发射药用热塑性弹性体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由弹性体、硝酸酯和高能填充物为主要成分的高能量、高强度发射药是目前发射药发展的重要方向,作为主要组份的弹性体粘结剂是其重要研究内容之一。本文借鉴NEPE (nitrate ester plasticized polyether)推进剂中应用的硝酸酯可增塑聚乙二醇(PEG)类弹性体设计、合成方法,针对发射药的强度要求和加工特点,结合互穿/半互穿网络聚合物技术,在我国首先开展了发射药用硝酸酯可增塑热塑性弹性体的设计、合成工艺及其力学性能研究,获得了未见文献报道的物理缠结型P(MMA/EA)/PEG-TPE互穿网络聚合物,为发展高能量、高强度发射药提供粘结剂方面的理论和应用基础,探索研究了GAP基含能热塑性弹性体的合成与性能。主要开展了以下几方面工作:
     为提高以弹性体为粘结剂的发射药强度,通过对热塑性弹性体(TPE)结构分析和分子设计,采用不同于NEPE推进剂的高分子量PEG类预聚体,选择了相对分子质量较低的PEG为软段,MDI和EDO为硬段,合成了一类PEG-TPE。用DSC、FTIR和DMA等分析手段对弹性体的结构和性能进行了表征,合成的样品具有氨基甲酸酯基的特征结构和一定的微相分离,软段玻璃化转变温度低,硬段含量为50%,R=1的弹性体拉伸强度(6b)为3.75MPa,断裂伸长率(εb)为469%,扫描电镜照片表明合成的PEG-TPE具有较均一的断面形貌。
     为提高PEG-TPE的拉伸强度,通过顺序互穿引入聚甲基丙烯酸甲酯(PMMA)合成了PMMA/PEG-TPE热塑性弹性体,PMMA的引入使6b由PEG-TPE的3.75MPa提高到PMMA/PEG-TPE (60/40,质量比,下同)的24.2MPa,ε_b由PEG-TPE的469%降为PMMA/PEG-TPE的4.6%,是一类强而脆的弹性体粘结剂;DMA分析显示PMMA/PEG-TPE具有两个玻璃化转变温度(Tg),低温区的Tg对应于PEG-TPE软段的玻璃化转变,高温区的Tg对应于PMMA的玻璃化转变。
     为提高PMMA和PEG-TPE聚合物网络间的互穿水平,以EGDMA为PMMA的交联剂,合成了交联PMMA/PEG-TPE半互穿网络聚合物。DMA分析显示质量比为10/90的交联PMMA/PEG-TPE只有一个玻璃化转变温度,质量比为30/70和50/50样品的两个玻璃化转变峰与PMMA/PEG-TPE相比都向中间靠拢,表明互穿程度得到提高;质量比为20/80时,σb和εb分别由PMMA/PEG-TPE的6.32MPa、450%提高到交联PMMA/PEG-TPE的12.7MPa和951%,拉伸强度和韧性得到了优化。
     由于交联PMMA/PEG-TPE难以满足发射药挤出成型的加工要求,为此设计并合成了以兼具刚性PMMA链段和柔性PEA链段的P(MMA/EA)为客体,PEG-TPE为主体的P(MMA/EA)/PEG-TPE互穿网络聚合物。DMA分析表明,质量比为10/90和30/70的P(MMA/EA)/PEG-TPE具有单一的玻璃化转变峰;P(MMA/EA)/PEG-TPE (10/90)的σb和ε_b分别为14MPa和412%,属于强而韧的弹性体粘结剂,力学性能具有正协同效应;在所测溶剂中,PEG-TPE和P(MMA/EA)都可溶,而P(MMA/EA)/PEG-TPE只能溶胀;断面形貌照片显示样品的相区尺寸缩小且形貌较柔顺;由以上分析认为P(MMA/EA)/PEG-TPE体系属于物理缠结、互锁形成的互穿网络聚合物,并对形成物理缠结的结构模型进行了探析。该互穿网络聚合物未见文献报道。
     为满足发射药对更高能量的需求,采用预聚法,以聚叠氮缩水甘油醚(GAP)、MDI及1,4-丁二醇(BDO)为主要原料,合成了含能热塑性弹性体(GAP-ETPE)。考察了R值,硬段含量,以及增塑前后的弹性体的力学性能、动态力学性能和热性能。当R值为0.98,硬段质量百分含量为40%时,GAP-ETPE的σ_b为6.12MPa,ε_b为71%,以10%(质量比)BDNPF/A增塑后,GAP-ETPE的σ_b变为4.92MPa,ε_b为35%。
     为考察PEG类弹性体作为发射药包覆材料的迁移特性,初步探索研究了水、乙醇和DBP等组份在合成的PEG-TPE和P(MMA/EA)/PEG-TPE中迁移的渗透汽化表征方法,并与HTPB进行了对比分析。
High energy, high strength gun propellant with elastomer, nitrate ester and high energetic oxidizer is the important aspect in the field of gun propellant, and the elastomer binder as the main component is the crucial research part. In this paper, upon the understanding of nitrate ester plasticized PEG(polyethylene glycol) elastomer in NEPE propellant, nitrate ester plasticized thermoplastic elastomer (PEG-TPE) for gun propellant binder are synthesized according to the strength and processing demand of gun propellant, and the properties of PEG-TPEs are studied. A novel type of interpenetrating network polymer, that is P(MMA-EA)/PEG-TPE, is synthesized. GAP based energetic thermoplastic elastomer is also synthesized. The main work as follows:
     For improving the strength of gun propellant with elastomer binder, a thermoplastic polyurethane elastomer is synthesized by lower molecular weight PEG as soft segment, which is different from higher molecular weight PEG in rocket propellant,4,4'-diphenylmethane diisocyanate (MDI) and ethylene glycol as hard segments. DSC, FTIR and DMA are applied to characterize the synthesized elastomers, the results show that the elastomers have structure characteristic of polyurethane structure, the elastomer tensile stress(σ_b) is 3.75MPa, elongation at break(ε_b) is 469% when hard segment is 50% in weight and the molar ratio of-NCO to-OH (R) is 1, the microstructure is homogeneous in SEM photographs.
