多环芳烃荧蒽对植物和土壤生物毒害的剂量—效应关系及其土壤环境基准初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)是一类典型持久性有机污染物(POPs),对自然环境、人类健康都具有危害作用。环境中90%以上的PAHs最终进入土壤,不但影响土壤的正常功能,而且比较容易进入生物体内、影响作物生长,并通过生物链进入生态系统,从而危害人类健康和整个生态系统的安全。
     为了科学地评价和控制土壤环境质量,需要建立PAHs的土壤环境质量基准。本文以荧蒽(FLA)为研究对象,研究土壤中添加不同浓度荧蒽后,典型植物生长、土壤生物生长及活性变化的情况,通过拟合“剂量-效应”方程计算对应的土壤荧蒽临界值,为多环芳烃土壤环境质量标准的制定和生态风险评价提供初步的科学依据。主要工作及结论如下:
     (1)通过盆栽实验研究荧蒽对青菜的毒性效应,研究在不同浓度下植株生物量、根系形态对荧蒽污染的响应情况、植株不同部位对荧蒽的累积情况,并通过“浓度-产量”关系拟合出荧蒽污染下植株的产量效应方程,以青菜减产10%计算出两种土壤的荧蒽临界值。初步结果为:植株生物量和株高以及根重、根总长度、根表面积、根系分叉数等根系形态指标随荧蒽浓度的增加受抑制程度变大,根系受抑制的情况最为明显因此,根系形态可以较精确地表征土壤有机物污染状况;青菜各部位对荧蒽的吸收累积都随土壤中荧蒽浓度的升高而升高,且累积强度根>茎>叶;通过拟合“浓度-产量”效应方程,得知青菜地上部减产10%时,黄棕壤和潮土中荧蒽的临界含量分别是16.17mg·kg-1和2.43mg·kg-1。
     (2)以蚯蚓(Eisenia foetida)作为指示生物,采用土壤接触法,研究荧蒽对蚯蚓的单一急性毒性。比较分析不同污染浓度对蚯蚓的单一急性毒性症状及剂量—生长抑制率曲线关系,为进一步确定荧蒽的土壤毒理诊断提供实验依据。土壤中荧蒽浓度和蚯蚓的生长抑制率呈显著“剂量-效应”关系,通过多项式拟合,找出了土壤荧蒽浓度和蚯蚓生长抑制率之间的回归关系,以蚯蚓生长抑制率达到15%时土壤荧蒽浓度为临界浓度。作用时间越长,临界浓度越低;相同作用时间内,荧蒽在黄棕壤中的临界浓度高。以培养14d后荧蒽浓度与蚯蚓生长抑制率之间的“剂量-效应”拟合方程,以蚯蚓生长抑制率达到15%时土壤荧蒽浓度为临界浓度,黄棕壤和潮土中荧蒽的临界含量分别是9.26mg·kg-1和11.53mg·kg-1。
     (3)选用两种水解酶(脲酶、蔗糖酶)和一种氧化还原酶(过氧化氢酶)作为指示指标,通过测定土壤酶活性在不同接触时间、不同污染物浓度作用下的变化,探讨多环芳烃浓度和作用时间与土壤酶活性之间的相关关系模型,为把土壤酶活性作为表征环境质量的一项生态毒理指标提供理论依据。酶活性高低与土壤理化性质有关。随着荧蒽污染浓度的变化,黄棕壤和潮土脲酶、蔗糖酶和过氧化氢酶的活性都受到显著影响。荧蒽浓度越高,脲酶和蔗糖酶的活性越低,而过氧化氢酶的活性随荧蒽浓度增加而增加。
Polycyclic Aromatic Hydrocarbons (PAHs), which is a kind of typical Persistent Organic Pollutant (POPs), has obvious harmful effect for humanhealth and environment. It was reported that 90%of PAHs in environment would enter and sink to the soil finally. Then they could not only effect the normal function of soil but also enter to the living body and effect plants'growing, so that enter the ecosystem by the biological chain, and then do harmfulness to humanhealth and the safty of the whole ecosystem.
