环糊精对含能化合物的分子识别及其催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精化学是超分子化学的重要组成部分,有关环糊精与其它小分子、中分子的包结复合物的研究已有很多,然而环糊精对含能小分子的包结复合物的研究,国内外报道的并不多。硝基化合物是一类含能热亚稳物质,即样品受热时极易发生分解,尤其是硝胺系、硝酸酯系含能化合物温度未达到熔点或沸点就发生分解,国内外曾用常规的GC-MS技术分析研究了一些硝基含能化合物,但对那些热敏感的炸药(如硝酸酯类、硝胺系炸药)要得到分子量信息是非常困难的。基质辅助激光解吸附电离-飞行时间质谱(MALDI-TOF-MS)是分析合成高分子、生物大分子的强有力的工具,然而对于那些低分子量的分析物,由于基质的分子量一般小于300Da,在激光解析时,基质对自己产生基质的作用,从而产生大量有关基质的离子,严重干扰了分析物的分子离子和碎片离子的判断,因此用MALDI-TOF-MS分析低分子量化合物仍然是一大难题。
     本课题研究了环糊精与5种小分子量含能化合物的包结复合物,经~1HNMR、IR、XRD和HPLC等仪器的表征,表明形成了包结复合物。基于上述启发,本文利用环糊精与小分子量含能化合物形成包结复合物,然后用液相色谱-质谱联用仪(ESI-MS)测定包结复合物的分子量,间接地测定了2种硝胺系和2种硝酸酯系热不稳定含能化合物的分子量,解决了这4种含能化合物不易测定分子量的难题;利用环糊精与含能小分子形成包结复合物的特性,用MALDI-TOF-MS间接地测定了14种单质炸药、一种已知混合组分的推进剂、一种未知组分推进剂中含能化合物的分子量,解决了用MALDI-TOF-MS不易测定含能小分子化合物分子量的难题。利用环糊精与含能催化剂等的分子识别现象,制备了4种纳米管线复合物,这4种纳米管线复合物有望用在催化推进剂燃烧和纳米导电器件。利用环糊精对苯胺类化合物的分子识别,使苯胺类化合物包结在环糊精的空腔内,实现苯胺的氨基烷基化反应基本停留在仲胺阶段。利用环糊精对2,2’-联吡啶的包结作用,保护了2,2’-联吡啶的3,6位,实现2,2’-联吡啶高选择性的羧基化反应,制得了2,2’-联吡啶-5,5’-二甲酸。
     本论文研究的主要内容如下:
     [1]综述了环糊精的发展历史、环糊精在质谱中的应用、环糊精在含能化合物研究中的应用、环糊精自组装的应用及其催化应用。
     [2]用溶液法制得β-CD与含能小分子3,4-二硝基甲苯(3,4-DNT),2,6-二硝基甲苯(2,6-DNT),2,5-二硝基甲苯(2,5-DNT),RDX和HMX的包结复合物,用IR、~1HNMR、XRD和HPLC方法进行了表征,表明β-CD与含能小分子3,4-DNT、2,6-DNT、2,5-DNT、RDX和HMX形成了包结复合物。依据实验结果与3D图,提出了β-CD与含能小分子合理的包结模式。
     [3]用HPLC-ESI-MS分析了BTTN(丁三醇三硝酸酯)/NG(丙三醇三硝酸酯)、RDX/HMX混合物。用反相色谱的C_(18)柱子,分离并检测了NG/BTTN和RDX/HMX的混合体系。对影响NG/BTTN和RDX/HMX质谱图的因素如毛细管出口电压、溶液的pH值、电离方式和干燥气温度做了系统地研究。结果表明在NG/BTTN和RDX/HMX的质谱图中不仅得到了分子离子,而且得到了碎片离子和加合离子如[M-H+H_2O]~-,[M-H+2H_2O]~-,[M-H+NO_2]~-和[M-H+NO_3]~-等,这些碎片离子和加合离子严重地影响了分子离子的判断。在溶液中用α-CD与NG和BTTN,β-CD与RDX和HMX分别形成非共价键复合物,用ESI-MS分析这些复合物,结果表明在ESI-MS图中只有复合物和α-CD或β-CD的准分子离子峰。根据复合物的准分子离子减去α-CD或β-CD的准分子离子,很容易地得到NG,BTTN,RDX和HMX的分子量;根据复合准分子离子峰的强度,说明α-CD与NG和BTTN、β-CD与RDX和HMX形成的包结复合物结构稳定;比较了NG、BTTN、RDX、HMX与它们的复合物α-CD-NG、α-CD-BTTN、β-CD-RDX、β-CD-HMX的ESI-MS质谱,表明纯NG、BTTN、RDX和HMX的ESI-MS质谱很复杂,而α-CD-NG、α-CD-BTTN、β-CD-RDX、β-CD-HMX复合物的ESI-MS图非常简单,从而很容易间接地得到NG,BTTN,RDX和HMX分子量的信息。
     [4]用MALDI-TOF质谱的质量扫描范围500~1900Da,研究了β-CD与BTTN、NG、RDX、HMX、3,4-DNT、2,6-DNT、2,5-DNT、TNT、TNAZ、DNI、TO、NTO、DNP、662化合物的包结复合物,避免了基质离子的干扰,很好的测定了上述14种小分子量的含能化合物的分子量及一种由2,6-DNT、TNT和RDX推进剂和一种未知组分的含能化合物的分子量。研究表明,(1)这种方法灵敏、准确,适合用来测定低分子量的含能化合物和推进剂中的含能组分;(2)β-CD尉RDX、HMX、TO、NTO、NG、BTTN、2,4,6-DNT、3,4-DNT,2,5-DNT、2,4,6-TNT,TNAZ、DNI、NP和662小分子含能化合物有很好的识别能力。
     [5]通过β-CD对2-氯-6-甲氧基-3,5-二硝基吡嗪(CMDPZ)、3-硝基-1,2,4-三唑-5-酮钡盐((NTO)_2Ba)、3-硝基-1,2,4-三唑-5-酮铜盐((NTO)_2Cu)、3-硝基-1,2,4-三唑-5-酮铅盐((NTO)_2Pb)的分子识别,用溶液法制得β-CD-CMDPZ、β-CD-(NTO)_2Ba、β-CD-(NTO)_2Cu、β-CD-(NTO)_2Pb四种纳米线复合物。用扫描电镜(SEM)、IR、~1H-NMR、~(13)C-NMR、元素分析仪和原子吸收仪对其形貌及结构进行了表征,提出了可能的包结模式。研究结果表明,(1)β-CD与CMDPZ、(NTO)_2Ba、(NTO)_2Cu、(NTO)_2Pb形成了1∶1的包结复合物;(2)所得到的纳米线直径约50nm,长度可达几cm,并沿[001]轴方向生长。
     [6]以β-CD为催化剂,在碱性环境下苯胺、邻甲基苯胺、对甲基苯胺、对甲氧基苯胺分别与氯苄反应,高产率的制得了单取代苄基苯胺类化合物。所得的产物经HPLC和GC-MS检测,单取代苄基苯胺类化合物的产率分别为97.1%,95.3%,98.5%,90.8%;二取代苄基苯胺的产率分别为1.4%,2.6%,0.7%,1.0%。并与未添加β-CD催化剂时,各产物进行了比较;结果显示,在β-CD的催化下,单取代苄基苯胺类化合物的产率及选择性均远优于未添加β-CD催化剂时的产率和选择性。
     以β-CD为催化剂,用27mmol的四氯化碳、3.0mmol的2,2′-联吡啶、3.0mmol的β-CD和0.8mmol的铜粉在80℃下的氢氧化钠溶液中反应,然后每隔1h向反应液中加入27mmol的四氯化碳、3.0mmol的β-CD和0.8mmol的铜粉的混合碱液,反应12h。制得选择性为87%,产率为66%的2,2′-联吡啶-5,5′-二甲酸。
     [7]用柱塞泵进样-电喷雾电离质谱分别研究了α-CD、β-CD、γ-CD作为手性拆分试剂对(R)、(S)-2-丁醇的分子识别。利用α-CD、β-CD或γ-CD与(R)或(S)-2-丁醇复合物和α-CD、β-CD或γ-CD的相对离子强度,计算了在22℃条件下上述复合物的热力学平衡常数(K)和吉布斯自由能(ΔG~0/KJ/mol),研究了毛细管出口电压对复合物质谱的影响。研究表明,(1)α-CD、β-CD和γ-CD对(R)、(S)-2-丁醇均有分子识别能力,其中α-CD对(R)、(S)-2-丁醇的识别能力最强,其次为β-CD和γ-CD;而分子识别率最强的是β-CD;(2)α-CD与(R)-2-丁醇、α-CD与(S)-2-丁醇、β-CD与(R)-2-丁醇、β-CD与(S)-2-丁醇、γ-CD与(R)-2-丁醇、γ-CD与(S)-2-丁醇复合物的热力学平衡常数(K)和吉布斯自由能(ΔG~0/KJ/mol)分别为24.01和-7.80,25.00和-7.89,12.96和-7.28,20.25和-7.38,6.78和-4.69,8.41和-5.22;(3)在不同CapEx电压下,这三种环糊精对(R)、(S)-2-丁醇均有手性识别能力。
Cyclodextrins (CDs) are very important compounds in superamolecular chemistry , and the complexes of cyclodextrins with small molecules have been studied very commonly. While only a few inclusion complexes of cyclodextrins with nitro-compounds have been reported. Nitro-compounds are kinds of thermally unstable materials. When they are analyzed by gas chromatography-mass spectrometry (GC-MS), they will decompose due to the high temperature in the ion source of GC-MS. So the molecular ions of these energetic compounds cann't be obtained especially to energetic compounds containing the -NNO_2 and -ONO_2 groups by GC-MS. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has become a very powerful instrument to analyze large synthetic polymers and biomacromolecules. But for analysis of low-mass analytes, especially for the weights of the mass-to-charge analytes less than 500 Da, it has been a challenge to analyze by MALDI-TOF-MS. Because most of the currently used matrixes have molecular weights less than 300 Da, and during laser irradiation, they also act as their own matrixes, producing a variety of matrix-related ions. These ions of matrix will interfere to verdict the molecular ions of the analytes. Thus it is difficult to analyze low-mass analytes by MALDI-TOF-MS.