     PMMA/PEG-TPE thermoplastic elastomer is synthesized by sequence interpenetrating technique to enhance the tensile stress of PEG-TPE. Theσ_b andε_b of PMMA/PEG-TPE(60/40, mass ratio, same as follows) are 24.2MPa and 4.6% whereas theσ_b andε_b of PEG-TPE 3.75MPa and 469%, showing that PMMA/PEG-TPE is a type of strong but brittle binder. The DMA analysis showed that PMMA/PEG-TPE have two individual glass-transition temperature (Tg), the lower Tg and the higher Tg are corresponding to those of PEG-TPE's soft segment and PMMA's respectively.
     The semi-interpenetrating polymer network of crosslinked-PMMA/PEG-TPE is synthesized using EGDMA as the crosslinking agent of PMMA, in order to improving the interpenetrating degree of PMMA and PEG-TPE polymer networks. The DMA testing shows that the crosslinked-PMMA/PEG-TPE (10/90) owns only one glass transition temperature, two glass transition temperatures of crosslinked-PMMA/PEG-TPE (30/70,50/50) shift towards to the center zone, implying the enhancement of the chains interpenetration. The ab and eb of crosslinked-PMMA/PEG-TPE(20/80) are 12.7MPa and 951%, while theσ_b andε_b of PMMA/PEEG-TPE are 6.32MPa and 450%, showing the optimization of tensile stress and toughness for crosslinked-PMMA/PEG-TPE.
     P(MMA/EA)/PEG-TPE interpenetrating polymer networks were synthesized by PEG-TPE and copolymer P(MMA/EA) of methyl methylacrylate and ethyl acrylate, considering that the crosslinked-PMMA/PEG-TPE is not suitable to the extrusion of gun propellant. The DMA testing shows that the P(MMA/EA)/PEG-TPE (10/90,30/70) have only one glass transition temperature. Theσ_b andε_b of P(MMA/EA)/PEG-TPE(10/90) are 14MPa and 412%, being a type of strong and tough binder and having the positive synergistic effect of mechanical properties. PEG-TPE and P(MMA/EA) can be dissolved for tested solvents, while P(MMA/EA)/PEG-TPE could only be swollen in tested solvents. The phase size contracts and the morphology is flexible from SEM photos. Thus, P(MMA/EA)/PEG-TPE is considered as a type of interpenetrating polymer networks with physical entanglement.
     An energetic thermoplastic elastomer (GAP-ETPE) was synthesized by melt-prepolymerization, using glycidyl azide prepolymer (GAP) as soft segments, MDI and 1,4-butanediol as hard segments for the purpose of higher energy gun propellants. The molar ratio of -NCO to -OH, hard segment content and mechanical properties, and dynamic mechanical properties are studied. Theσ_b andε_b of GAP-ETPE are 6.12MPa and 71%, when hard segment is 40% in weight and the R is 0.98. After the GAP-ETPE are plasticized by BDNPE/A, itsσ_b andε_b are 4.92MPa and 35%, respectively.