     Soil environmental quality criteria for PAHs must be established in order to scientifically assessment and control soil quality. Taking Fluoranthene as research object, this thesis preliminary studied the changes of soil organisms'growth and activities by adding different content of Fluoranthene. By fitting dose-effect equations, several threshold values of soil Fluoranthene concentration were obtained, so that provided scientific basis for establishing PAHs'soil environmental quality criteria and evaluating their ecological risks. The thesis has reference meaning in the development of soil environment quality criteria. The main research contents and results were as follow:
     (1) According to pot experiment, Fluoranthene's toxic effect to Chinese cabbage was studied. The preliminary results were:Fluoranthene suppressed significantly the plant height, shoot mass, root mass and they were decreased with increasing concentration of fluoranthene; Several root morphology such as length, surfarea, avgdiam and forks changed significantly to fluoranthene concentration, so root morphology indexes could be the better botanic reference index for organic pollution than plant biomass and height. The cumulant of Fluoranthene in different parts of the Chinese cabbage was related significantly to the Fluoranthene concentration in soil, and in different parts of the plant the accumulation concentration was:root> stem> leaf. By fitting yield effect equation, soil Fluoranthere thresholds for Chinese cabbage yield reduction of 10%were 16.17mg·kg-1 in Yellow Brown Soil and 2.43mg-kg-1 in Alluvial Soil.
     (2)By using earthworm (Eisenia foetida) as bio-indicator, the effect of acute toxicity of Fluoranthere in single form was studied, so as to find the relationship between Fluoranthere concentration and earthworms'growth inhabition rate. And the correlation was significantly and coud set the concentration as soil Fluoranthene threshold concentration when earthworms'growth inhabition rate was 15%. The longer the culture time the lower the threshold concentration
     (3)Choosing urease, invertase and catalase as diagnostic indicator, the relationship between activities of different enzymes and concentrations of Fluoranthene added were investigated. The results showed that with the Fluoranthene added, the activities of the three enzymes were all influenced significantly. The ureasse activity and invertase activity were inhibited as the concentration of Fluoranthene increased. However, the activity of catalase was activated by the addition of Fluoranthene. Soil properties could influence certain enzymes'activity.
引文
[1]Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants [J].Environ Sci Technol,2000,34:4259-4265
    [2]Alkio M, Tabuchil T M, Wang X C, Colon-Carmona A. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms [J]. Journal of Experimental Botany,2005,56:2983-2994
    [3]Anderson T A. Bioremediation in the rhizophere[J]. Environmental Science and Technology,1993, 27(13):2630-2635
    [4]Atagana H I. Biodegradation of polycyclic aromatic hydrocarbons in contaminated soil by biostimulation and bioaugmentation in the presence of copper(II) ions [J]. World Journal of Microbiology & Biotechnology,2006,22:1145-1153
