3,5-二硝基羟基吡啶含能催化剂的合成、表征及热分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国航天事业发展和国防科技对高、精、尖武器的要求不断提高,高性能的推进剂成为研究的热点问题。燃速催化剂是调节固体推进剂燃烧性能不可缺少的组分之一,是固体推进剂配方中非常关键的功能材料。寻找性能优良的燃速催化剂成为在现有推进剂主要成分不变的情况下提高推进剂性能的主要方向。论文第一部分对燃速催化剂的成分、作用、种类及其在各种推进剂中的应用进行了归纳,对3,5—二硝基羟基吡啶含能催化剂的研究进展进行了综述。
     本论文第二部分合成了三种3,5—二硝基羟基吡啶配体,通过元素分析、红外光谱等表征手段,对这些配体组成和结构进行了表征,并用X—射线单晶衍射分析法研究了2—羟基—3,5—二硝基吡啶(1)和4—羟基—3,5—二硝基吡啶氮氧化物(3)的单晶结构,将获得的2—羟基—3,5—二硝基吡啶粉末X射线图样和单晶数据模拟X射线图样对比,证明了合成的配体为纯相物质。
     论文第三部分用三种3,5—二硝基羟基吡啶配体和碱金属、碱土金属的氢氧化物、重稀碱金属的碳酸盐反应合成了18种含能钝感配合物,通过元素分析、红外光谱以及热重分析等表征手段,对这些配合物的组成和结构进行了表征。并且得到11个配合物的单晶结构,用X射线单晶衍射仪对这11个配合物进行了晶体结构表征。4—羟基—3,5—二硝基吡啶钠盐(14)的晶体中有两分子的结晶水,钠离子和配体通过羰基氧原子和吡啶氮原子连接为一维链。三个配体和重稀碱金属(铷、铯)的含能配合物的单晶结构表明:2—羟基—3,5—二硝基吡啶铷盐(7)和2—羟基—3,5—二硝基吡啶铯盐(8)的单晶结构显示它们的金属离子都表现为8配位环境,其中化合物(8)的晶体中有一分子的结晶水;4—羟基—3,5—二硝基吡啶铷盐(16)和4—羟基—3,5—二硝基吡啶铯盐(17)结构相似,由两个金属离子和两个桥氧原子组成的近似平行四边形结构单元M_2O_2沿着c轴无限延伸;4—羟基—3,5—二硝基吡啶氮氧化铷盐(21)中存在中性配体、配体阴离子和金属离子配位,4—羟基—3,5—二硝基吡啶氮氧化铯盐(22)在晶体的自组装过程中,氧桥键表现了非常重要的作用,沿着b轴,两组氧桥键和四组氧桥键交替连接铯离子形成了一个波浪型的长链,并且存在吡啶环之间的π—π堆积作用。2—羟基—3,5—二硝基吡啶镁盐(9)和4—羟基—3,5—二硝基吡啶镁盐(18)都是以静电引力将配体阴离子和金属离子结合在一起的,金属离子仅仅和水之间配位。2—羟基—3,5—二硝基吡啶钡盐(12)和4—羟基—3,5—二硝基吡啶钡盐(19)都表现为桥氧双核二聚体。部分配合物的热分析图表现了优良的钝感特性,分解温度都在200℃以后,配合物7、9、16、17的粉末XRD证明所得化合物为纯相物质。
     论文第四部分利用3,5—二硝基羟基吡啶配体的酸性和过渡金属的碳酸盐作用,合成了10种含能配合物,通过元素分析、红外光谱以及热重分析等表征手段,对这些配合物的组成和结构进行了表征。并且得到2个配合物的单晶,用X射线单晶衍射仪对它们进行了晶体结构表征。2—羟基—3,5—二硝基吡啶铅(27)存在非常明显的相对于配位配体的反式空隙的半直接的配位方式,孤对电子填充在配位空隙处。4—羟基—3,5—二硝基吡啶氮氧化铜盐(31)中由于配位水和氮氢氧体系的存在表现出非常丰富的氢键。
     本论文合成了一系列3,5—二硝基羟基吡啶含能配合物,通过对其物理化学性质表征,为寻找性能更优良的含能催化剂提供了数据,并且确定了大部分物质的晶体结构,为从微观方面解释催化作用机理提供了依据。
With the development of our country's spaceflight and the promotingneeds of high-technology arms in national defense area, the research for high-propertypropellants are hot-spot currently. Buming-rate catalysts are the indispensablecomponent for solid propellants in order to adjust and improve their trajectoryproperties, and also the very important energetic material in the propellant. Researchfor good burning-rate catalysts is the main direction to improving properties withoutchanging the major components of the propellants. In the first part of this dissertation,the ingredients, functions, species and their applications of burning-rate catalysts arebriefly summarized and energetic catalysts derived from 3,5-dinitropyridone arereviewed concisely.