     A preliminary study is carried out that the pervaporation method is used to evaluate the migration properties of water, ethanol and DBP through PEG-TPE and P(MMA/EA)/PEG-TPE elastomer, in the case of PEG-TPE and P(MMA/EA)/PEG-TPE using as gun propellant coating materials.
引文
[1]Laveritt C S. Relative erosivity of nitramine gun propellants with thermoplastic/elastomer binder systems[R]. MD:Army Research Lab, Aberdeen Proving Ground,2001
    [2]郑林.热塑性弹性体发射药的发展概况[J].火炸药学报,2007,30(6):64~67
    [3]王泽山.含能材料概论[M].哈尔滨:哈尔滨工业大学出版社,2006
    [4]徐皖育,何卫东,王泽山.高能量、高强度发射药配方研究[J].火炸药学报,2003,26(3):44~46
    [5]Stephen S. Yano, Elizabeth H. Danish, Y.et.al. Transient methemoglobinemia with acidosis in infants[J]. The Journal of Pediatrics,1982,100(3):415~418
    [6]Arisawa H. Investigation of Burning Characteristics of Gun Propellant by Rapid Depressurization Extinguishment[C]. Proceeding of 17th International Symposium on Ballistic,1998
    [7]Kimura J, Arisawa H, Shimidzu T. Propellant Response to Coofof Bullet Impact and Spall Impact Monitored by Pressure in a Closed Vessel[C].28th International Annual Conference of ICT, Karlsruhe, FRG,1997
    [8]ROSE A. PESCE-RODRIGUEZ, FREDERICK J. SHAW, ROBERT A. FIFER. Pyrolusis GC-FTIR Studies of a LOVA Propellant Formulation Series[R]. AD-A242844,1991
    [9]Braithwaite. P. C. Development of Improved Artillery Gun Propellants[C].30th International Annual Conference of ICT,1999
    [10]Pillai A GS. Cellulose Acetate Binder-based LOVA Gun Propellant for Tank Guns[J]. DefSci.J.,1999
    [11]Kirshenbaum M S, Avrami L, Strauss B. Sensitivity Characterization of Low Vulnerability (LOVA) Propellants[R]. Large Caliber Weapon Sustens Labortory, USARDC/AMCCOM, COVER, NJ,1983
    [12]Rodney Willer, Richard Biddle. Characterization of Commercial TPE for LOVA Gun Propellant[C].21th International Annual Conference of ICT,1990
    [13]吴晓青,萧忠良,王环.几种粘结剂在低易损发射药中的应用[J].火炸药学报,2003,26(2):41~42
    [14]Beardell A J. LOVA Propellant-An Overview[R]. Third International Gun Propellant Symposium, Picatinny Arsenal, NJ, October30,1984
    [15]Brithwaite P. The Synthesis and combustion of high energy thermoplastic elastomer binders[C].32th International Annual Conference Of ICT. Karlsruhe:ICT,2001
    [16]沙恒.新型含能粘结剂BAMO[J].火炸药学报(原火炸药),1995,18(4):34~36
    [17]何利明,肖忠良,张续柱,等.国外火药含能粘结剂研究动态[J].含能材料,2003,11(2):99~102
    [18]Wardle R B, Hinshaw J C, Edwards W W. Synthesis of ABA triblock polymers and AnB star polymers from cyclic ethers[P]. USP:4952644,1990
    [19]Manser G E, Fletcher R W. Nitramine oxetanes and poly ethers formed therefrom [P]. USP:4707540.1987
    [20]Nair J K, Setpute R S, Police B G, et al. Synthesis and characterization of bis-azido methyl oxetane and its polymer and copolymer with tetrahydrofuran[J]. Defence Science J,2002,52(2):147-156
    [21]Desai H J, Cunliffe A V, Hamid J, et al. Synthesis and characterization of α,ω-hydroxy and nitrato telechelic oligomers of 3,3-(nitratomethyl)methyl oxetane(NIMMO) and glycidyl nitrate(GLYN)[J]. Polymer,1996,37(15): 3461~3469