     In this dissertation, five kinds of small molecular weight compounds formed inclusion complexes withβ-cyclodextrin according to characterizing by ~1HNMR, IR, XRD and HPLC. Four kinds of thermally unstable nitro-compounds were also analyzed through the inclusion complexes ofα- orβ-cyclodextrin by ESI-MS. The novel method has resolved the tanglesome problem of determining the energetic molecular weights with low molecular weight (MW) through the complexes ofα- orβ-cyclodextrin with these four containing -ONO_2 and -NNO_2 compounds by ESI-MS. The molecular weights of one composite explosive, one propellant with unknown components and 14 single-compound explosives were measured by MALDI-TOF-MS using CD's inclusion complexes with these small molecular weights of nitro compounds. The novel method has resolved the difficult problem that low molecular weights cann't be measured directly by MALDI-TOF-MS. Using the recognition ofβ-CD to the nitro-compounds and energetic materials, four nanotubes were prepared. A controlled single substituted aniline and its derivatives were achieved withβ-cyclodextrin as catalyst. 2,2'-Bipyridinyl-5,5'-dicarboxylic acid was synthesized by one-step reaction of 2,2'-bipyridinyl (BPY) withβ-cyclodextrin as catalyst.
     The main contents and the main innovative results are as follows:
     [1] The development of cyclodextrins and its application in mass spectrometry, nitro-compounds, self-assemble and catalysis are reviewed.
     [2] The inclusion complexes ofβ-CD with the small molecular weight nitro-compounds, 3,4-dinitro-toluene(3,4-DNT), 2,6-dinitro-toluene(2,6-DNT), 2,5-dinitro-toluene(2,5-DNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octah-ydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX) were prepared in the mixture solution of water and acetone, and characterized by IR, XRD, ~1HNMR and HPLC, showing that the inclusion complexes of 3,4-DNT, 2,5-DNT, 2,6-DNT, RDX and HMX form inclusion complexes withβ-CD. The mechanism of forming inclusion complexes ofβ-CD with low molecular weight nitro-compounds was presumed.
     [3] LC-ESI mass spectra of the binary mixtures RDX/HMX and 1,2,3-trinitro-propantriol(NG)/1,2,4-trinitro-butanetriol(BTTN) were determined by LC-ESI-MS technique. The binary mixtures NG/BTTN and RDX/HMX were separated by the reversed-phase high performance liquid chromatography on the C_(18) column. The factors, such as CapEx (capillary exit) voltage which can produce characteristic fragmentation ions through adjusting the voltage called CID, pH values, electron modes and the temperature of drying gas affacting the mass spectra of RDX /HMX and BTTN/NG systems were studied. The molecular ions, characteristic fragmentation ions and adduct ions including [M-H+H_2O]~-, [M-H+2H_2O]~-, [M -H+NO_2]~- and [M-H+62]~- were obtained, so these fragmentation ions and adduct ions disturb to verdict the molecular ions. Noncovalent complexes betweenα-cyclodextrin(α-CD) with NG and BTTN,β-CD with RDX and HMX formed in aqueous solution were investigated. The results obtained by ESI-MS show that there are only the molecular ions of the complexes andα-CD orβ-CD. According to the molecular weights of the complexes andα-CD orβ-CD, the weights of NG, BTTN, RDX and HMX were obtained easily by subtracting theα-CD orβ-CD ions from the complexes ions. The intensive mass-to-charge ratios of the molecular complexes are very strong, showing thatα-CD has a strong recognition ability to NG and BTTN andβ-CD to RDX and HMX. The spectra of NG, BTTN, RDX and HMX are tanglesome, while the spectra of the complexes of NG and BTTN withα-CD, RDX and HMX withβ-CD are very simple, and the molecular weights of NG, BTTN, RDX and HMX are easily obtained.