    [5]Baran S, Bielinska J E, Oleszczuk P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons[J]. Geodenma,2004,118:221-232
    [6]Binet P, Portal J M, Leyval C. Dissipation of 3-6 ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass [J]. Soil Biology and Biochemistry,2000,32(4):2011-2017
    [7]Boopathy R. Factors limiting bioremediation technologies[J].Bioresour Technol,2000,74:63-67
    [8]Cemiglia C E. Bildegradation of polycydic aromatic hydrocarbon:a review [J].Biodegradation,1992, 3:351-368
    [9]Chapman P M. Integrating toxicology and ecology:Putting the "eco" into ecotoxicology[J]. Marine Pollution Bulletin,2002,44(1):7-15
    [10]Culy M D, Berry E C. Toxicity of soil-applied granular insecticides to earthworm populations in corn fields[J]. Down to Earth,1995,50:20-25
    [11]Crommentuijn T, Doodeman C J A M, Doornekamp A, etal.Sublethal sensitivity index as an ecotoxicity parameter measuring energy allocation under toxicantstress:Application to cadmium in soil arthropods[J]. Ecotoxicol. Environ. Saf,1995,31(3):192-200
    [12]David W, Christopher P H, Richard G L. The Sequestration of PCBs in Lake Hartwell Sediment with Activated Carbon[J]. Water Research,2005,39:2105-2113
    [13]Davies N A, Hodsonb M E, Black S, etal.The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test[J]. Environ. Pollut,2003, 121(1):55-61
    [14]Empereur-Bissonnet P, Bemillon P, Daniau C, et al. Soil-to vegetable PAH transfer:Evaluating two multimedia exposure models (HESP and CaITOX) by comparing their predictions to measurements from the edible portions of 3 common vegetables[J].Epidemiology,2002,13(4): S117-S212
    [15]Fischer O A, Matlova L, Bartl J. Earthworm Oligochaeta, Lumbricidae and mycobacteria[J]. Veterinary Mircrobiology,2003,91(4):325-338
    [16]Fismes J, Schwartz C, Perrin-Ganier C, et al. Risk of contamination for edible vegetable growing on soils polluted by polycyclic aromatic hydrocarbons [J]. Poly cyclic Aromatic compounds,2004, 24(4-5):827-836
    [17]Frankenberger W T, Johanson J B. Influence of crudeo and refined petroleum products on soil dehydrogenase[J]. Environmental Quality,1982,11:602-607
    [18]Gong P, Wilke B M, Fleichmann S. Soil based phytotoxicity of 2,4,6-trinitrotoluence (TNT) to terrestrial higher plants[J].Arch. Environ. Contam. Toxicol,1999,36:152-157
    [19]Gong P, Wilke B M, Strozzi, etal. Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the Eco-toxicological assessment of soils[J]. Chemosphre, 2001,44:491-500
    [20]Greene J C, et al. Protocols for short-term toxicity screening of hazardous waste sites[S].U S Environmental Protection Agency,1998, EPA/600/3-88/029
    [21]Grosser R J, Warshawsky D, Vestal J R. Mineralization of polycyclic and N-heterocyclic aromatic compound in hydrocarbon contaminated soils[J]. Environment Toxicology and Chemistry,1995, 14(3):375-382
    [22]Hamdi H, Benzarti S, Manusadzianas L, et al. Solid-phase bioassays and soil microbial activities to evaluate PAH-spiked soil ecotoxicity after a long-term bioremediation process simulating land farming [J]. Chemosphere,2007,70:135-143