    [22]Desai H J, Cunliffe A V, Lewis T, et al. Synthesis of narrow molecular weight α,ω-hydroxyl telechlic poly(glycidyl nitrate) and estimation of theoretical heat of explosion[J]. Polymer,1996,37(15):3471-3476
    [23]Henry C A. Thermoplastic composites rocket propellant[P]. USP:4361526,1982
    [24]周集义,谭惠民.环氧乙烷-四氢呋喃共聚醚在NEPE推进剂中的应用进展[J].化学推进剂与高分子材料.2001,3:1-3
    [25]Emie D B. Process for preparing solid propellant grains using thermoplastic binders and product thereof[P]. USP,4764316,1986
    [26]Kloehn W, Rassinfosse A. Base bleed solid propellant with thermoplastic elastomer as binder[C]. ICT,1982
    [27]James C.W.,Chien Richard J. Farris, C.Peter Lillya. Thermoplastic elastomers as LOVA binders[R]. ADA185864,1987
    [28]Butler G B. Investigation of thermoplastic elastomers as propellant binders[R]. AD-A078691,1979
    [29]何吉宇,刘所恩,边小国,等.热塑性聚氨酯弹性体在改性双基推进剂中的应用[J].火炸药学报,2005,28(2):21~22
    [30]多英全,陈福泰,罗运军,等.热塑性聚氨酯弹性体及推进剂生成焓的估算[J].推进技术,2000,21(6):79~82
    [31]何吉宇,谭惠民.推进剂用热塑性聚酯聚氨酯弹性体的结构与性能[J].宇航学报,2005,26(1):86~89
    [32]陈福泰,多英全,罗运军.新型热塑性聚氨酯弹性体粘合剂的合成与表征[J].导弹与航天运载技术,2001,3:33~37
    [33]多英全,陈福泰,周贵忠,等.热塑性推进剂用聚氨酯弹性体的的合成及表征[J].北京理工大学学报,2000,20(4):504~507
    [34]何吉宇,谭惠民.推进剂用热塑性聚氨酯弹性体的合成及表征[J].推进技术,2004,25(3):271~273
    [35]G霍尔登,N.R.莱格,R.夸克,等.热塑性弹性体[M].北京:化学工业出版社,2000
    [36]胡定一.耐热性热塑性聚氨酯弹性体的制备与性能[R].东华大学,2003
    [37]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002
    [38]Ferguson J, Ahmad N. Chemical structure and physical properties in polyester-based segmented polyurethanes.Ⅰ. Dynamic mechanical properties [J]. Eur.Polym.J.1977, 13:859~864
    [39]Ferguson J, Ahmad N.. Chemical structure and physical properties in polyester-based segmented polyuerthanes. Ⅱ. Tensile properties [J]. Eur. Polym.J.,1977,13:865~869
    [40]Abouzahr S, Wilkes G L. Structure property studies of polyester-and polyether-based MDI-BD segmented polyurethanes effect of one-vs.-two-stage polymerization conditions[J]. J Appl. Polym. Sci.,1984,29:2695~2711
    [41]秦秀敏.聚醚型聚氨酯(脲)弹性体的改性、形态结构及性能研究[D].上海交通大学,2006
    [42]詹中贤,朱长春.影响热塑性聚氨酯弹性体力学性能的因素[J].聚氨酯工业,2005,(20)1:17~20
    [43]叶成兵,张军.热塑性聚氨酯共混改性研究进展[J].合成材料老化与应用,2004,33(4):40~46
    [44]冯海波,卿宁.聚氨酯互穿网络结构聚合物研究进展及其应用[J].皮革化工,2004,21(3):4-9
    [45]金关泰,金日光,汤宗汤,等.热塑性弹性体[M].北京:化学工业出版社,1983
    [46]钟发春,傅依备,李波.互穿聚合物网络阻尼材料研究进展[J].化学推进剂与高分子材料,2001,1:1-4
    [47]Sperling L H. Interpenetrating Polymer Networks and Related Materials [M]. Plenum . press,1981
    [48]Miller J. R.. Study of Advanced Antenna Techniques for Aerospace Vehicle Doppler Velocity Sensors[J]. Hughes Aircraft C Culver City Calif,1964
    [49]Klarman A F, Galanti A V. Sperling L H. Transition temperatures and structural correlations for cellulose trimesters[J]. J. Polym.Sci.,1969,7(9):1513~1523
    [50]Frisch H L, Klempner D, Frisch K C. Transport of organic micromolecules in amorphous polymers[J]. J. of Polym. Sci., Part B (Polymer Letters),1969,7(6): 405~409
    [51]Shilov V V, Tsukruk V V, Lipatov Yu S. Thermal effects on liquid-crystalline order in polymers with mesogenic slide groups[J]. Journal of Polymer Science,1984,22(1): 41~47
    [52]Shilov V V, Lipatov Yu S, Karabanova L V. Phase separation in the interpenetrating polymeric network on the basis of polyurethane and polyurethane acrylates[J]. Journal of polymer science, Part A-1,1979,17(10):3083~3093
