组份对发射药燃烧残渣形成的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发射药燃烧时生成残渣会影响身管武器的发射精度和发射安全性,降低战士和武器的战场生存能力。论文详细分析了身管武器发射过程燃烧残渣的生成机理,并说明发射药燃烧残渣是发射装药燃烧残渣的主要来源之一。基于发射药稳态燃烧的五区理论,分析了发射药燃烧残渣的生成原因,分析结果表明残渣主要来源于固相预热区、凝聚相区和混合相区产物,其中燃烧时的压力和温度是影响残渣生成量的主要影响因素。为了探讨降低发射药燃烧残渣技术途径,采用常压燃烧、烟雾分析和TG-MS实验对残渣进行表征,研究了常用含能粘合剂硝化纤维素含氮量以及添加剂对发射药燃烧残渣生成量的影响规律.结果表明,硝化纤维素的性能对单基药的燃烧残渣量有影响。硝化纤维素含氮量越高,单基药燃烧生成的烟雾及固体残渣量越少;相反,降低硝化纤维素含氮量,单基药燃烧时生成的烟雾及固体残渣量增加。在发射药中如果引入盐类添加剂,一般认为会增加燃烧的烟雾量,但通过实验证明不完全是这样,当发射药中加入1%左右的PbCO3后,由于PbCO3对发射药燃烧的催化作用,降低了常压燃烧的分解温度,使燃烧反应趋于完全,燃烧残渣大大降低,抵消了因加入盐类物质提高残渣量的效应,但对添加SnO2来说,其效果恰恰相反,它的加入使燃烧残渣量继续增加。因此,在发射药中选用高氮量硝化纤维素,适量加入具有降低单基药燃烧活化能的PbCO3,有利于降低单基药的燃烧残渣生成量。
The combustion residue of propellant will affect the firing precision and the launching security of barrel weapons; reduce the viability of warrior as well as the weapons. This paper analyzes the generation mechanism of the combustion residues during the barrel weapon launching process in detail, and explains that the propellant combustion residue is one of the major source of propelling charge combustion residues. Analyze the generation reason of the propellant combustion residue based on the five areas theory of steady combustion, analyzed results show that the residues mainly generate from the solid phase preheating area and pool area and mixed-phase region product, here, the pressure and temperature of the combustion be the main factors that affect the amount of residue. In order to research the technical means of reducing the propellant combustion residue, this paper makes full use of atmospheric pressure combustion, and smog analyze as well as the TG-MS experiments to characterize the residues, study the effect that the quantum of nitrogen within normal nitrocellulose and the additive act on the amount of propellant combustion residues. Results show that the performance of nitrocellulose will affect the amount of single-base propellant combustion residue. The higher quantum of nitrogen included within nitrocellulose, the fewer smog and solid residues that produced by single-base propellant, on the contrary, the amount of smog and solid residues increase while the quantum of nitrogen within nitrocellulose be reduced. When add salt additives in propellant, it is generally believed that the smog will increase, but the result shows that when add about 1% of PbCO3 in propellant, due to the catalysis of PbCO3 towards propellant combustion, the decomposition temperature of combustion at atmospheric pressure be reduced so that the combustion tends to fully reaction, thus, the combustion residue greatly reduced, offsetting the effect of increasing residue by adding substances, But for SnO2 additives, the effect is just the opposite, the combustion residue amount increased when added. Therefore, choosing high nitrogen nitrocellulose and adding reasonable amount of PbCO3 which can reduce combustion activation energy of single-base propellant is helpful in reducing the combustion residue of single-base propellant.
引文
[1]王泽山.发射药技术的展望[J].华北工学院学报.2001.
    [2]王琼林.国外枪炮发射药技术发展概况[J].火炸药学报.1998,21(4):55259.
    [3]陈舒林,李凤生.火药设计与制造[M].北京:兵器工业出版社,1986.
    [4]王洪杰.发射药洁净燃烧技术研究进展[J].山西化工.2008,28(003):26-28.
    [5]丁学波.关于轻武器科研建设的几个问题[J].1998.
    [6]谭兴良,孔德仁.膛口抑制技术[J].北京:兵器工业出版杜.1995,31.
    [7]王泽山,何卫东,徐复铭.火药装药设计原理与技术[M].北京:北京理工大学出版社,2006.
    [8]贺增弟,刘幼平,何利明,et al.发射药氧平衡对枪口焰的影响[J].火炸药学报.2008,31(006):57-59.
    [9]贺增弟,刘幼平,何利明,et al.硝酸铵对炮口焰的影响研究[J].中北大学学报:自然科学版.2008,29(006):538-541.
    [10]王琼林,刘少武,张远波,et al.枪用发射药燃烧残渣的测试方法[J].火炸药学报.2006,29(005):57-59.
    [11]王琼林,刘少武,吴建军.钝感剂对发射药枪口烟雾特性影响的研究[J].火炸药学报.1998,21(3):17-19.
    [12]王琼林.调节钝感发射药氧平衡的技术途径[J].火炸药学报.2000,92(2).
    [13]郑东升,梁磊.提高发射药氧平衡的途径[J].山西化工.2009,29(004):29-31.