     In the second part of this dissertation, three 3,5-dinitropyridone ligands weresynthesized and were characterized by Elemental Analysis, FT-IR and thermoanalysis.Single crystals of the compounds 2-hydroxy-3,5-dinitropyridine(1) and 4-hydroxy-3,5-dinitropyridine-N-oxide(3), suitable for X-ray diffraction analysis, were grown andtheir structures were determined. The powder XRD profile of 1 indicated that thevalues of diffraction peaks of the polycrystalline sample are in good agreement withthe results simulated on the basis of single-crystal structure, which proves the phasepurity of the powder product.
     In the third part, eighteen energetic complexes were synthesized with the threeligands and alkali metals and alkaline earth metal compounds. These resultingcomplexes were also undergone Elemental analysis, FT-IR and TG-DSC analysis. Thecrystal structures of eleven complexes were determined by single-crystal X-raydiffraction analysis. The structures revealed that sodium 3,5-dinitropyrid-4-onate(14)molecule contains two water molecules and that the anions link the Na~+ ions, each ofwhich is coordinated by four water molecules, into a linear chain that runs along the caxis of the unit cell. The crystal structures of the heavy alkali-metal complexesrevealed that the cation atom is eight-coordinate in both rubidium3,5-dinitropyrid-2-onate(7) and cesium 3,5-dinitropyrid-2-onate(8), with a crystalwater in 8; rubidium 3,5-dinitropyrid-4-onate(16) and cesium 3,5-dinitropyrid-2-onate(17) are very similar in structure and the parallelogram M_2O_2 units, consisting of two metal atoms and two bridging oxygen atoms, extend along the c axis. Neutralligands and anion ligands coordinate with cations in rubidium 3,5-dinitro-4-pyridone-N-hydroxylate(21). In the self-assembly of the cesium 3,5-dinitro-4-pyridone-N-hydroxylate(22) configuration, the versatile oxygen bridges act important roles, alongthe b axis; the two oxygen-bridges and the four oxygen-bridges appear alternativelybetween the adjacent cesium cations which results in a corrugated chain, aromaticπ-π-stacking was also found in this compound. In the magnesium3,5-dinitropyrid-2-onate(9) and magnesium 3,5-dinitropyrid-4-onate(18), the cationsand anions are linked by static interactions with each cation being coordinated with sixwater molecules. Both barium 3,5-dinitropyrid-2-onate(12) and barium3,5-dinitropyrid-4-onate(19) are consisting of oxygen-bridged dimeric units. Thethermoanalysis results clearly indicated that they are blunt compounds as thedecomposition tempreture are higher than 200℃. The powder XRD analyses ofcompounds 7, 9, 16 and 17 revealed that the four powder products are of high purity.
     In the fourth part, ten energetic complexes were synthesized utlizing the acidproperty of ligands to react with a few transition-metal carbonates. These compoundswere also undergone Elemental analysis and FT-IR charactgerization. The crystalstructures of two complexes were determined by X-ray diffraction analysis. Incompound lead 3,5-dinitropyrid-2-onate(27), the arrangement of the ligands suggests agap or hole in the coordination geometry around the metal ion and the coordinationsphere around the lead atoms is hemidirected with a significant gap trans to thechelating ligands. Beacause of the existence of water molecules and the N-H…O systemin compound copper 3,5-dinitro-4-pyridone-N-hydroxylate(31), abundant hydrogenbonds are found in it.
     In this paper, a series of 3,5-dinitro-hydroxy-pyridine energetic complexes weresynthesized and characterized by physicochemical methods, which enriched data forseeking better energetic catalysts. Also, the molecular structures of most part of thecompounds are determined which will provide support based on the viewpoint ofmolecular level for the catalytic machanisms of these type of compounds.
