏道远,熊廷望,陈建超,等.青海银石山地区巴颜喀拉前陆盆地构造变形特征及动力学机制[J].沉积与特提斯地质,2003,23(4):71-78
    46. 袁万明,莫宣学,王世成,等.东昆仑金成矿作用与区域构造演化的关系[J].地质与勘探,2003,39(3)
    47. 章振根,马力.甘新交界处的210 金矿床与穆龙套金矿床的对比研究[J].黄金科学技术,1994,2(2):9-16
    48. 许志琴,杨经绥,陈方远.阿尼玛卿缝合带及“俯冲碰撞”动力学见:张旗主编蛇绿岩与地球动力学研究[M]北京:地质出版社,1996,185-189.
    49. 杨法强,潘彤.青海境内东昆仑及邻区造山型金矿床时空分布特征和成矿预测[J].地质通报,2003,22(增刊):23-30
    50. 孙丰月.新疆-青海东昆仑成矿规律和找矿方向综合研究(内部资料).2003,19-155
    51. 孙丰月. 新疆-青海东昆仑造山带重大找矿疑难问题研究设计书(内部资料).2003,24-28
    52. Groves D I, Goldfarb R J,Knox-Robinson C M,et al.Lake-kinematic of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Black, Western Australia. Ore geology Reviews,2000, 17(1-2):1-38
    53. Groves D I. The crustal continuum model for late-Archean load-gold deposits of Yilgarn Block, Western Australia. Mineral Deposita, 1993, 28:366-374
    54. Groves D, Goldfarb R J, Gebre-Mariam M, et al.Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types [J]. Ore Geology Reviews, 1998 13(1-5):7-27
    55 .Sibson R H.Crustal stress faulting and fluid flow. In Parnell J ed.Geological Society Special Publications 1994 (78):69-8
    56. Sibson R H.Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology, 1987, 15:701-704

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700