    [53]Mayer G. Engineering properties of 18 pngineering properties properties of 18 percent nickel maraging steels[J]. Metallurgist and Materials Technologist,1977,9(4): 185~190
    [54]Tousaent D E, Thomas D A, SperlingL H. Epoxy/acrylic simultaneous interpenetrating networks[J]. Journal of Polymer Science, Polymer Symposia,1974,46:175~190
    [55]Babkina N V, Lipatov Yu S, Alekseeva T T. Damping properties of composites based on interpenetrating polymer networks formed in the presence of compatibilizing additives[J]. Mechanics of Composite Materials,2006,42(4):385~392
    [56]Babkina N V, Lipatov Yu S, Alekseeva T T, Alekseeva, et al. Effect of spatial constraints on phase separation during polymerization in sequential semi-interpenetrating polymer networks[J]. Polymer Science Series A,2008, (50)7: 798~807
    [57]Lipatov Yu S, Tatiana T. Alekseeva T T. Phase-Separated Interpenetrating Polymer Networks[J]. Adv Polym Sci,2007,208:1~227
    [58]Gomza Yu P, Klepko V V, Lipatov Yu S. Sequential semi-interpenetrating polymer networks based on polyurethane and polystyrene [J]. Polymer Science Series A,2008, (50)9:956~964
    [59]Douglas J. Hourston, Franz-Ulrich Schafer, Bates J S, et al. TMXDI-based poly(ether urethane)/ polystyrene interpenetrating polymer networks:1. Morphology and thermal properties [J]. Polymer,1998,39(15):3311~3320
    [60]Jean-Marc Chenal, Jean-Michel Widmaier. Entanglements in interpenetrating polymer networks evidenced by simple physicochemical investigations [J]. Polymer,2005,46: 671~675
    [61]Trakulsujaritchok T, Hourston D J. Damping characteristics and mechanical properties of silica filled PUR/PEMA simultaneous interpenetrating polymer networks [J]. European Polymer Journal,2006,42(11):2968~2976
    [62]Qin C L, Zhao D Y, Bai X D, et al. Vibration damping properties of gradient polyurethane/vinyl ester resin interpenetrating polymer network [J]. Mechanics of Composite Materials,2006,42(4):385~392
    [63]高南,于志钢,张锁俊.聚氨酯-聚甲基丙烯酸酯离聚型互穿网络聚合物网络的研究[J].涂料工业,1994(1):8-12
    [64]陈庆民,拿学海,王庆军,等.聚环氧氯丙烷聚氨酯/聚甲基丙烯酸甲酯互穿网络的合成与动态力学行为[J].材料科学进展,1990,4(1):71~76
    [65]耿奎士,苏砚溪,蔡东瑞,等.聚氨酯互穿网络聚合物的力学性能及热稳定性研究[J].合成树脂及塑料,1991,3:38-41
    [66]谭甦生,张东华.互穿聚合物网络(IPN)形成过程的动力学研究进展[J].高分子通报,1994,2:119~124
    [67]高建宾,陶永杰,张宏元.GAP型PU/PMMA聚合物互穿网络的力学性能研究[J].化学推进剂与高分子材料,2003,1(6):31~34
    [68]翁祥.不变黄HDI型聚氨酯/聚甲基丙烯酸甲酯互穿网络胶粘剂的研究[J].中国胶粘剂,2004,13(5):4-6
    [69]王小萍,朱立新,贾德民.聚氨酯/聚(甲基丙烯酸甲酯-苯乙烯)半互穿网络热塑性弹性体的结构与性能研究[J].绝缘材料,2004,4:23~25
    [70]吕冬,杜中杰,张晨.聚氨酯/聚(甲基丙烯酸甲酯-甲基丙烯酸丁酯)互穿聚合物网络聚合物的阻尼性能[J].石油化工,2006,35(10):994~997
    [71]汪长春,包启宇.丙烯酸酯涂料[M].北京:化学工业出版社,2003
    [72]华耀和.互穿聚合物网络讲座(连载二)[J].聚氨酯工业,1995,1:42~46
    [73]顾书英,任杰.聚合物基复合材料[M].北京:化学工业出版社,2007
    [74]台会文,万永利,武维汀.互穿网络技术及其应用进展[J].塑料工程,1994,3(4):1-7
    [75]张永玲.互穿网络聚合物(IPN)技术发展及其应用[J].兰化科技,1989,7(1):28~34
    [76]陈莉,陈苏.聚氨酯互穿网络聚合物的研究进展[J].粘接,2002,23(4):27~30
    [77]张洪涛.聚氯酯-丙烯酸酯复合乳液的制备方法[J].粘接,1996,17(4):29~32
    [78]华耀和.互穿聚合物网络讲座(连载三)[J].聚氨酯工业,1995,2:43-47
    [79]张永玲.互穿网络聚合物(IPN)技术发展及其应用[J].兰化科技,1989,7(1):28~33
    [80]徐复铭.21世纪先进发射药:低敏感高能发射药(1)-新材料和新实验技术[J].南京理工大学学报,2003,27(5):551~560