引文
[1] Lengelle G, Bizot A, Duterque J, et al., Steady state burning of homogeneous propellants[A]. Kuo K K, summerfild Med. Fundamentalof solid propellant combustion. Washington D C: AIAA, 1984, 90.
    [2] Denisyuk A P, Margolim A D, Khubaev G V, et al., The role of soot in the combustion of ballistic propellants with lead containing catalysts[J]. Fiz Goreniys Vzryva, 1977, 13(4): 457-584.
    [3] Denisyuk A P, Denidoval L A, Galkin V I. The primary zone in the combustion of solid propellants containing catalysts[J]. Combustion, Explosion and Shock Waves, 1995, 31(2): 161-167.
    [4] Li S W. Influence of CB on performance of RDX-CMDB propellants[J]. Kogyo Kayaku, 1986, 47(3): 49-54.
    [5] 李疏芬,王进,赵风起等.PDADN-RDX-CMDB推进剂催化燃烧特性研究[J].推进技术,2001,22(2):165-170.
    [6] Kroto H W, Heath J R, Smalley R E. C60:buck minster fullerene[J]. Nature, 1985, 318: 162-163.
    [7] Mendoza D, Morales F, Escudero R. Thin films of C_(60) doped with Pb[J]. J.Appl.Phys., 1997.36: 76-78.
    [8] 李疏芬,何德球,单文刚.含C60的RDX-CMDB推进剂性能研究[J].推进技术,1997,18(6):79-84.
    [9] 赵凤起,李上文.不同形态碳物质对RDX-CMDB推进剂燃烧性能的影响[J].推进技术,2000,21(2):72-76.
    [10] Neidert, Jamie B. Castable double base propellant containing ultra fine carbon fiber as a ballistic modifier[P].U S: 5372664, 1994.
    [11] 庞军,蔚红建,刘小刚,李旭利,樊学忠.碳纤维对低特征信号XLDB推进剂力学性能影响的初步研究[J].火箭推进,2005,31(3):23-25.
    [12] 胡润芝,汪越,郑剑等.纳米材料在固体推进剂中的应用[C]∥中国宇航学会固体火箭推进剂专业委员会第二十届年会论文集.襄樊:航天科技集团四院第42所,2003:144-149.
    [13] 李晓东,杨荣杰,李秀秀等.提高固体推进剂的功能助剂2碳纳米管[C]∥2004年火炸药学术研讨会论文集.西安:西安近代化学研究所:228-231.
    [14] 张维,李晓萌,李杰等.碳纳米管对72氨基262硝基苯并二氧化呋咱热分解 特性的影响[J].燃烧科学与技术,2004,10(1):92-95.
    [15] 于宪峰.纳米碳管对CL 220热分解的影响[J].火炸药学报,2004,27(3):78-80.
    [16] 杨栋,宋洪昌.RDB-CMDB推进剂铅-铜-炭催化燃速模型[J].推进技术,1995,16(3):46-52.
    [17] 杨栋,李上文,宋红昌等.平台双基推进剂燃烧性能影响的研究[J].火炸药,1994(4):26-32.
    [18] Kubotas, Ohlemiller T J, et al. The mechanism of super-rate burning of catalyzed double base propellants[J]. A D, 1973, 3: 763-786.
    [19] Hewkin D J, Hicks J A, Powling J, et al. The combustion of nitricester based propellants:ballistic modification by lead compounds[J]. Combustion Science and Technology, 1971, (2): 307-327.
    [20] 张晓宏,龙村.纳米级氧化铅对双基推进剂的燃烧性能影响的研究[J].火炸药学报,2002(2):39-41.
    [21] 丁钺,倪为民.职业病中毒物理损伤诊疗手册[M].上海:上海医科大学出版社,1994.
    [22] 李上文,赵凤起,袁潮等.国外固体推进剂研究与开发的趋势[J].固体火箭技术,2002,25(2):36-42.
    [23] 李辰芳.含无毒燃速催化剂的高性能浇注双基推进剂[J].飞航导弹,1998(3):43-44.
    [24] 泰能,汪亮,谢波等.低燃速低燃温双基推进剂的催化燃烧[J].火炸药学报,2005,28(2):6-9.
    [25] Anatoly P, Yury G, BabkenM B, et al. Low-toxic burning rate catalysts for doublebase propellants [C] // Proceedings of the 27th International Annual Conference of ICT. Karlsruhe: ICT, 1996.