    [23]Hans R K, Khan M A, Farooq M. Glutathione S-transferase activity in an earthworm (Pheretima posthuma) exposed to three insecticides[J].Soil Biology and Biochemists,1993,25(4):509-511
    [24]Henner P, Schiavon M, Druelle V, et al. Phytotoxicity of ancient gaswork soils——Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination[J]. Organic Geochemisty,1999,30: 275-284
    [25]Ince N H, Dirilgen I G, Tezcanli A G, et al. Assessment of toxic interactions of heavy metals in binary mixtures:A statistical approach[J].Arch. Environ.Contamn.Toxicol.,1999,36:365-372
    [26]Jager T, Fleuren RHLJ, Hogendoorn EA, et al. Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia Andrei (oligochaeta) [J]. Environ Sci Technol,2003,37:3399-3404
    [27]Johnsen A R, Wick L Y, Harms H. Principles of microbial PAH-degradation in soil[J]. Environmental Pollution,2005,133:71-84
    [28]Jones K C, Grimmer G J, Acob J, et al. Changes in the content of polycyclic aromatic hydrocarbons (PAHs) wheat grain and pasture grassland over the last century from one site in the UK[J].The Science of the Total Environment,1989,78:117-130
    [29]Jones K C, Stanford J A, Tidridge P. Polycyclic aromatic hydrocarbons in an agricultural soil: Longterm changes in profile distribution [J]. Environmental Pollution,1989,56:337-351
    [30]Kipopoulou A M, Manoli E, Samara C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area[J]. Environmental Pollution,1999,106(3):369-380
    [31]Krauss M, Wilcke W. Photochemical oxidation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in soils-a tool to assess their degradability? [J]. Journal of Plant Nutrition and Soil Science,2002,165:173-178
    [32]Lanno R, Wells J, ConderJ, et al. The bioavailability of chemicals in soil for earthworms[J]. Ecotoxicology and Environmental Safety,2004,57(1):39-47
    [33]Lee H K, Wright G J, Swallows W H. The identification ofsources of PAH by using concentration ratios of total PAH and Pb[J].Intern.. J. Environ.Stud.,1990,36:273-277
    [34]Leirs M C, Trasar-Cepeda C, Garcua-Feinandez F, et al. Defining the validity of a biochemical index of soil quality [J]. Biology and Fertility of Soils,1999,30:140-146
    [35]Lock K C, Janssen C R. Influence of ageing on zinc bioavailability in soils[J]. Environ. Pollut., 2003,126(3):371-374
    [36]Lock K C, Colin R J. Effect of clay and organic matter type on the ecotoxicicity of zinc and cadmium to the potworm Enchytraeus albidus[J]. Chemosphere,2001,44(8):1669-1672
    [37]Luepromchai E, Singer A C, Yang C H. Interations of earthworms with indigenous and bioaugmented PCB-degrading bacteria[J]. FEMSMi-crobiplogy Ecology,2002,41(3):191-197
    [38]Maboeta M S, Reinecke A J, Reinecke S A. Effects of loe levels of lead on growth and reproduction of the Asian earthworm Perionyx excavatus (Oligochaeta)[J]. Ecotoxicol Environ Safety,1999, 44(3):236-240
    [39]Maliszewska K B, Smreczak B. Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs):Effect on plants[J]. Environmental Technology,2000,21:1099-1110
    [40]Margesin R, Walder G, Schinner F. The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil [J]. Acta Biotechnol,2000,20:313-333