     [4] A novel method for determining the molecular weights of low molecular weight (MW) energetic compounds through their complexes ofβ-CD and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in a mass range of 500-1900 Da, avoiding matrix interference was presented. The MWs of one composite explosive composed of 2,6-DNT, TNT and RDX, one propellant with unknown components and 14 single-compound explosives (RDX, HMX, 3,4-DNT, 2,6-DNT, 2,5-DNT, 2,4,6-TNT, TNAZ, DNI, BTTN, NG, TO, NTO, NP and 662) were measured. The molecular recognition and inclusion behaviour ofβ-CD to energetic materials (EMs) were investigated. The results show that (1) the established method is sensitive, accurate and suitable for determining the MWs of low-MW single-compound explosives and energetic components in composite explosives and propellants; and (2)β-CD has good inclusion and modular recognition abilities to the above EMs.
     [5] Novel nanotubes ofβ-CD with 2-chloro-6-methoxy-3,5-dinitro-pyrazine (CMDPZ), barium 3-nitro-l,2,4-triazol-5-onate ((NTO)_2Ba), lead 3-nitro-1,2,4-triazol-5-onate ((NTO)_2Pb), copper 3-nitro-1,2,4-triazol-5-onate ((NTO)_2Cu), were prepared usingβ-CD recognition. Their morphologies and structures were characterized by IR, ~1H-NMR, ~(13)C-NMR, elemental analyses, flame atomic absorption spectrometry and SEM. The inclusion mechanism of the inclusion compound was presumed. The results show that (1) the molar ratio of forming the inclusion complexes byβ-CD with CMDPZ, (NTO)_2Ba, (NTO)_2Pb and (NTO)_2Cu is 1:1; (2) the nanowires are tetragonal lattice with a diameter of about 50 nm and the length of about a few cms, and grew along [001] axis.
     [6] A controlled single substituted reaction of aniline and its derivatives with benzylchloride was achieved withβ-CD as catalyst. Several benzylaniline and its derivatives o-methyl benzylaniline, p-methyl-benzyl aniline, were synthesized in 90-98% yields. 2,2'-Bipyridinyl-5,5'-dicarboxylic acid was synthesized by one-step reaction of 2,2'-bipyridinyl (bpy), carbon tetrachloride and copper powder in an aqueous alkali solution withβ-CD as catalyst at 80℃under nitrogen of atmospheric pressure, producing 2,2'-bipyridinyl-5,5'-dicarboxylic acid with 87% selectivity in 66 % yield. The mechanism of the reaction was presumed.
     [7] The chiral molecular recognition of (R or S)-2-butanol withα-CD .β-CDγ-CD was investigated by electro-spray ionization mass spectrometry. Using intensity of the relation between the complexes andα-CDβ-CD orγ-CD of mass spectra, the ratios of recognition and the relative ratios of recognition were obtained. The complex stability constant(K), standard free energy(△G~0/kJ/mol ) were calculated for the 1:1 inclusion of two 2-butanol pairs of guests withα-CDβ-CD andγ-CD at 22℃. The influence of CapEx voltage on the mass spectra of complexes was studied. The results show that (1) the molecular recognition ofα-CDβ-CD andγ-CD to the guests of (R)-2-butanol and (S)-2-butanol decrease in the orderα-CDβ-CDγ-CD, while the strongest molecular ratio recognition isβ-CD; (2) the complex stability constants(K) and the complex standard free energy( A△G~0/kJ/mol) are: 24.01 and -7.80 forα-CD with (R)-2-butanol, 25.00 and -7.89 forα-CD with (S)-2-butanol, 12.96 and -7.28 forβ-CD with (R)-2-butanol, 20.25 and -7.38 forβ-CD with (S)-2-butanol, 6.78 and -4.69 forγ-CD with (R)-2-butanol, 8.41 and -5.22 forγ-CD with (S)-2-butanol, respectively; (3)α-CD,β-CD andγ-CD have the recognition to (R or S)-2-butanol under different CapEx voltage.
引文
[1] C.J. Pederse. J. Am.Chem. Soc., 1967, 89, 247, 7017.
    [2] B. Detrich, J. M. Lehn, J. P. Saccvage. Tettrahedron Lett., 1969, 10, 2885.
    [3] R.C. Helgesen, J. M. Timko, D. J. Cram. J. Am.Chem. Soc., 1973, 95, 3021.
    [4] J.M. Lehn. Science, 1985,227, 849.
    [5] J. Szejtli. Comprehensive Supramolecular Chemistry, J. L. Atwood, J. -M. Lehn, Eds.; Vol. 3, Cyclodextrins, Chapter 1, Pergamon: Oxford, U. K., 1996, p. 1.
    [6] J. Szejtli. Chem, Rev., 1998, 98, 1743.
    [7] F. Cramer. Proceedings of 1st International Symposium on Cyclodextrins, Budapest, 1981, Reidel, Dordrecht, 1982, p. 3.
    [8] K. Freudenberg, E Cramer, H. Plieninger. Ger. Pat., 1953, 895, 769.
    [9] a) D. French, Adv. Carbohydr. Chem., 1957, 12, 189. b) D. French, M. Levine, J. Pazur, J. Am. Chem. Soc., 1949, 71,356.
    [10] F. Cramer, Einschlussverbindungen, Springer-Verlag, 1954.
    [11] F. Ed. L. Szente.J. Inclusion Phenomena and Molecular Recognition in Chemistry, 1994, 18, 207.
    [12] V.T. D'Souza, K. B. Lipkowitz. Chem. Rev., 1998, 98, 1974.
    [13] K. Horikoshi, N. Nakamura, N. Matsuzawa et al. Proceedings of the 1st Internati- onal Symposium on Cyclodextrins, Budapest, 1981, Ed. J. Szejtli, Reidel, Dordrecht, 1981, p. 25.
    [14] S. Kobayashi, K. Kainuma, J. Jpn. Soc. Starch Sci., 1981, 28(2), 132.
    [15] L. Jullien, J. Canceill, B. Valeur, E. Bardez, J.-M. Lehn, Angew. Chem. Int. Ed. Engl., 1994, 33, 2438
    [16] 方世壁,江英彦.高分子通报,1988,1,55.
    [17] 范小毅,韩高义,陈世荣,杨频.无机化学学报,2001,17(2),188.
    [18] R. E Wimmer, L. Aachmann, K. L. Larsen et al. Carbohydrate Research, 2002, 337, 841.
    [19] X.-R. Qin, H. Abe, H. Nakanishi. Biochemical and Biophysical Research Communications, 2002, 297, 1011.
    [20] T.J. Wenzel, E. P. Amonoo, S. S. Shariff et al. Tetrahedron: Asymmetry, 2003, 14, 3099.
    [21] T. Pralhad, K. Rajendrakumar. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34, 333.
    [22] M.A. Bayomi, K. A. Abanumay, A. A. A1-Angary. International Journal of Pharm- aceutics, 2002, 243, 107.