    [26] Thompson S P. Non-leaded ballisticmodifiers for plateau and mesaproducing solid propellants [C] //Proceedings of the 27th International AnnualConference of the ICT. Karlsruhe: ICT, 1996.
    [27] 赵凤起.含非铅催化剂的无烟平台推进剂研究[D].西安:西安近代化学研究所,1986.
    [28] 赵凤起,李上文,单文刚.用于双基系固体推进剂的非铅催化剂的研究与发展动向[J].飞航导弹,1993(8):28-31.
    [29] David C S. Propellant composition of the nitrocellulose type containing non lead-containing ballistic modifiers[P]. US: 3860462. Jan. 14, 1975.
    [30] 单文刚,李上文,赵凤起.稀土化合物作为无烟推进剂燃速催化剂的研究[J].兵工学报·火化工分册,1990(1):13-19.
    [31] Thompson S B. Bismuth and copper ballistic modifiers for double base propellants[P]. USP5652409. July 29, 1997.
    [32] Larry C. Warren minimum signature isocyanate cured propellants containing bismuth compounds as ballistic modifiers[P]. US: 6168677. Jan. 2, 2001.
    [33] Gerard Berteleau. Solid propellant compositions and ballistic modifiers therefore[P]. GB2295612. May, 6, 1996.
    [34] 张炜,张仁.过渡金属氧化物催化作用表征[J].推进技术,1991(2):60-65.
    [35] Kishore K, Pai Vemeker V R, Sunitha M R. Action of transition metaloxides on composite solide propellant[J]. AIAA Journal, 1980, 18:1404-1405.
    [36] Kishore K, Sunitha M R. Effect of transition metal oxides on decomposition and deflagration of composition solid propellant system:A survey[J]. AIAA Journal, 1979, 17: 1118-1123.
    [37] Kishore K, Pai Vemeker V R, Sunitha M R. Effect of catalyst concentration on burning rate of composite solid propellants[J]. AIAAJournal, 1977, 15: 1649-1651.
    [38] Gore G M, Tipare K R, Bhatewara R G, et al. Evaluation of ferrocene derivatives as burn rate modifiers in AP/HTPBbased compositepropellants[J]. Defence Science Journal, 1999, 49(2): 151-158.
    [39] 安红梅,刘云飞,李玉平,杨荣杰,谭惠民.金属氧化物对HN IW单元推进剂燃烧的催化研究[J].火炸药学报,2000,4,27-28.
    [40] Anatoly P D, Yury G S, Babken M B, et al. Low-toxic burning rate catalysts for double base propellants[A]. 27th international annual conference of ICT[C], 1996(76-1).
    [41] Thompson Stephen B. Bismuth and copper ballistic modifiers for double base propellants[P]. US: 5652409. July 29, 1997.
    [42] Larry C. Warren minimum signature isocyanate cured propellants containing bismuth compounds as ballistic modifiers[P]. US: 6168677. Jan. 2, 2001.
    [43] Gerard Berteleau. Solid propellant compositions and ballistic modifiers therefore[ P]. GB2295612. May, 6, 1996.
    [44] 郭万东.固体火箭推进剂超级燃速催化剂[J].飞航导弹,1996(6):21-25.
    [45] 马风国,季树田,吴文辉等.纳米级氧化铅为燃烧催化剂的应用研究[J].火炸药学报,2000(2):13-15.
    [46] 张晓宏,龙村,王铁成等.纳米级氧化铅对双基推进剂燃烧性能影响的研究[J].火炸药学报,2002,26(2):39-41.
    [47] 罗元香,陆路德,汪信等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究[J].含能材料,2002,10(4):148-151.
    [48] 张维,李杰,李晓萌等.纳米燃速催化剂对7-氨基-6-硝基-4,5-二氧化呋咱热分解的影响[J].火炸药学报,2004,27(2):48-49.
    [49] 洪伟良,赵凤起,刘剑洪等.纳米Bi_2O_3.SnO_2的制备及对RDX热分解特性的影响[J].火炸药学报,2003,26(1):37-39.
    [50] Fong C W, Hamshere B L. The mechanism of burning rate catalysis in composite propellants by transition metal complexes[J]. Combustion and Flame, 1986, 65 (7): 71-78.
    [51] Johnny R. Mackey, et al. High performance fast burning solid propellant[P]. US: 4070212, 1978.