    [41]Matscheko N, Lundsted S, Svensson L, et al. Accumulation and elimination of 16 polycyclic aromatic compounds in the earthworm (Eisenia fetida) [J]. Environ Toxicol Chem,2002,21(8): 1724-1729
    [42]Menzie C A, Potoki B B. Exposure to carcinogenic PAHs in the environment[J].Environ Sci Technol,1992,26(7):1278-1284
    [43]Mishra A, Choudhurt M A. Monitoring of phytotoxicity of lead and mercury from germination and early seedling growth indices in two rice cultivators [J]. Water, Air and Soil Pollution,1999,110: 340-345
    [44]Moon H S, Kahng H Y, Kim J Y, et al. Determination of biodegradation potential by two culture-independent methods in PAH-contaminated soils[J]. Environmental Pollution,2006,140: 536-545
    [45]Moore M N. Cellular responses to pollutants[J]. Marine Pollution Bulletin,1985,16(4):134-139
    [46]Northcott G L, Kevin C J. Partitioning, extractability and formation of non-extractable PAH residues in soil compound differences in aging and sequestration[J]. Environ Sci Technol,2001,35: 1103-1110
    [47]Pascual J A, Garcia C, Hermandez T, et al. Soil microbial activity as a biomarker of degradation and remediation processes [J]. Soil Biol, Biochem,2000,32:1877-1883
    [48]Pradhan S P, Conrad J R, Paterek J R, et al. Potential of phytoremediationior treatment of PAHs in soil at MGP sites [J]. Soil Contain,1998,7:467-480
    [49]Puurtinen H M, Martikainene A T. Effect of soil moisture on pesticide toxicity to an enchytraeidworm, enchytraeussp[J]. Arch Environ Contam Toxic,1997,33:34-41
    [50]Ren L, Zeiler L F, Dixon D G. Photoinduced effects of polycyclic aromatic hydrocarbons on Brassica napus(Canola) during germination and early seedling developmen[J]. Ecotoxicology and Environmental Safety,1996,33:73-80
    [51]Richnow H H, Seifert R, Hefter J, et al. Organic pollutants associated with macromolecular soil organic matter:Mode of binding[J]. Organic Geochemistry,1997,26 (11-12):745-758
    [52]Ryan J A, Bell R M, Davidson J M, et al. Plant uptake of non-ionic organic chemicals fron soils [J]. Chemosphere,1988,17:2299-2323
    [53]Saviozzi A, Bufalino P, Levi-Menzi R, Riffaldi R. Biochemical activities in a degraded soil restored by two amendments:a laboratory study[J]. Biology and Fertility of Soils,2002,35:96-101
    [54]Sannino F, Gianfreda L. Pesticide influence on soil enzymatic activities[J]. Chemosphere,2001,45: 417-425
    [55]Singer A C, Jury W, Luepromchai E. Contribution of earthworm to PCB bioremediation[J]. Soil Biology and Biochemistry,2001,33(6):765-776
    [56]Shen G Q, Lu Y T, Zhou Q X, et al. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme[J]. Chemosphere,2005,61:1175-1182
    [57]Simionich S L, Hites R A. Vegetatiomn-atmosphere partitioning of polycyclic aromatic hydrocarbons [J]. Environ Sci Technol,1994,28 (5):938-942
    [58]Simionich S L, Hites R A. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere[J]. Nature,1994,370:49-51
    [59]Simionich S L, Hites R A. Organic pollutant accumulation in vegetation[J]. Environmental Science and Technology,1995,9:2905-2914
    [60]Stanislaw B, Jolanta E, Bielinska P O. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons [J]. Geoderma,2004,118:221-232