    [81]杨河,罗发,粱勇.GAP作为高能LOVA发射药粘结剂的应用分析[J].四川兵工学报,2003,24(4):39~40
    [82]王泽山,欧育湘,任务正.火炸药科学技术[M].北京:北京理工大学出版社,2002
    [83]冯增国.含能粘合剂合成研究进展[J].化学推进剂与高分子材料,1999,4:1-10
    [84]Byoung S M. Characterization of the Plasticized GAP/PEG and GAP/PCL Block Copolyurethane Binder Matrices and its Propellants[J]. Propellants, Explos., Pyrotech.,2008,33(2):131~138
    [85]Amplenmn G. Energetic copolyurethane thermoplastic elastomers[P]. EP 1 130 040, 2001
    [86]Manser G E. The development of energetic oxetane polymer compounds and energetic materials[C]. The 21 ICT International Annual Conference,1990,50
    [87]Manser G E, Hills E D. Polymers and copolymers from 3-azidomethyl-3-nitratomethyloxetane [P]. USP 5 463 019,1995
    [88]Klein D H, Jorg K. Tow-component aqueous binders free of volatile organic content (VOC)[J]. Progress in orgnic coatings,1997, (32):119~125
    [89]雷向阳,冯增国.3-叠氮甲基-3-硝酸酯甲基氧丁烷均聚醚合成与性能[J].北京理工大学学报,2000,20(2):236~240
    [90]俞国星,范晓东,张翔宇,等.高能固体推进剂用粘合剂的研究进展[J].中国胶粘剂,2006,15(8):37~41
    [91]Sylvain D, Andre M, Ampleman G. Energetic compolyurethane thermoplastic elastomers. Canada[P]. CA2330713.2001
    [92]Ampleman G. Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, poly NIMMO and poly GLYN[J]. Propellants, Explosives, Pyrotechnics,2003,28(3):101~106
    [93]张宝艳,谭惠民,姚维尚.用于固体推进剂的新型热塑性聚氨酯弹性体的研究[J].兵工学报,火化工分册,1996,2:1-5
    [94]张宝艳,谭惠民.热塑性聚氨酯复合体系的理论研究[J].兵工学报,火化工分册,1996,2:32~35
    [95]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社,2003
    [96]傅明源,孙酣经.聚氨酯弹性体及其应用[M].北京:化学工业出版社,1999
    [97]何吉宇,谭惠民.热塑性聚氨酯弹性体的性质及应用[J].高技术通讯,2003,2:41~46
    [98]岳献云.热塑性弹性体研究进展[J].特种橡胶制品,2005,26(1):51~54
    [99]何吉宇,谭惠民.推进剂用热塑性聚酯聚氨酯弹性体的结构与性能[J].宇航学报,2005,26(1):86~89
    [100]赵孝彬,杜磊,等.聚氨酯弹性体及其微相分离[J].高分子材料科学与工程,2002,18(2):16~20
    [101]山西化工研究所.聚氨酯弹性体手册[M].北京:化学工业出版社,2001
    [102]陈福泰,多英全,罗运军等.新型热塑性聚氨酯弹性体粘合剂的合成与表征[J].导弹与航天运载技术,2001,2:33~37
    [103]何吉宇,谭慧民.热塑性聚氨酯复合固体推进剂[J].宇航学报,2008,29(1):252~254
    [104]洪晓斌,杜磊,张小平.高增塑聚乙二醇聚氨酯弹性体形态结构的研究[J].推进技术,1999,20(3):100~102
    [105]Seefried C G, Koleske Jr J V. Lactone polymers VI.Glass-transition temperatures of methyl-substituted & epsiv;caprolactones and polymer blends[J]. Journal of Polymer Science, Polymer Physics Edition,1975,13(4):851~856
    [106]Xu Yijin, Brittain William J, Vaia Richard A..Improving the physical properties of PEA/PMMA blends by the uniform dispersion of clay platelets[J]. Polymer,2006, 47(13):4564~4570
    [107]多英全,陈福泰,周贵忠,等.热塑性推进剂用聚氨酯弹性体的合成及表征[J].北京理工大学学报,2000,20(4):504~507
    [108]赵雨花,张永成,王心葵.用混合扩链剂合成的聚氨酯弹性体[J].弹性体,2003,13(5):28~31
    [109]任迪.火药用热塑性聚氨酯弹性体的合成与性质[M].北京:北京理工大学,2000
    [110]张磊,范夕萍,谭惠民.互穿聚合物网络技术对丁羟推进剂粘合剂体系性能的改善[J].精细化工,2006,23(10):1019~1022
    [111]Vinay Mishra. Interpenetrating Polymer Networks(IPNs) Based on Polyurethanes[M]. Lehigh University,1995
    [112]Heriot S Y, Jones R A L. An interfacial instability in a transient wetting layer leads to lateral phase separationin thin spin-cast polymer-blend films[J]. Nature Materials, 2005, (4):782~796
    [113]Kietzke T, Neher D, Landfester K, et al. Novel approaches to polymer blends based on polymer nanoparticles[J]. Nature Materials,2003, (2):408~413.