    [23] M.D. Veiga, M. Merino. Journal of Pharmaceutical and Biomedical Analysis, 2002, 28, 973.
    [24] A.E. Burgos, J. C. Belchior, R. D.Sinisterra. Biomaterials, 2002, 23, 2519.
    [25] K.L. Larsen, W. Zimmermann. Journal of Chromatography A, 1999, 836, 3.
    [26] M.C. Ringo, C, E. Evans. Journal of Chromatography A, 1999, 863, 127.
    [27] R Jandera, S. Buncekova, J. Planetam. Journal of Chromatography A, 2000, 871,139.
    [28] K.W. Busch, I. M. Swamidoss, S. O. Fakayode et al. Analytica Chimica Acta, 2004, 525, 53.
    [29] K.W. Busch, I. M. Swamidoss, S. O. Fakayode et al. J. Am. Chem. Soc., 2003, 125, 1690.
    [30] D.-Z Sun,. S.-B. Wang, X. L. Wei et al. Acta Chimi. Sinica 2004, 62, 1247 (in Chinese).
    [31] M. Kowblansky. Macromolecules, 1985, 18(9), 1776.
    [32] E Giordano, C. Novak, J. R. Moyano. Thermochimica Acta, 2001, 380, 123.
    [33] A.C.D. Medeiros, I. A. Medeiros, R. O. Macêdo. Thermochimica Acta, 2002, 392, 93.
    [34] S.H. Choi, E. N. Ryu, J. J. Ryoo et al. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 40, 271.
    [35] E. Lamcharfi, G. Kunesch, C. Meyer, B. Robert. Spectrochimica Acta Part A, 1995, 51, 1861.
    [36] T. Kuwabara, H. Nakajima, N. A. M. Ueno. Anal. Chem., 1999, 71, 2844.
    [37] S. Hamai. Bull. Chem. Soc. Jpn., 1982, 575, 2721.
    [38] 江云宝,黄贤智,陈国珍等.化学通报,1990,9,46.
    [39] H. Shimizu, A. Kaito, M. Hatano. Bull. Chem. Soc. Jpn., 1979, 52(9), 2678.
    [40] B. Golankiewicz, G. Perlovich, J. Poznanski et al. J. Chem. Soc., Perkin Trans, 1999, 2, 2533.
    [41] Y. Ito, T. Taakeuchi, D. Ishi, M. Goto. J. Chromatogr., 1985, 346, 161.
    [42] M.E. Ikonomou, A. T. Blades, P. Kebarle. Anal. Chem., 1991, 63,1989.
    [43] E.C. Homing, M. E. Homing, D. I. Carroll et al. Anal. Chem., 1973, 45, 936.
    [44] C.R. Blakly, J. J. Carmody, M. L. Vestal. Adv. Mass Spectrom, 1980, 8B, 1616.
    [45] C. Fenselau. Anal. Chem., 1997, 69, 661A.
    [46] O.V. Nemirovskiy, R. Ramanathan, M. L. Cross. J. Am. Soc. Mass Spectrom, 1997, 8, 809.
    [47] T.D. Veenstra, A. J. Tomlinson, L. Benson et al. J. Am. Soc. Mass Spectrom, 1998, 9, 580.
    [48] A. Sannes-Lowery, H.-Y. Mei, J. A. Loo. Int. J. Mass Spectrom., 1999, 193 (223), 115.
    [49] B. Ganem, Y.-T Li, J. D. Henion. J. Am. Chem. Soc., 1991, 113 (6), 6294.
    [50] A. Triolo, F. M. Arcamone, A. Raffaelli et al. J. Mass Spect rom., 1997, 32 (11), 1186.
    [51] V. Gabelica, E. D. Pauw, F. Rosu. J. Mass Spect rom., 1999, 34 (12), 1328.
    [52] K.-X. Wan, T.-B. Shi, M. L. Gross. J. Am. Chem. Soc., 2000, 122 (2), 300.
    [53] C.E. Ballou, A. Dell. Carbohydr.Res., 1985, 140, 139.
    [54] P.R. Ashton, J. F. Stoddart, R. Zarzycki. Tetrahedron letter., 1988, 29, 2103
    [55] D.W. Anderson, P. R. Ashton, R. M. Bllack et al. J. Chem. Soc. Chem. Commun., 1988, 904.
    [56] S. Kurono, T. Hirano, K. Tsujimoto et al. Org. Mass Spectrom., 1992, 27, 1157
    [57] S. Hamai, K. Hori. J. Inclusion Phennom. Macrocy. Chem., 1999, 34, 245.
    [58] S.N. Davey, D. A. Leigh, J. P. Smart et al. Carbohydr.Res., 1996, 290, 117.
    [59] A. Mele, W. Panzeri, A. Selva. J. Mass Spectrom., 1996, 31, 1364.
    [60] A. Selva, E. Redenti, P. Ventura et al..J. Mass Spectrom., 1997, 32, 807.
    [61] R. Ramanathan, L. Prokai. J.Am.Soc.Mass Spectrom., 1995, 6, 866.
    [62] P. Cesutti, D. Garozzo, R. Rizzo. Carbohydr. Res., 1996, 290, 105.
    [63] J. Ramirez, S. Ahn, G. Grigorean et al. J. Am. Soc. Mass Spectrom, 2000, 122, 6884.
    [64] Y. Al-nouti, M. G. Bartlett. J. Am. Soc. Mass Spectrom., 2002, 13,928.
    [65] J.B. Cunniff, P. Vouros. J. Am. Soc. Mass Spectrom., 1995, 6, 437.
    [66] R. Kobetic', B. S. Jursic, S. Bonnette et al. Tetrahedron Letters, 2001, 42, 6077.
    [67] G. Schulte, S. Heitmeier, B. Chankvetadze et al. Journal of Chromatography A, 1998, 800, 77.
    [68] Y. Cai, M. A. Tarr, G.-X Xu et al. J.Am.Soc.Mass Spectrom, 2003, 14, 449.
    [69] M. Karas, D. Bachmann, U. Bahr, F. Hillenkamp. Int. J. Mass Spectrom. Ion Processes, 1987, 78, 53.
    [70] G. Grigorean, J. Ramirez, S. H. Ahn et al. Anal. Chem., 2000, 72, 4275.
    [71] A. Mele, L, Malpezzi. J. Am. Soc. Mass Spectrom, 2000, 11,228.
    [72] S.P. Mirza, N. P. Raju, M. Vairamani. J. Am. Soc. Mass Spectrom., 2004, 15,431.
    [73] X.-H. Lai, S. C. Ng. Journal of Chromatography A, 2004, 1031, 135.
    [74] E. Memisoglu-Bilensoy, A. A. Hincal. International Journal of Pharmaceutics, 2006, 311,203.
    [75] L. Rabara, M. Aranyosiova, D. Velic. Applied Surface Science, 2006, 252, 7000.
    [76] M. Zhang, Z. Shi, Y.-J Bai, Y. Gao et al. J Am Soc Mass Spectrom, 2006, 17, 189.