    [61]Stegeman J J, Lech J J. Cytochrome P-450 mononxygenase system in aquatics species:Carciongen metabolism and biomarkers for carcinogen and pollutant exposure [J]. Environmental Health Perspecitives,1991,90:101-109
    [62]Stickley D P. Increase of toxic potential-synthetic ester lubricant oil by usage[J]. Chemosphere, 1998,36:1513-1522
    [63]Szaefer H, Cichocki M, Brauze D, et al. Alteration in phase I and II enzyme activities and polycyclic aromatic hydrocarbons-DNA adduct formation by plant phenolics in mouse epidermis [J]. Nutrition and Cancer-An International Journal,2004,48 (1):70-77
    [64]Thiele-Bruhn S, Briimmer G W. Kinetics of polycyclic aromatic hydrocarbon (PAH) degradation in long-term polluted soils during bioremediation [J]. Plant and Soil,2005,275:31-42
    [65]Thorsen W A, Cope W G, Shea D. Bioavailability of PAHs:effects of soot carbon and PAH source [J]. Environmental Science and Technology,2004,38:2029-2037
    [66]Tomaniova M, Kocourek V, Hajslova J. Polycyclic aromatic hydrocarbons in food[J]. Chemicke Listy,1997,91(5):357-366
    [67]Venera A J, David L J, John P H, et al. Differences in accumulation of PAHs and metals on the leaves of Tilia euchlora and Pyrus calleryan[J].Environmental Pollution,2002,120:331-334
    [68]Wagner G. Quantitative evaluation of the CEEM soil sampling inter-comparison [J].The Sci of the Total Envir,2001,264(1-2):73-101
    [69]Weissenfels W D, Klewer H J, Langhoff J. Adsorption of polycyclic aromatic hydrocarbons(PAHs) by soil particles:Influenceon biodegradability and biotoxicity[J]. Microbiol Biotechnol,1992,36: 689-696
    [70]Wilcke W. Polycyclic aromatic hydrocarbons in soil[J].A review Journal of Plant Nutrition and Soil Science,2000,163:229-249
    [71]Wilcke W, Amelung W. Persistent organic pollutants in native grassland soils along a Climosequnce in North America[J]. Soil Science Society of America Journal,2000,64(6):2140-2148
    [72]Wild S R, Jones K C. Polycyclic aromatic hydrocarbons uptake by carrots grown in Sludge amended soil [J]. Journal of Environmental Quality,1992a,21:217-225
    [73]Wilson S C, Joins K C. Bioremediation of soil ontaminated with polycyclic aromatic hydrocarbons (PAHs):a review[J]. Environ Pollut,1993,81:229-249
    [74]Xiao N W, Jing BB, Ge F, et al.The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory condition [J]. Chemosphere,2006,62(8):1366-1373
    [75]Yuan S Y, Wei S H, Chang B V. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture[J]. Chemosphere,2000,41:1463-1468
    [76]Yvan Capowiez, Magali Rault, Christophe Mazzia, et al. Earthworm behavior as a biomarker-a case study using imidacloprid[C].7th international symposium on earthworm ecology, Cardiff, Wales,2002
    [77]Zhao X, Zhang Y, Hu X, et al. Enhanced bio-mineralization by riboflavin photosensitization and its significance to detoxification of benzo[a]pyrene [J].Bulletin of Environment Contamination and Toxicology,2007,79:319-322
    [78]蔡道基,张壬午,李治祥.农药对蚯蚓的毒性与危害性评估[J].农村生态环境,1986,2(2):14—18
    [79]曹红英,梁涛,陶澍.1950年以来BHC在杭州环境中积累迁移与残留动态的模拟研究[J].环境科学学报,2005,25(4):475—482
    [80]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105—109
    [81]陈怀满,等.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996