    [52] Chen J K, et al. DSC, TG and Infrared Spectroscopic studies of HTPB and butacene propellantpolymers[A]. IAA9423176, 1994.
    [53] 王永寿,戴耀松.二茂铁衍生物/极细高氯酸铵系高燃速复合推进剂的研究(1)[J].飞航导弹,1995,3:40-45.
    [54] 王永寿,戴耀松.二茂铁衍生物/极细高氯酸铵系高燃速复合推进剂的研究(2)[J].飞航导弹,1995,4:39-44.
    [55] Robert E. Betts, et al. High rate propellant[P]. US: 4092189, 1978.
    [56] RalphW. Lawrence, et al. Method of increasing propellant burning rate by the use of high conductive wires[P]. US: 3793097, 1974.
    [57] 赵凤起,李上文.RDX-CMDB推进剂中组合催化剂的研究[J].推进技术,1992,13(1):57-62.
    [58] 李上文,孟燮铨,张蕊娥等.螺压硝胺无烟改性双基推进剂燃烧性能调节和控制规律[J].推进技术,1995,16(3):63-69.
    [59] Fogelxang A E, Sinditoskii V P, Semushkin V V, et al. Combustion of Explosives Database Flame. Version 2, 4 [C], Moscow, 1990-1994.
    [60] Pundlik S K, Palaiah R S, Nair J K, et al. Influence of Metal Salts of 4o(2,4,6-trinitroanilino) benzoic acid on the burning rate of doublebase propellants[J]. J Energetic Materials, 2001, 19: 339-347.
    [61] Klapotke T A, Rienackerm C A. Drop hammer test investigations on some inorganic and organic azides[J]. Propellants, Explosives, Pyrotechnics, 2001, 26 (1): 43-47.
    [62] 李上文,赵凤起,刘所恩等.惰性与含能催化剂对Al-RDX-CMDB推进剂燃烧性能的影响[J].含能材料,1997,5(2):49-54.
    [63] 赵凤起,陈沛,罗阳等.含能羟基吡啶铅铜盐用作RDX-CMDB推进剂燃烧催化剂[J].火炸药学报,2003,26(3):1-4.
    [64] Konpkova T S, Matyushin YN, Sidnitskii V P, et al. Thermodynamics of coordination Co (Ⅱ), Ni (Ⅱ), Zn, and Cd compounds with carbohydrazide[J]. Chem Phys Rep, 1995, 14(6): 865.
    [65] Talawar M B, Agrawal A P, Chhabra I S, et al. Studies on leadfree initiators :Synthesis, characterization and performance evaluation of transition metal complexes of carbohydrazide[J]. J Hazard Mater, 2004, 113(1/ 2/ 3): 57-65.
    [66] Akiyoshi M, Nakamura H, Hara Y, et al. Thermal behavior of the carbohydrazide complexes of certain metals(1) :The synthesis and the thermal analysis[J]. J Jpn Explos Soc, 1996, 57 (6): 238-243.
    [67] 吕春华,张同来,张建国等.[Ni(CHZ)_3](TNR)·5H_2O的制备、晶体结构和热分解机理[J].高等学校化学学报,2000,21(7):1005-1009.
    [68] Zhang Tonglai, Lu Chunhua, Zhang Jianguo, et al. Preparation and molecular structure of {[Ca(CHZ)_2(H_2O)](NTO)_2·5H_2O}_n[J]. Propellants Explos Pyrotech, 2003, 28 (5): 271-276.
    [69] 张同来,吕春华,张建国等.{[Cd(NTO)_2(CHZ)]·2H_2O)的合成、分子结构和热分解机理[J].无机化学学报,2002,18(2):138-144.
    [70] 吕春华,张同来,张建国.[Co(CHZ)_3](ClO_4)_2的制备、分子结构及爆炸性能研究[J].火炸药学报,2000,23(1):31-33.
    [71] 杨永明,张同来,张建国等.{[Sr(CHZ)_2(H_2O)](NTO)_2·5H_2O)的制备和晶体结构[J].结构化学,2002,21(3):321-324.
    [72] Lee K.Y., Chapman L.B., Cobum M.D.A less sensitive explosive: 3-nitro-1,2,4-triazol-5-one[J]. Energetic Materials. 1987, 5(1): 27-33.