    [114]耿奎士,董然.互穿网络聚合物的研究概况与应用展望[J].橡胶工业,1993,40:366~369
    [115]刘凤岐,汤心颐.高分子物理[M].北京:高等教育出版社,2004
    [116]杨寅,罗运军,酒永斌.热塑性聚氨酯弹性体包覆CL-20及对NEPE推进剂性能影响[J].固体火箭技术,2008,31(4):358~373
    [117]洪晓斌,杜磊,张小平.高增塑聚乙二醇聚氨酯弹性体形态结构的研究[J].推进技术,1999,20(3):100~102
    [118]李玉玮,袁盛辉,王静媛.聚氨酯/聚甲基丙烯酸甲酯互穿聚合物网络的研究[J].高等学校化学报,1991,2(12):271~275
    [119]王东山,余爱芳,何树杰,等.聚碳酸亚丙酯型聚氨酯/聚甲基丙烯酸甲酯互穿网络聚合物的研究[J].高分子材料科学与工程,2000,(16)4:135~138
    [120]潘祖仁,高分子化学[M].北京:化学工业出版社,2006
    [121]朱诚身.聚合物结构分析[M].北京:科学出版社,2004
    [122]夏笃祎,张肇熙.高聚物结构分析[M].北京:化学工业出版社,1990
    [123]刘凤岐,汤心颐.高分子物理[M].北京:高等教育出版社,2004
    [124]范夕萍,谭惠民,张磊,等.热塑性弹性体在复合改性双基推进剂中的应用[J].推进技术,2008,29(1):124~128
    [125]马德柱,何平笙,徐种德,等.高聚物的结构与性能[M].北京:科学出版社,2000
    [126]方征平,宋义虎,沈烈.高分子物理[M].杭州:浙江大学出版社,2005
    [127]Takayuki Murayama.聚合物材料的动态力学分析[M].北京:轻工业出版社,1988
    [128]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2008
    [129]孙国祥.高分子混合炸药[M].北京:国防工业出版社,1984
    [130]黄人骏,宋洪昌.火药设计基础[M].北京:北京理工大学出版社,1997
    [131]陈宝铨,韩孝族,郭风春.PU软段结构对PU/PMMA IPN中两组分相容性的影响[J].高分子材料科学与工程,1995,11(2):62~65
    [132]Athawale V, Kolekar S. Interpenetrating polymer networks based on polyol modified castor oil polyurethane polymethyl methacrylate [J]. Eur. Polym. J.,1998,34(10): 1447~1451
    [133]王东山,余爱芳,何树杰,等.聚碳酸亚丙酯型聚氨酯/聚甲基丙烯酸甲酯互穿网络聚合物的研究[J].高分子材料科学与工程,2000,16(4):135~138
    [134]赵菲,史新妍,于建,等.热塑性聚氨酯共混物的增容方法[J].橡塑技术与装备,2005,31(10):26~31
    [135]华耀和.互穿聚合物网络讲座(连载五)[J].聚氨酯工业,1996,1:43~49
    [136]Hamid Javaherian Naghash, Ahmad Reza Massah, Masoud Arman. Silicone secondary cross-linked IPN based on poly(vinylacetate-co-hydroxy ethylmethacrylate) and SiO_2[J]. Progress in Organic Coatings,2009,65:275~280
    [137]Li Chen, Su Chen. Latex interpenetrating networks based on polyurethane, polyacrylate and epoxy resin[J]. Progress in Organic Coatings,2004,49:252~258
    [138]Swatilekha Das, Banthia A K, et al. Removal of chlorinated volatile organic contaminants from water by pervaporation using a novel polyurethane urea-poly (methyl mathacrylate) interpenetrating network membrane [J]. Chemical Engineering Science,2006,61:6454~6467
    [139]Sperling L H.互穿聚合物网络和有关材料[M].北京:科学出版社,1987
    [140]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002
    [141]Jizhen L, Xuezhong F, Xiping F, et al. Journal of Thermal Analysis and Calorimetry[J].2006,85(3):779~784
    [142]Tabka M T, Widmaier J M, Meyer G C. In Situ Sequential Polyurethane/Poly(methyl methacrylate) Interpenetrating Polymer Networks:Structure and Elasticity of Polyurethane Networks[J]. Macromolecules.1989,22:1826~1833