    [82]陈怀满.土壤中化学物质的环境行为与环境质量[M].北京:科学出版社,2002
    [83]陈怀满,郑春荣,周东美,等.土壤环境质量研究回顾与讨论[J].农业环境科学学报,2006,25(4):821—827
    [84]陈可夫,石银珍,万前程,等.蚯蚓素安全性毒理学评价实验[J].荆门职业技术学院学报,2000,6(15):59—61
    [85]陈来国,冉勇.植物修复多环芳烃研究现状[J].环境科学与技术,2004,27(5):99-101
    [86]陈平,陈研,白璐,等.日本土壤环境质量标准与污染现状[J].中国环境监测,2004,20(3):63—66
    [87]陈仁华.武夷山不同森林类型土壤微生物分布状况的研究[J].福建林业科技,2004,31(4):45—47
    [88]陈颖,王子健.用彗星试验检测土壤污染对蚯蚓活体基因损伤[J].土壤学报,2005,42(4):577—583
    [89]程国玲,李培军,王凤友,等.多环芳烃污染土壤的植物与微生物修复研究进展[J].环境污染治理技术与设备,2003,4(6):30—36
    [90]丁克强,骆永明,刘世亮,等.黑麦草对菲污染土壤修复的初步研究[J].土壤,2002(4):233-236
    [91]丁锁.多环芳烃在土壤-植物系统中的迁移及其降解研究[D].泰安:山东农业大学,2007:15-16
    [92]段华波,黄启飞,王琪,等.土壤有机污染物控制标准制订的方法学研究[J].环境污染与防治,2007,29(1):70—73
    [93]范淑秀,李培军,何娜,等.多环芳烃污染土壤的植物修复研究进展[J].农业环境科学学报,2007,26(6):2007—2013
    [94]高岩,骆永明.蚯蚓对土壤的指示作用及其强化修复的潜力[J].土壤学报,2005,42(1):140—141
    [95]高彦征,凌婉婷,朱利中,等.黑麦草对多环芳烃污染土壤的修复作用及机制[J].农业环境科学学报,2005,24(3):498—502
    [96]高彦征,朱利中,胡晨剑,等.Tween80对植物吸收菲和芘的影响[J].环境科学学报,2004,24(4):713—718
    [97]高彦征,朱利中,凌婉婷,等.土壤和植物样品的多环芳烃分析方法研究[J].农业环境科学学报,2005,24(5):1003—1006
    [98]葛成军,俞花美.多环芳烃在土壤中的环境行为研究进展[J].中国生态农业学报,2006,14(1):162-165
    [99]宫璇,李培军,张海荣,等.菲对土壤酶活的影响[J].农村环境科学学报,2004a,23(5):981-984
    [100]宫漩,李培军,张海荣,等.土壤的芘污染与土壤酶活性[J].农村生态环境,2004b,20(3):53—55,59
    [101]关松荫等.土壤酶及其研究法[M].北京:农业出版社,1986
    [102]郭华,杨红.乙草胺及其它酰胺类除草剂在环境中的降解与迁移[J].农药,2006,45(2):87—91
    [103]贺淹才.蚯蚓对改良土壤和改善农业生态环境的作用[J].黑龙江农业科学,2004,2(6):42—44
    [104]何耀武,区自清,孙铁珩.多环芳烃类化合物在土壤上的吸附[J].应用生态学报,1995,6(4):423-427
    [105]何忠俊,梁社往,洪常青,等.土壤环境质量标准研究现状及展望[J].云南农业大学学报,2004, 19(6):700—705
    [106]胡健,张国平,刘丛强.固相萃取柱净化-液相色谱法测定大气中多环芳烃[J].地球与环境,2004,32(3):94—97
    [107]胡家会,张永忠.持久性有机污染物(POPs)的研究进展[J].科技导报,2006,24(7):2729
    [108]吉云秀,邵密华.多环芳烃的污染及其生物修复[J].交通环保,2003,24(5):33—36
    [109]姜霞,区自清,应佩峰.14C—菲在“植物,火山石,营养液,空气”系统中的迁移和转化[J].应用生态学报,2001,12(3):451-454
    [120]孔志明,臧宇,钟远,等.两种新型杀虫剂对蚯蚓精子形态的影响[J].癌变、畸变、突变,1999,11(1):14—16
    [121]李昌平,钱谊,戴明丽.我国土壤环境标准体系的构建[J].安徽农业科学,2008,36(34):15180-15182
    [123]李丹.土壤环境质量评价标准选取的探讨[J].冶金矿山设计与建设,1996,28(2):56—60
    [124]李典友,程仁法.指示生物蚯蚓对生态环境质量的指示作用[J].安徽农业科学,2006,34(18):4637-4638
    [125]梁继东,周启星,孙福红.蚯蚓在环境安全研究中的应用[J].生态学杂志,2006,25(5):581-586
    [126]梁继东,周启星.乙草胺、Cu污染共存对土壤甲胺磷蚯蚓降解过程的影响研究[J].环境科学学报,2006,26(2):306—311
    [127]凌婉婷,朱利中,高彦征,等.植物根对土壤中PAHs的吸收及预测[J].生态学报,2005,25(9):2320-2325
    [128]刘景春,李裕红,晋宏.铜污染对辣椒产量、铜积累及叶片膜保护酶活性的影响[J].福建农业学报,2003,18(4):254—257
    [129]龙健,黄昌勇,滕应,等.矿区废弃地土壤微生物及其生化活性[J].生态学报,2003,23(3):496-503
    [130]刘世亮,骆永明,丁克强,等.土壤中有机污染物的植物修复研究进展[J].土壤,2003,35(3):187-192
    [131]刘树庆.保定市污灌区土壤的Pb、Cd污染与土壤酶活性关系研究[J].土壤学报,1996,33(2):175-182
    [132]刘婉,宋玉芳,周启星,等.氯苯胁迫对小麦发芽与幼苗生长的影响[J].农业环境保护,2001,20(2):65—68
    [133]鲁业生.中国大百科全书环境科学卷:有机氯农药污染途径[M].北京:中国大百科全书出版社,1983
    [134]陆志强.多环芳烃对秋茄幼苗的生理生态效应及其在九龙江口红树林湿地的含量与分布[D]. 厦门:厦门大学,2002
    [135]穆季平.持久性有机污染物(POPs)研究进展[J].环境科学与技术,2006(29):140—143
    [136]潘勇军,田大伦,唐大武,等.樟树林生态系统中多环芳烃含量和分布特征[J].林业科学,2004,40(6):2—7
    [137]彭林,曾凡刚,陈名棵,等.太原市大气总悬浮颗粒物中正构烷烃和多环芳烃空间分布及来源分析[J].岩矿测试,2003,22(3):206
    [138]彭林,陈名棵,张春梅.兰州市大气飘尘中多环芳烃分布及来源判识[J].太原理工大学学报,2000,31(2):126—128
    [139]平立凤,骆永明.有机质对多环芳烃环境行为影响的研究进展[J].土壤,2005,37(4): 362-369
    [140]齐文启.日本土壤环境质量标准的制定[J].上海环境科学,1997,16(3):4—6
    [141]邱江平.蚯蚓及其在环境保护中的应用——蚯蚓生态毒理学[J].上海农学院学报,1999,17(4):301—302