    [14]庞维强,张教强,张琼方,et al.硼粉的包覆及含包覆硼推进剂燃烧残渣成分分析[J].固体火箭技术.2006,29(003):204-207.
    [15]胥会祥赵凤起.镁铝富燃推进剂燃烧残渣影响因素理论分析[J].固体火箭技术.2006,29(3):200-203.
    [16]马明珠、黄小梧.含能热塑性弹性体PBAMO的合成和应用研究:2006年火炸药新技术研讨会[Z].深圳:2006220-223.
    [17]胡岚,张皋,王婧娜,et al.火药燃烧气体产物检测方法研究[J].含能材料.2008,16(005):527-530.
    [18]陈智群,潘清,胡岚,et al.用IR测定发射药燃气研究[J].含能材料.2007,15(001):36-38.
    [19]王宏,孙美.发射药枪口烟焰检测技术研究[J].火炸药学报.2002,25(002):57-58.
    [20]王劲松,李海兰.新型枪口烟测试系统[J].探测与控制学报.2009,31(z1).
    [21]王琼林,刘少武,谭惠民,et al.具有洁净燃烧特征的高分子钝感枪药[J].火炸药学报.2003,26(4).
    [22]Cramer M, Akester J, Fawcett W, et al. Environmentally Friendly Advanced Gun Propellants[J].2004.
    [23]Anflo K, Gr T, Bergman G, et al. Towards green propulsion for spacecraft with ADN-based monopropellants:38 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, IN[Z].2002.
    [24]Hartzell G E. Overview of combustion toxicology[J]. Toxicology.1996,115(1-3): 7-23.
    [25]Hewitt A D, Jenkins T F, Ranney T A, et al. Estimates for explosives residues from the detonation of Army munitions[J]. US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, Technical Report ERDC/CRREL TR-03-16.2003,52:5-7.
    [26]Dauphin L, Doyle C. Study of ammunition dud and low order detonation rates[J]. US Army Defense Ammunition Center, McAlester, OK.2000.
    [27]Hewitt A D, Jenkins T F, Ranney T A, et al. Estimates for explosives residues from the detonation of Army munitions[J]. US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, Technical Report ERDC/CRREL TR-03-16.2003,52:5-7.
    [28]Jenkins T F, Ranney T H, Miyares P H, et al. Use of surface snow sampling to estimate the quantity of explosives residues resulting from land mine detonations[J]. 2000.
    [29]Jenkins T F, Ranney T A, Walsh M E, et al. Evaluating the use of snow-covered ranges to estimate the explosives residues that result from detonation of army munitions[J].2000.
    [30]Jenkins T F, Walsh M E, Miyares P H, et al. Use of snow-covered ranges to estimate explosives residues from high-order detonations of army munitions[J]. Thermochimica Acta.2002,384(1-2):173-185.
    [31]Jenkins T F, Hewitt A D, Walsh M E, et al. Representative sampling for energetic compounds at military training ranges[J]. Environmental Forensics.2005,6(1): 45-55.
    [32]Pennington J C, Jenkins T F, Ranney T A, et al. Distribution and fate of energetics on DoD test and training ranges [J].2001.
    [33]Jenkins T F, Pennington J C, Ampleman G, et al. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges[J]. Interim Report. 1:07-1.
    [34]Walsh M R, Walsh M E, Collins C M, et al. Energetic residues from live-fire detonations of 120-mm mortar rounds[J].2005.
    [35]Ase P, Eisenberg W, Gordon S, et al. Propellant combustion product analyses on an M16 rifle and a 105mm caliber gun[J]. Journal of Environmental Science and Health, Part A.1985,20(3):337-368.
    [36]张柏生,李云娥.火炮与火箭内弹道原理[M].北京:北京理工大学出版社,1995.
    [37]鲍廷钰,邱文坚.内弹道学[M].北京理工大学出版社,1995.
    [38]佘建生,杨臻.枪管温度场和热应力的研究[J].华北工学院学报.2002,23(004):243-247.
    [39]张越.复合层合枪管强度及温度场的理论分析与试验研究[D].2007.
    [40]卓穗如.机枪枪管寿命预测技术论文集[J].北京:中国兵器工业第208研究所.1996.
    [41]宋兆武.固体推进剂燃烧基础[J].上,下.1988.
    [42]王德才.火药学[M].南京:南京理工大学出版社,1988.
    [43]王伯羲,冯增国,杨荣杰.火药燃烧理论[Z].北京:北京理工大学出版社,1997.
    [44]张柏生.火药燃烧导论[M].南京:华东工学院,1988.
    [45]刘继华.火药物理化学性能[M].北京理工大学出版社,1997.
    [46]赵建华,袁宏永.烟雾浓度及粒径的激光探测实验研究[J].激光与红外.2000,30(005):277-279.
    [47]杨立波,孙美,李东林.装药排气羽烟激光透过率研究[J].火炸药学报.2006,29(006):45-47.
    [48]刘爱华.超细微粒灭火剂灭火浓度测量方法研究[J].2006.
    [49]刘晓晖,邓巍.硝化棉含氮量测定方法的研究[J].火炸药.1997,20(003):20-21.
    [50]张杏芬.国外火炸药原材料性能手册[M].兵器工业出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700