    [73] Lee K.Y., Ritchie J.P.In 9th Sump. (international)on detonation, [C]. Portland, USA, 1989, 2: 401.
    [74] Lee K.Y., Chapman L.B., Cobum M.D. 3-nitro-1, 2, 4-triazol-5-one, a less sensitive explosive[P]. US: 4733610, 1988.
    [75] Kulkami P B, Purandare G N, Nair J K, et al. Synthesis, characterization, thermolysis and performance evaluation studies on alkali metal salts of TABA and NTO[J] .J Hazard Mater, 2005, 119 (1/2/3): 53-60.
    [76] Kulkami P B, Reddy T S, Nair J K, et al. Studies on salts of 3-nitro-1, 2, 4-triazol-5-one(NTO) and 2,4,6-trinitroanilino benzoic acid (TABA) : Potential energetic ballistic modifiers[J]. J Hazard Mater, 2005, 123(1/2/3): 54-61.
    [77] Singh G, Kapoor I P S, Prem F S, et al. Studies on energetic compounds part 23: Preparation, thermal and explosive characteristics of transitionmetal salts of 5-nitro-2,4-dihydro-3H-1,2,4-triazole-3-one (NTO)[J]. Propellants Explosive Pyrotech, 2002, 27 (1): 16-22.
    [78] Singh G, Felix S P. Studies of energetic compounds, part 29: Effect of NTO and its salts on the combustion and condensed phase thermolysis of composite solid propellants[J]. Combust Flame, 2003, 132 (3): 422-432.
    [79] 张同来.博士学位论文,[D].南京理工大学,1993.
    [80] 张同来,胡荣祖,李福平等.[Cu(NTO)_2(H_2O)_2]·2H_2O的制备、分子结构和热分解机理研究[J].科学通报,1998,(6):523-525.
    [81] 张同来,胡荣祖,李福平等.3-硝基-1,2,4-三唑-5-酮(NTO)根锰盐(Ⅱ)盐[Mn(H_2O)_6](NTO)_2·2H_2O的制备和晶体结构[J].含能材料,1993,1(1):37-42.
    [82] 张同来,胡荣祖,李福平.[Pb(NTO)_2(H_2O)]的制备、分子结构和热分解机理的研究[J].化学学报.1994,52(6):545-550.
    [83] Hu R Z, Meng Z H, Kang B. Thermochemical and thermodynamic properties of M(NTO) n and M(NTO) n·mH_2O[J]. Thermochim Acta, 1996, 275 (2): 159-172.
    [84] Song J R, Huang J, Ma H X, et al. Thermal decomposition mechanism and thermodynamic properties of [Ni(H_2O)(NTO)_2·2H_2O[J]. Thermochim Acta, 2004, 416 (1/2): 39-42.
    [85] Song Jirong, Hu Rongzu, Li Fuping, et al. Preparation, crystal structure and thermal decomposition mechanism of [Co(H_2O)_6](NTO)_2·2H_2O[J]. Chinese Science Bulle-tin, 1996, 41 (21): 1806-1810.
    [86] 宋纪蓉,胡荣祖,李福平等.[Ni(H_2O)_6](NTO)_2·2H_2O的制备、晶体结构和热分解机理的研究[J].西北大学学报(自然科学版),1997,27(1):29-33.
    [87] 宋纪蓉,陈兆旭,肖鹤鸣等.3-硝基-1,2,4-三唑-5-酮钾配合物的制备、晶体结构和量子化学研究[J].化学学报,1998,56(3):270-277.
    [88] 宋纪蓉,胡荣祖,李福平,等.3-硝基-1,2,4-三唑-5-酮(NTO)铕配合物[Eu(NTO)_3·(H_2O)_5]·5H_2O的制备和晶体结构[J].含能材料,1996,4(4):1501.
    [89] Hu R Z, Song J R, Li F P, et al. Preparation, Crystal Structure, thermal decomposition mechanism and thermodynamical properties of [Dy(NTO)_2. (H_2O)_6]·NTO·4H_2O[J].Thermochimica Acta, 1997, 229: 87.
    [90] Song J R, Dong W, Hu R Z, et al. Synthesis and crystal structure of [Yb(NTO)_3 (H_2O)_4]·6H_2O[J]. of RareEarths, 1997, 15 (1): 62.