    [143]李再峰,冯国增.端羟基叠氮缩水甘油醚(GAP)聚氨酯某些性能的研究[J].弹性体,1996,6(4):25~27
    [144]G Ampleman, S Desilets, A Marois. Energetic thermoplastic elastomers based on glycidyl azide polymers with increased functionality,27th ICT[C]. Karlsruhe,1996
    [145]Sanderson. Synthesis of energetic thermoplastic elastomers containing both polyoxirane and polyoxetane blocks[P]. USP 7101955,2006
    [146]Braithwaite P, Edwards W, Sanderson A J. The Synthesis and combustion of high energy thermop lastic elastomer Binders[C].32th ICT, Karlsruhe,2001
    [147]Chen F T, Duo Y Q,Luo A G, et al. Novel Segmented Thermoplastic Polyurethanes Elastomers Based on Tetrahydrofuran Ethylene Oxide Copolyethers as Hig Energetic Propellant Binders [J]. Propellants,Explosives,pyrotechnics,2003,28(1):7~11
    [148]多英全,罗运军,罗善国.新型热塑性聚氨酯弹性体微相分离的定量研究[J].火炸药学报,2000(4):58-60
    [149]袁开君,江治,李疏芬,等.聚氨酯弹性体的热分解动力学研究[J].应用化学,2005,22(8):861~864
    [150]EDMA. TP-MBL-K-30/6. Milan Blagojevic'Namenskaluc"ANI
    [151]Methylen chloride(in Preparing). TP-MBL-K-30/7. Milan Blagojevic'Namenskaluc' ANI
    [152]Methods for Physico-chemical testing of powder NC-53K and NC-47. TP-MBL-K-30/8. Milan Blagojevic'Namenskaluc'ANI
    [153]Mann D.C.. Development of a deterred propellant for a large caliber weapon system[J]. Journal of Hazardous Materials,1983,7:259~280
    [154]堵平.低温感发射药包覆层、包覆界面特性研究[D].南京理工大学,2005
    [155]练鸿振,武海顺,王泽山,等.HPLC测定包覆火药中的DNT及其迁移速率常数[J].南京理工大学学报,1995,31(1):68-72
    [156]武海顺,王泽山.温度对包覆药中DNT迁移影响的研究[J].兵工学报,火化工分册,1994,2:1-4
    [157]王新华.固体火箭发动机装药包覆层性能检测方法的讨论[M].西安:西安近代化学研究所,1985
    [158]伶祥生.接触法测定包彼层对增塑剂的吸收[C].中国兵工学会弹箭用非金属材料第二届研究会论文,1984
    [159]Crank S, Park G S. Diffusion in Polymers. Academic Press New York,1968
    [160]Gusslar E L. Multicomponent Diffusion, Amstordam Elsevier,1976
    [161]武海顺,王泽山.钝感火药中增塑剂的迁移及其分布[J].南京理工大学学报,1994,76(4):42~47
    [162]张颖.高能太根发射药中RDX迁移的研究[D].南京理工大学,2003
    [163]Holl G, Wilker S, Kaiser M, et al. Service Life of Solid Propellant Systems [R]. AD-A330303
    [164]郑林,赵宏利,陈晓,等.包覆层可靠性对高燃速火药燃速测试的影响及改进[J].火炸药学报,2007,30(3):59~61
    [165]罗运军,刘玉海,王泽山.发射药钝感包覆技术研究的进展[J].弹道学报,1996,8(2):82~88
    [166]刘茉娥.膜分离技术[M].北京:化学工业出版社,2001
    [167]Ravindraa R. Pervaporation of water, hydrazine and monomethylhydrazine using ethylcellulose membranes[J]. Polymer,2000,41:2795~2806
    [168]徐又一,徐志康.高分子膜材料[M].北京:化学工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700