    [142]阮栋梁,张英锋,张永安,等.POPs——持久性有机污染物和危害[J].渤海大学学报(自然科学版),2006,27(3):193—198
    [143]史雅娟,王听,吕永龙,等.DDT和三氯杀螨醇对蚯蚓的急性和亚急性毒性影响[J].环境科学学报,2006,26(5):851-857
    [144]宋玉芳,常士俊,李利,等.污灌土壤中多环芳烃的积累与动态变化研究[J].应用生态学报,1997,8(1)):93—98
    [145]宋玉芳,许华夏,任丽萍,等.重金属对土壤中萝卜种子发芽与根伸长抑制的生态毒性[J].生态学杂志,2001,4(2):4—8
    [146]宋玉芳,周启星,许华夏,等.菲、芘、1,2,4-三氯苯对土壤高等植物根伸长抑制的生态毒性效应[J].生态学报,2002,22(11):1945—1950
    [147]宋玉芳,周启星,许华夏,等.菲、芘、1,2,4—三氯苯对蚯蚓的急性毒性效应[J].农村生态环境,2003,19(1):36—39
    [148]宋玉芳,周启星,宋雪英.土壤整体质量的生态毒性评价[J].环境科学,2005,26(1):130-134
    [149]苏丽敏,袁星.持久性有机污染物(POPs)及其生态毒性的研究现状与展望[J].重庆环境科学,2003,25(9):62—64
    [150]孙立波,郭观林,周启星,等.某污灌区重金属与两种持久性有机污染物(POPs)污染趋势评价[J].生态学杂志,2006,25(1):29—33
    [151]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001
    [152]田芹,周志强,江树人.丁草胺在环境中降解行为的研究进展[J].农药,2004,43(5):205
    —208
    [153]万本太.中国生态环境质量评价研究[M].北京:中国环境科学出版社,2004
    [154]王国庆,骆永明,宋静,等.土壤环境质量指导值与标准研究Ⅰ.国际动态及中国的修订考虑[J].土壤学报,2005,42(4):665-672
    [155]王宏康.“土壤环境质量标准”编制进展[J].重庆环境科学,1996,18(1):20—24
    [156]王雅琴,左谦,焦杏春,等.北京大学及周边地区非取暖期植物叶片中的多环芳烃[J].环境科学,2004,25(4):23—27
    [157]王泽港,葛才林,万定珍,等.1,2,4-三氯苯和萘对水稻幼苗生长的影响[J].农业环境科学学报,2006,25(6):1402—1407
    [158]王振中,张友梅,夏卫生.有机磷农药对土壤动物群落结构的影响研究[J].生态学报,1996,16(4):357—366
    [159]夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996:8—15
    [160]夏家淇,骆永明.我国土壤环境质量研究几个值得探讨的问题[J].生态与农村环境学报,2007,23(1):1—6
    [161]夏卫生,王振中.甲胺磷影响蚯蚓呼吸强度的模拟研究[J].湖南师范大学自然科学学报,1994,17(3):77—82
    [162]夏增禄.土壤环境容量及其信息系统[M].北京:气象出版社,1991:108—144
    [163]谢文明,韩大永,孟凡贵,等.蚯蚓对土壤中有机氯农药的生物富集作用研究[J].吉林农业大学学报,2005,27(4):420—428
    [164]谢武明,胡勇有,刘焕彬,等.持久性有机污染物(POPs)的环境问题与研究进展[J].中国环境监测,2004,20(2):58—61
    [165]颜增光,何巧力,李发生.蚯蚓生态毒理试验在土壤污染风险评价中的应用[J].环境科学研究,2007,20(1):134—142
    [166]杨志新,刘树庆.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报,2001,21(1):60—63
    [167]叶媛蓓.拟南芥对多环芳烃胁迫的生理响应[D].福州:福建农林大学,2007
    [168]于小丽,张江.多环芳烃污染与防治对策[J].油气田环境保护,1996,6(4):53—56
    [169]于秀燕,丁永生.多环芳烃的环境分布及其生物修复研究进展[J].大连海事大学学报,2004,30(4):55—56
    [170]袁建新,王云.我国《土壤环境质量标准》现存问题与建议[J].中国环境监测,1996,16(5):41—43
    [171]岳敏,谷学新,邹洪,等.多环芳烃的危害与防治[J].首都师范大学报,2003,24(3):40—44
    [172]占新华,周立祥,万寅婧,等.水溶性有机物对植物吸收菲的影哪极其机制研究[J].环境科学,2006,27(9):1884—1888
    [173]张宝贵,李贵桐,申天寿.威廉环毛蚯蚓对土壤微生物量及活性的影响[J].生态学报,2000,20(1):168—172
    [174]张晶,张惠文,张勤,等.长期石油污水灌溉对东北旱田土壤微生物生物量及土壤酶活性的影响[J].中国生态农业学报,2008,16(1):67—70
    [175]张友梅,王振中.土壤污染对蚯蚓的影响[J].湖南师范大学自然科学学报,1996,19(3):84—89
    [176]章家恩.土壤生态健康与食物安全[J].云南地理环境研究,2004,6(4):1—4
    [177]赵作媛,朱江,陆贻通.镉-菲复合污染对蚯蚓急性毒性效应的研究[J].上海交通大学学报(农业科学版),2006,24(6):553—557
    [178]钟远,臧宇,罗屿,等.新型杀虫剂对蚯蚓的毒理学研究[J].农业环境保护,1999,18(3):102-105
    [179]周国华,刘占元.区域土壤环境地球化学研究——异常成因判别·环境质量·污染程度评价的思路与方法[J].物探与化探,2003,27(3):223—226
    [180]周礼恺.土壤酶学[M].北京:科学出版社,1987
    [181]周启星.复合污染生态学[M].北京:中国环境科学出版社,1995
    [182]周启星,程云,张倩茹,等.复合污染生态毒理效应的的定量关系分析[J].中国科学,2004,33 (6):566—573
    [183]周启星,罗义,祝凌燕.环境基准值的科学研究与我国环境标准的修订[J].农业环境科学学报,2007,26(1):1—5
    [184]周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004
    [185]周启星,王如松.乡村城镇化水污染的生态风险及背景警戒值的研究[J].应用生态学报,1997,8(3):309—313
    [186]朱凡,田大伦,闫文德,等.四种绿化树种土壤酶活性对不同浓度多环芳烃的响应[J].生态学报,2008,28(9):4195—4202
    [187]朱九生,乔雄梧,王静,等.乙草胺在土壤环境中的降解及其影响因子的研究[J].农业环境科学学报,2004,23(5):1025—1029
    [188]左海根.农药对蚯蚓的单一及复合毒性研究[D].南京:南京农业大学,2005:5—6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700