    [91] 宋纪蓉,胡荣祖,李福平等[Y(NTO)_2NO_3(H_2O)_5]·2H_2O的制备、晶体结构和热分解机理的研究[J].高等学校化学学报,1997,18(5):6761.
    [92] Kowhakul W, Kumasaki K, Wada Y J, et al. A study on the characteristics of azole metal complexes (Ⅱ)thermal behaviors of 1H-tetrazole metal complexes[J]. Sci Technol Energ Mater, 2005, 66 (1): 229-232.
    [93] 邓敏智,杜衡,赵凤起等.四唑盐的制备及其在固体推进剂中的应用初探[J].固体火箭技术,2003,26(3):53-55.
    [94] 赵凤起,陈沛,李上文等.四唑类化合物的金属盐作为微烟推进剂燃烧催化剂的研究[J].兵工学报,2004,25(1):30-33.
    [95] 张建国,张同来,郁开北.[Cd(ATZ)_4(H_2O)_2](PA)_22H_2O的合成、晶体结构和热分解机理研究[J].化学学报,2001,84(1 2):84-90.
    [96] Smolenski, Dionizy, Czuba, Wladyslaw. The relation between the properties of explosives its composition and structure[J]. Zeszyty Nauk. Politech. Wroclaw. Chem., 1955, 2(10): 3-10.
    [97] Glowiak, B. Salts of 2-hydroxy-3, 5-dinitropyridine[J]. Zeszyty Nauk. Politech. Wroclaw. Chem., 1961, 7: 49-58.
    [98] 郑玉梅,邓敏智,赵凤起,袁潮.4-羟基-3,5-二硝基吡啶氮氧化物铅及铜盐的合成[J].火炸药学报,2002,4:51-52.
    [99] 赵凤起,高红旭.罗阳,宋秀铎,郝海霞,李上文.Pb(2DNP)_2恒容燃烧能的测定及其在RDX-CMDB推进剂中的应用[J].固体火箭技术,2005,28(4):280-283.
    [100] 陈沛,赵凤起,罗阳等.2-羟基和4-羟基-3,5-二硝基吡啶铅盐的热行为、分解机理、非等温分解反应动力学及其在推进剂中的应用[J].化学学报,2004,62(13):1197-1204.
    [101] 尚尔才,刘长令,杜英娟.吡啶类农药的研究进展[J].化工进展,1996,18(3):50-52.
    [102]Ulfk Junggren, Sver E Sjostrand. Gastric acid inhibiting substituted 2-(-2benzimid azolyl)-pyrindines[P]. US: 4255431,1981-03-10.
    [103] Pagoria P F, Lee G S, Mitchell A R, A review of energetic materials synthesis[J]. J. Heterocycl. Chem., 1995, 32: 585.
    [104]Driscoll, P. R.: Substituted Nitropuridines as Herbicids[P]. US. Patent no. 3495969(1970).
    [105] [106] Diehl, R. E., Trenton, Walworth B. L.: Certain nitro-4-pyridinols, N-oxides thereof and deribatives thereof[P]. US. Patent no. 3547935 (1967).
    [106] Sheldrick G M. SHELXS97, Program Package for Crystal Structure Solution and Refinement, University of Gottingen[CP]. Germany, 1997.
    [107] Sheldrick G M. SHELXL97, Program Package for Crystal Structure Solution and Refinement, University of Gottingen[CP]. Germany, 1997.
    [108] Velikova V, Kossev K, Angelova O.: 1:1 Molecular Complex of 2-Amino-5- nitropyridine and 3-Nitro-2-pyridone[J].Acta Crystallogr., 1997, C53: 1270-1273.
    [109] Otway D. J. & Rees W. S. Jr. Group 2 element b-diketonate complexes: synthetic and structural investigations[J].Coord. Chem. Rev. 210: 279-328.
    [110] Pan Z Q, Luo Q H., Duan C Y & Shen M C. A novel saddle-form macrocyclic barium complex-synthesis, characterization, mechanism and X-ray crystal structure[J]. Polyhedron, 20:2945-2950.
    [111] Hancock R D, Siddons C J, Oscarson K A & Reibenspies J M. The structure of the 11-coordinate barium complex of the pendant-donor macrocycle 1,4,7,10-tetrakis (carbamoylmethyl)-1,4,7,10-tetraazacyclododecane: an analysis of the coordination numbers of barium(II) in its complexes[J]. Inorg. Chim. Acta, 357: 723-727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700