    [77] 李培之,毛敏媛,朱婷婷.分析化学,1994,22(1),58.
    [78] 王灿,高士祥,杨光俊,邵云,王连生.中国环境科学 2004,24(4),429.
    [79] 高士祥,王灿,孔德洋等。环境化学,2003,22(5),445
    [80] C.A. Groom, A. Halasz, L. Paquet, P. D'Cruz, J. Hawari. Journal of Chromatography A, 2003, 999, 17.
    [81] C.A. Groom, A. Halasz, L. Paquet, S, Thiboutot, P. D'Cruz, J. Hawari. Journal of Chromatography A, 2005, 1072,73.
    [82] M.C.D.Manickama, K. Pitchumani, C. Srinivasan. Journal of Photochemistry and Photobiology A: Chemistry, 2002,149,131.
    [83] B. Manunza, S. Deiana, M. Pintore, C. Gessa. J. Molecular Graphics and Moedeling, 1997, 15, 79.
    [84] E. Estrada, I. Perdomo-Lo'pez, J. J. Torres-Labandeira. J. Chem. Inf. Comput. Sci., 2001, 41, 1561
    [85] T. Sheremata,J. Hawari. Environ. Sci. Technol., 2000, 34, 3462.
    [86] A. Ruebner, G. Statton, C. Meyers, B. Koswski. Int. Cyclodextrin Symp., 2000, 162.
    [87] J.P. Consaga, R. C. Gill. Int. Annu. Conf. ICT., 1998, 29th, 5.1.
    [88] K. Tomono, H. Gotoh, M. Okamura et al. Yakuzaigaku, 1991, 51(1), 22.
    [89] X. Yang, J. Shi, S. Johnson, B. Swanson. Sensors and Actuators B, 1997, 45, 79.
    [90] P.-G He, J.-N Ye, Y.-Z Fang et al. Analytica Chimica Acta, 1997,337, 217.
    [91] 王臻,张浩力,力虎林.物理化学学报,1999,15(7),606.
    [92] X. Yang, S. Johnson, J. Shi, T. Holesinger, B. Swanson. Sensors and Actuators B, 1997, 45, 87.
    [93] J.S.Manka, D. S. Lawrence. J. Am. Chem. Soc., 1990, 112(14), 2440.
    [94] A. Harada, M. Okada, Y. Kawaguchi et al.Polym.Adv.Tech., 1999, 10(1-2), 3.
    [95] S. Makedonopoulou, I. M.Mavrids, K. Yannakopoulou et al. J. Chem. Commun., 1998, 19, 213.
    [96] S. Kamitori, S. Kondo. Carbohydr Res., 1998, 312, 177.
    [97] M.Tamura, A. Ueno. Chem. Lett., 1998, 369.
    [98] a) A.Harada, J. Li, M.Kamachi. J. Macromol. Sci. Pure & Appl. Chem., 1995, A32, 813. b) A. Harada, M. Kamachi. J. Syn. Org. Chem. Jpn., 1994, 52(10), 831.
    [99] G. LI, B.M. Linda. Sciecce, 1994, 264, 249.
    [100] R.A. Agbaria, D. J. Phys. Chem., 1988, 92,1052.
    [101] K.A. Agnew, T. D. McCarley, R. A. Agbaria et al. J. Photochem. Photobio. A: Chem., 1995, 91(3), 205.
    [102] R. A Agbaria, D. Gill. J. Photochem. Photobio. A:Chem.,1994, 78(2), 161.
    [103] 张春芬,沈兴海,高宏成.光谱学与光谱分析,2003,23(2),217.
    [104] 张敏,岳璞,史真等.西北大学学报(自然科学版)(S),2005,35,62
    [105] 张敏,岳璞,史真等.含能材料,2007,15(1),67.
    [106] 罗志刚.淀粉与淀粉糖,2005,2,10.
    [107] I. Tabushi. Acc, Chem. Res. ,1982, 15, 66.
    [108] I. Tabushi. Pure Appl.Chem.,1986, 58, 1529.
    [109] 袁德其,谢如刚,赵华明,有机化学,1992,12,126.
    [110] 罗美明,谢如刚,赵华明.有机化学,1995,15,1.
    [111] M. Fukudome, Y. Okabe, D. Q. Yuan. Chem. Commum., 1999, 1045.
    [112] S. D. Dang, R. Breslow. Tetrahedron Lett., 1998, 39, 9343.
    [113] 唐波,刘阳,梁芬珍等.化学学报,2000,58,1031.
    [114] K. Eshima, Y. I. Matsushita, E. Hasegawa. Chem. Lett., 1989, 207, 381.
    [115] D. -Q. Yuan, R. G. Yde, H. -M. Zhao. Chin. Chem. Lett., 1991, 2, 617.
    [116] M. Somi Reddy, B. Srinivas, R. Sridhar et al. Journal of Molecular Catalysis A: Chemical, 2006, 255, 180.
    [117] B. Srinivas, V. Pavan Kumar, R. Sridhar et al. Journal of Molecular Catalysis A: Chemical, 2006, 261, 1.
    [118] R. Sridhar, B. Srinivas, K. Surendra et al. Tetrahedron Letters, 2005, 46, 8837.
    [119] M. Arjun Reddy, K. Surendra, N. Bhanumathi et al. Tetrahedron, 2002, 58, 6003.
    [120] A. R. Abreu, I. Costa, C. Rosa et al Tetrahedron, 2005, 61, 11986.
    [121] N. S. Krishnaveni, K. Surendra, V. Pavan Kumar et al. Tetrahedron Letters, 2005, 46, 4299.
    [122] P. M. Henry. Palladium Catalyzed Oxidation of Hydrocarbons, D. Reidel Publishing Co., Dordrecht, 1980.
    [123] E. Karakhanov, A. Maximov, A. Kirillov. Journal of Molecular Catalysis A: Chemical, 2000, 157, 25.
    [124] P. A. Ganeshpure, S. J. Satish. J. Chem. Soc., Chem. Commun., 1998, 981.
    [125] S. Tilloy, F. Bertoux, A. Mortreux, E. Monflier. Catalysis Today, 1999, 48, 245.
    [126] E. A. Karakhanov, T. Y. Filippova, S. A. Martynova, et al. Catalysis Today, 1998, 44, 189.
    [127] 操锋,任勇,华维一等.有机化学,2002,22(11),827.
    [128] C. Binkowski, J. C. H. Bricout, F. Hapiot et al. Journal of Molecular Catalysis A: Chemical, 2004, 215, 23.
    [129] O. S. Tel, M. Bozzi. J. Org. Chem., 1995, 60, 3509.
    [130] M. A. Ferna'ndez, H. R. Rossi. J. Org. Chem. 2003, 68, 6887.
    [131] H. Bricout, L. Caron, D. Bormann et al. Catalysis Today, 2001, 66, 355.
    [132] M. Komiyama, H. Hirai. J. Am. Chem. Soc., 1983, 105, 2018.
    [133] M. Komiyama, H. Hirai. Makromol. Chem. Rapid Comomun., 1981, 2, 207.
    [134] E. Monflier, S. Tilloy, G. Fremy et al. Tetrahedron Letters, 1995, 36(52), 9481.
    [135] T. Mathivet, C. Meliet, Y. Castanet et al. Journal of Molecular Catalysis A: Chemical, 2001, 176 105.
    [136] M. Komiyama, Hirai H. J. Am. Chem. Soc., 1984, 106, 174.
    [137] Y. Shiraishi, S. Kojima, H. Tomita. J. Polym., 1996, 28, 619.
    [138] Y. Shiraishi, N. Toshima, T. Kawamur et al. J. Mole. Cataly. A: Chem. 1999, 139, 149.
    [139] Y. Shiraishi, H. Tomita, K. Fujiki et al. Reactive & Functional Polymer. 1998, 36, 99.
    [140] 梁兴泉,林桂汕,吴兰清.广西大学学报(自然科学版),1996,21(3),247.
    [141] 魏太保,张有明,王建林.西北师范大学学报(自然科学版),1999,35(1),47.
    [142] 宋发军,任维衡,孙欣阳等.中南民族学院学报(自然科学版),1998,17(3),24.
    [143] 黄乃聚,章道道,温世英等.1990,10,139.
    [1] X. R. Qin, H. Abe, H. Biochemical and Biophysical Research Communications, 2002, 297, 1011.
    [2] T. J. Wenzel, E. P. Amonoo, S. S. Shariff et al. Tetrahedron: Asymmetry, 2003, 14, 3099.
    [3] Co Hellreigel, H. Handel, M. Wedig et al. Chromatogr. A, 2001, 914, 315.
    [4] W. Saenger. Angew. Chem. Int. Ed. Engle., 1980, 19, 344.
    [5] J. Szejtli. Carb. Polym., 1990, 12, 375.
    [6] R. Wimmer, F. L. Aachmann, K. L. Larsen et al. Carbohydrate Research, 2002, 337, 841.
    [7] Y. Dotsikas, Y. L. Loukas. J. Am. Soc. Mass Spectrom., 2003, 14, 1123.
    [8] Y. Cheng, D. M. Hercules. J. Mass Spectrom., 2001, 36, 834.
    [9] R. Bakhtiar, C. E. C. A. Hop. Rapid Comun. Mass Spectrom., 1997, 11, 1478.
    [10] A. Janshoff, C. Steinem, A. Michalke et al. Sensors and Actuators B, 2000, 70, 243.
    [11] R. Kobetic', B. S. Jursic, S. Bonnette et al. Tetrahedron Letters, 2001, 42, 6077.
    [12] K. L. Larsen, W. Zimmermann. Journal of Chromatography A, 1999, 836, 3.
    [13] S. N. Croft, D. Hinks, J. Soc. Dyers Colour, 1992, 108, 546.
    [14] M. C. Ringo, C. E. Evans. Journal of Chromatography A, 1999, 863, 127.
    [15] R Jandera, S. Buncekova, J. Planeta. Journal of Chromatography A, 2000, 871, 139.
    [16] K. W. Busch, I. M. Swamidoss, S. O. Fakayode et al. Analytica Chimica Acta, 2004, 525, 53.
    [17] K. W. Busch, I. M. Swamidoss, S. O. Fakayode et al. J. Am. Chem. Soc., 2003, 125, 1690.
    [18] V. Crescenzi, A. Gramini, A. Palleschi, R. R. Gazz Chim. Ital., 1986, 116, 435.
    [19] M. Kowblansky. Macromolecules, 1985, 18, 1776.
    [20] E. M. Martin Del Valle. Process Biochemistry, 2004, 39, 1033.
    [21] K. Harata, K. Uedaria. Bull. Chem. Soc. Jpn., 1975, 48(2), 375.
    [22] H. Shimizu, A. Kaito, M. Hatano. Bull. Chem. Soc. Jpn., 1979, 52(9), 2678.
    [23] T. Pralhad, K. Rajendrakumar. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34, 333.
    [24] M. A. Bayomi, K. A. Abanumay, A. A. Al-Angary. International Journal of Pharmaceutics, 2002, 243, 107.
    [25] M. D. Veiga, M. Merino. Journal of Pharmaceutical and Biomedical Analysis, 2002, 28, 973.
    [26] A. E. Burgos, J. C. Belchior, R. D. Sinisterra. Biomaterials, 2002, 23, 2519.
    [27] F. Giordano, C. Novak, J. R. Moyano. Thermochimica Acta, 2001, 380, 123.
    [28] A. C. D. Medeiros, I. A. Medeiros, R. O. Macedo. Thermochimica Acta, 2002, 93
    [29] A. Ruebner, G. Statton, C. Meyerset al. Int. Cyclodextrin Symp., 2000, 162.
    [30] J. P. Consaga, R. C. Gill. Int. Annu. Conf. ICT. 1998, 29th, 5. 1.
    [31] K. Tomono, H. Gotoh, M. Okamura et al. Yakuzaigaku, 1991, 51(1), 22.
    [32] 宁永成.有机化合物坚定与有机结构光谱学,科学出版社,北京,2000.
    [33] D. C. Sorescu, B. M. Rice, D. L. Thompson. J. Phys. Chem. B, 1997, 101, 798.
    [34] R. Pati, N. Sahoo, T. R Daset al. J. Phys. Chem. A, 1997, 101, 8302.
    [35] J. H. T. Luong, A. L. Nguyen. J. Chromatogr. A, 1997, 792, 431.
    [1] M.S.B. Munson, F. H. Field. J. Am. Chem. Soc., 1966, 88, 262.
    [2] M. Barber, R. S. Bordoli, G. J. Elliottet al. J. Chem. Soc. Chem. Commun., 1981, 325.
    [3] V.L. Tal'roze, G. V. Karpov, I. G. Gorodetskii et al. Fiz. Chim., 1968, 42, 1658.
    [4] V.L. Tal'roze, V.E.Skurat, G. V. Karpov. Zh. Fiz. Chim., 1969, 43,241.
    [5] C.R. Blakly, J. J. Carmody, M. L. Vestal. Adv. Mass Spectrom 1980, 8B, 161.
    [6] C.R. Blakly, M. L. Vestal. Anal. Chem., 1983, 55,750.
    [7] E.C. Horing, M. E. Homing, D. I. Carrol et al. Anal.Chem., 1973, 45,936.
    [8] H. Kambara, I. Kanomata. Mass Spectrom, 1976, 24, 229.
    [9] M. Yamashita, J. B. Fenn. J. Phys. Chem., 1984, 88, 4451.
    [10] C.M. Whitehouse, R. N. Dreyer, M. Yamashita et al, Anal. Chem., 1985, 57, 675.
    [11] M.L. Aleksandrov, L. N. Gall, N. V. Krasnov et al. Adv. Mass Spectrom, 1986, 10, 605.
    [12] S. F. Wong, C. K. Meng, J. B. Fenn. J. Phys. Chem., 1988, 92, 546.
    [13] M. Mann, C. K. Meng, J. B. Fenn. Anal. Chem., 1989, 54, 1702.
    [14] A.P. Bruins, T. Covey, J. D. Henion. Anal. Chem., 1987, 59, 2642.
    [15] M.E. Ikonomou, A. T. Blades, P. Kebarle. Anal. Chem., 1991, 63, 1989.
    [16] T. R. Covey, R. F. Bonner, B. I. Shushan et al. Rapid Commun. Mass Spectrom, 1988, 2, 249.
    [17] E.C. Huang, J. D. Henion. Anal. Chem., 1991, 63,732.
    [18] K.L.T.Wachs, J. D. Henion. Anal. Chem., 1992, 64, 61.
    [19] G. Perkins, F. Pullen, C. Thompson. J. Am. Soc. Mass Spectrom, 1999, 10, 546.
    [20] K.L. Duffijn, J. D. Henion, J. J. Shieh. Anal. Chem., 1991, 63, 1781.
    [21] R.B. Breemen, C-R Huang, Z-Z Lu et al. Anal. Chem., 1995, 67, 3985.
    [22] C. Wu, W. F. Siems, H. H. Hill. Anal. Chem., 2000, 72, 396.
    [23] H. Keski-Hynnila, L. Luukkanen, J. Taskinen et al. J. Am. Soc. Mass Spectrom, 1999, 10, 537.
    [24] M. Busman, K. L. Schey, J. E. OatisJr et al. J. Am. Soc. Mass Spectrom, 1996, 7, 243.
    [25] J. Charlwood, H. Birrell, ESP. Bouvier et al. Anal. Chem., 2000, 72, 1469.
    [26] N. Yu, S. Y. Chiang, V. E. Walker et al. J. Mass Spectrom, 1998, 33, 363.
    [27] S. Koster, M. C. Duursma, J. J. Boon et al. J. Am. Soc. Mass Spectrom, 1995, 6, 906.
    [28] B. N. Jewett, L. Ramaley, J. C. T. Kwak. J. Am. Soc. Mass Spectrom, 1999, 10, 529.
    [29] M. E. Ketterer, J. P. Guzowski. Anal. Chem., 2000, 11, 338.
    [30] A. P. Bruins. Proceedings of the International Symposium of the Analysis and Detection of Explosives[C](Virginia), 1983, 227.
    [31] J. Yinon, D. G. Hwang. J. Chromatography, 1983, 268(1), 45.
    [32] T. K. Peter. Proceedings of the International Symposium of the Analysis and Detection of Explosives[C] (Virginia), 1983, 45.
    [33] 张敏,孙莉霞,陈智群.含能材料,2004,12(3),165.
    [34] T. H. Chem. Proceedings of the 4th International Symposium on Analysis and Detection of Explosives[C](Israel), 1992, 309.
    [35] 张敏,卢兴森,王继平等.质谱学报,1999,20(3,4),59.
    [36] 张敏,孙莉霞,魏俊发.质谱学报,2003,24(2),356.
    [37] B. Casetta, F. Garofolo. Org. Mass Spectrometry, 1994, 29, 517.
    [38] 张敏.火炸药学报,2006,29(1),77.
    [39] 张敏,史真,白银娟.含能材料,2005,13(3),176.
    [40] J. Ramirez, S. Ahn, G. Grigorean et al. J. Am. Chem. Soc., 2000, 122, 6884.
    [41] Y. Cheng, D. M. Hercules. J. Mass Spectrom, 2001, 36, 834.
    [1] J. Wei, J. M. Buriak, G. Siuzdak. Nature, 1999, 399, 243.
    [2] S. -Y. Xu, Y. -F Li, H. -F Zou et al. Anal. Chem., 2001, 73, 612.
    [3] J. D. Cuiffi, D. J. Hayes, S. J. Fonash et al. Anal. Chem., 2001, 73, 1292.
    [4] M. Merchant, S. R. Weinberger. Electrophoresis, 2000, 21, 1164.
    [5] T. W. Hutchens, T. T. Yip. U. S. Patent 5, 894, 063, 1999.
    [6] F. O. Ayorinde, K. Garvin, K. Saeed. Rapid Commun. Mass Spectrom., 2000, 14, 608.
    [7] F. O. Ayorinde, P. Hambright, T. N. Porter et al. Rapid Commun. Mass Spectrom., 1999, 13, 2474.
    [8] K. Tanaka, H. Waki, Y. T. Ido et al. Rapid Commun. Mass Spectrom., 1988, 2, 151.
    [9] J. Sunner, E. Dratz, C. Yu-Chie. Anal. Chem., 1995, 67, 4335.
    [10] M. J. Dale, R. Knochenmuss, R. Zenobi. Anal. Chem., 1996, 68, 3321.
    [11] K. Hie-Joon, L. Jin-Kyu, P. Sung-Jun et al.. Anal. Chem., 2000, 72, 5673.
    [12] C. Yu-Chie, J. Shiea, J. Sunner. Rapid Commun. Mass Spectrom., 2000, 14, 86.
    [13] T. Kinumi, T. Saisu, M. Takayama et al. J. Mass Spectrom., 2000, 35, 417.
    [14] E. P. C. Lai, S. Owega, R. Kulczycki. J. Mass Spectrom., 1998, 33, 554.
    [15] Q. Zhang, H. Zou, Z. Guo et al. Rapid Commun. Mass Spectrom., 2001, 15, 217.
    [17] F. G. Hopwood, L. Michalak, D. Alderdic et al. Rapid Commun. Mass Spectrom., 1994, 8(11), 881.
    [18] L. Michalak, F. G. Hopwood, D. Alderdic et al. Fiz. A. 1995, 4(2), 321.
    [19] D. W. Armstrong, L. -K. Zhang, L. -F He et al. Anal. Chem., 2001, 73, 3679.
    [20] Z. Guo, Q. -C. Zhang, H. -F. Zou et al. Anal. Chem., 2002, 74, 1637.
    [21] A. Mele, L. Malpezzi. J. Am. Soc. Mass Spectrom., 2000, 11, 228.
    [22] 张敏.火炸药学报,2006,29(1),77.
    [23] 张敏,孙莉霞,陈智群.含能材料,2004,12(31),176.
    [24] Y. Dai, R. M. Whittal, L. Li. Anal. Chem., 1999, 71, 1087.
    [1] J. Ramirez, S. Ahn, G. Grigorean et al. J. Am. Chem. Soc. 2000, 122, 6884.
    [2] Y. Cheng, D. M. Hercules. J. Mass Spectrom, 2001, 36, 834.
    [3] J. Wang, Q. -W Chen, C. Zeng et al. Adv. Mater., 2004, 16, 137.
    [4] G. Li, L. B. McGown. Sciecce, 1994, 264, 249.
    [5] R. A. Agbaria, D. Gill. J. Phys. Chem., 1988, 92, 1052.
    [6] K. A Agnew, T. D. McCarley, R. A. Agbaria et al. J. Photochem. Photobio. A: Chem., 1995, 91(3), 205.
    [7] R. A. Agbaria, D. Gil. J. Photochem. Photobio. A: Chem., 1994, 78(2), 161.
    [8] G. Pistolis, A. Malliads. J. Phys. Chem., 1996, 100, 15562.
    [9] 张春芬,沈兴海,高宏成.光谱学与光谱分析,2003,23(2),217.
    [10] 宁永成.有机化合物坚定与有机结构光谱学[M].科学出版社,北京,2000.
    [11] E. M. Martin Del Valle. Process Biochemistry, 2004, 39, 1033.
    [1] T. Itoh, K. Nagata, A. Kurihara et al. Tetrahedron Lett., 2002, 43, 3105.
    [2] R. O. Hutchins, M. K. Hutchins. Comprehensive Organic Synthesis, Pergamon: Oxford, 1991; Vol. 8; p. 25.
    [3] T. Rosenaqt, C. -L. Chen, W. D. Habichert. J. Org. Chem., 1995, 60, 8120.
    [4] M. L. Rosa, C. F. Gregory. Tetrahedron, 1997, 53(48), 16349.
    [5] S. Rele, S. Talukdar, A. Banerji et al. J. Org. Chem., 2001, 66, 2990.
    [6] D. S. Matteson, G. Y. Kim. Organic lett., 2002, 40(13), 2153.
    [7] U. Nettekoven, J. F. Hartwig. J. Am. Chem. Soc., 2002, 124, 1166.
    [8] H. J. Thiem, M. Brandl, R. Breslow. J. Am. Chern. Soc., 1988, 110, 8612.
    [9] R. Breslow, S. Chung. Tetrahedron Lett., 1990, 31, 631.
    [10] R. Breslow, S. Dong. Chem. Rev. 1998, 98, 1997.
    [11] R. Bakhtiar, C. Hop, R. Walker. Communicationsin Mass Spectro., 1977, 11, 598.
    [12] O. S. Tee, C. Mazza, R. Lozano-Hemmer. J. Org. Chem., 1994, 7602.
    [13] a) O. S. Tee, T. A. Gadosy, J. Chem. Sot., Perk/Trans., 1994, 23Or7.
    b) O. S. Tee, M. J. Boyd. Can. J. Chem. 1999, 77, 950.
    [14] K. Eshima, Y. I. Matsushita, E. Hasegawa. Chem. Lett., 1989, 207, 381.
    [15] D. -Q. Yuan, R. G. Yde, H. -M. Zhao. Chin. Chem. Lett., 1991, 2, 617.
    [16] 唐波,刘阳,梁芬珍等.化学学报,2000,58,1031.
    [17] P. Velusamy, K. Pitchumani, C. Srinivasan. Tetrahedron, 1996, 52(10), 3487.
    [18] Y. -L. Zhao, Y. Liu. Science in China Ser. B Chemstry, 2004, 34(1), 68.
    [19] A. Roe, J. A. Montgomery. J. Am. Chem. Soc., 1953, 75(1), 910.
    [20] D. B. Patel, Trivedi J. J., J. Indian Chem. Soc. 1973, 50(4), 287.
    [21] F. H. Case. J. Am. Chem. Soc., 1946, 68, 2574.
    [22] Z. Talik, E. Plazek. Rocz. Chem., 1960, 11, 3125.
    [23] C. M. Badger, W. H. F. Sasse. J. Chem. Soc., 1956, 616.
    [24] C. J. Whittle. Heterocycl. Chem., 1977, 14, 191.
    [25] F. Ebmeyer, F. Vogtle. Chem. Ber., 1989, 122, 1725.
    [26] W. H. F. Sasse, C. P. Whittle. J. Chem. Soc., 1961, 1347.
    [27] C. Janiak, S. Deblon, H. -P. Wu et al. Eur. J. Inorg. Chem. 1999, 1507.
    [28] Y. Shiraishi, S. Kojima, H. Tomita. J. Polym., 1996, 28, 619.
    [29] Y. Shiraishi, N. Toshima, T. Kawamur et al. J. Mole. Cataly. A: Chem., 1999, 139, 149.
    [30] Y. Shiraishi, H. Tomita, K. Fujiki et al. Reactive & Functional Polymer. 1998, 36, 99.
    [31] H. Stephen, T. Stephen. Solubilities of Inorganic and Organic Compounds, Vol. 1, Pergamon, Oxford, 1963, p. 19.
    [32] L.-X. Song, X.-Z.You. Acta Chim. Sinica 1995, 53,916(in Chinese).
    [33] L. -X. Song, Q.-J. Meng. J. Inorg. Chem. 1994, 10(4), 370(in Chinese).
    [1] H. M. Fales, G. W. Wright. J. Am. Chem. Soc., 1977, 99, 2339.
    [2] S. -M. Hua, Y. -Z Chen, L. -F. Jiang et al. Org. Mass Spectrom., 1986, 21, 7.
    [3] Y. -Z. Chen, H. Li, S. -M. Hua, W. -K Qiu et al. Kexue Tongbao, 1987, 32, 919.
    [4] Y. -Z. Chen, H. Li, H. -J Yang, S. -M. Hua et al. Org. Mass Spectrom., 1988, 23, 821.
    [5] J. Drabowicz, B. Dudzinski, M. Mitotajczyk et al. Polish J. Chem., 1994, 68, 2265.
    [6] C. J. Easton, S. F. Lincoln. J. Chem. Soc. Rev., 1996, 163.
    [7] N. J. Haskins, M. R, Saunders, P. Camilleri. Rapid Commun. Mass Spetrom., 1994, 8, 423.
    [8] M. Sawada, Y. Okumura, H. Yamada et al. Org. Mass Spectrom., 1993, 28, 1525.
    [9] M. Sawada, Y. Okumura, M. Szuma et al. J. Am. Chem. Soc., 1993, 115, 7381.
    [10] M. Sawada, Y. Takai, H. Yamada et al. J. Am. Chem. Soc. 1995, 117, 7726.
    [11] M. Sawada. J. Mass Spectrom. Rev., 1997, 16, 73.
    [12] G. Grigorean, J. Ramirez, S. H. Ahn et al. Anal. Chem., 2000, 72, 4275.
    [13] G. Grigorean, C. B. Lebrilla. Anal. Chem., 2001, 73, 1684.
    [14] 陆豪杰,余种天,郭寅龙.化学学报,2002,60(6),882.
    [15] M. V. Rekharsky, F. P. Schwarz, Y. B. Tewari et al. J. Phys. Chem., 1994, 98, 10282.
    [16] J. Ramirez, S. Ahn, G. Grigorean et al. J. Am. Soc. Mass Spectrom., 2000, 122, 6884.
    [17] Y. Al-nouti, M. G. Bartlett. J. Am. Soc. Mass Spectrom., 2002, 13, 928.
    [18] J. B. Cunniff, P. Vouros. J. Am. Soc. Mass Spectrom., 1995, 6, 437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700