兰州市主要绿化树种对大气污染的生理生态反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着兰州市社会经济持续快速的增长和市民生活水平的提高,兰州市的大气污染越来越严重,严重地干扰了市民的生活,成为制约城市经济发展的重要因素。在各种污染物中,SO_2和灰尘是兰州市主要污染物。利用城市绿化树种对大气污染物的吸附、吸收、转移等净化能力,来治理大气污染尤其是近地表大气的混合污染是近年来国际上正在加强研究和迅速发展的前沿性新课题。为了筛选出大气污染的抗性树种种类和敏感监测树种种类,选择兰州市的主要绿化树种为研究对象,对绿化树种的叶绿素、脯氨酸、可溶性糖、pH值进行了测定,并且运用statistica 6.0软件进行分析,找出污染大气污染程度和指标变化之间的关系。
     本实验共分为两部分。第一部分为室内实验:选择兰州市的主要绿化树种——小叶黄杨、臭椿、圆柏、松树、毛白杨、国槐为研究对象,进行SO_2静态人工熏气实验。然后观察树种在不同熏气浓度下形态症状的变化,测定各个树种生理指标(如pH值、脯氨酸、可溶性糖、叶绿素)的变化,进而推断各树种的抗污染能力的大小。
     实验结果表明:在SO_2熏气的条件下,各个绿化树种不管是形态症状还是生理指标都表现出了很大的差异性。通过树种的形态症状的变化可以推断,臭椿、小叶黄杨、毛白杨是SO_2很好的抗污染树种,国槐是SO_2抗性中等的树种,圆柏、雪松是SO_2的指示性树种。对生理指标进行线性回归,推断叶片中的脯氨酸含量与熏气浓度呈显著性的正相关,而叶绿素总含量则与熏气浓度成显著性的负相关;6种绿化树种的抗污染能力的大小为:毛白杨>小叶黄杨>臭椿>国槐>圆柏>雪松。根据抗污染能力的大小,绿化树种的可以分为3大类:强抗污染能力树种、中等抗污染能力树种、指示性树种。其中:毛白杨、小叶黄杨、臭椿属于强抗污染能力树种:国槐属于中等抗污染能力树种;圆柏、雪松属于大气污染的指示性树种。通过人工滞尘实验,测出树种的滞尘量,确定树种滞尘能力,研究表明毛白杨和臭椿因表面有绒毛,有利于粉尘降落,是好的城市绿化滞尘树种。
     熏气实验中树种对污染物抗性程度的确定是建立在不同树种对单种污染物反应的基础上,被实际野外栽培时,则面临着多种混合污染物的共同侵扰,于是进行第二部分的室外实验。
     在兰州市选择大气污染典型污染区(兰炼厂区、兰化厂区)、交通枢纽(西站,西关)、一般污染区(兰州交通大学)和清洁对照区(兴隆山)作为研究区,通过现场大气污染指标的定位观测,以兰州市主要绿化树种(杨树、小叶黄杨、椿树、国槐、圆柏)为研究对象,采集样品带回实验室测定各项生理指标(叶绿素、脯氨酸、可溶性糖、pH值):测定分析兰州市主要大气污染源区的污染组分及程度,确定不同绿化树种对兰州市大气污染的耐受程度,并进行综合评价。
     结果表明:同一树种在不同污染区的各项生理指标含量不同,存在显著性的差异,同一污染区的各种绿化树种的生理指标含量也存在显著性的差异。5种树种的抗污染能力为:杨树>小叶黄杨>椿树>国槐>圆柏,兰州主要污染区的污染程度为:兰炼厂区>兰化厂区>橡胶厂>西关>西站>交大>兴隆山。研究结果可以为兰州市的大气污染治理提供理论和实践依据。
With the rapid development of socio-economic and the improvement of the living standards, the air pollution of Lanzhou city is becoming worse and worse. So it becomes the most important factor that disturbs the people's life and restricts the development of the economic. In all kinds of pollutants, SO_2 and dust are becoming the major pollutants of Lanzhou city. Using the urban greening tree species to absorb the air pollutants is a popular method. And the method is developing very rapidly and has become the foreland item. In order to screen out resistant tree species and sensitive monitoring plant species, five kinds of urban greening tree species are tested, and the chlorophyll contents, soluble sugar contents, proline contents are measured. Then the data is analyzed by statistica 6.0 software.
     The experiment is divided into two parts. The First part is performed in inner house. The main urban greening tree species, for example, Ailanthus altissima, Euonymus japonicus, Populus tomentosa, Sabina chinensis, Cedrus deodara, Sorphora japonica are selected and placed in SO_2 pollution. Then the morphological symptoms change and the physiological indexes are observed. Resistant degree of plant upon sulfur dioxide pollution is estimated. The experiment shows, not only the morphological symptoms, but also the physiological indexes are all changed significantly in the SO_2 fumigation. Though the morphological symptoms change, it shows that Ailanthus altissima, Euonymus japonicus, Populus tomentosa are good SO_2 absorption tree species. Sorphora japonica has a mean sensitivity to SO_2. Sabina chinensis and Cedrus deodara are very sensible to SO_2 pollution, and both of them can be used as the indicators of SO_2 pollution. Though the physiological indexes change, it shows that the proline contents have a significant positive correlation with the SO_2 concentration, but the chlorophyll contents have a significant negative correlation with the SO_2 concentration. The sequence of pollution tolerance ability can be ranked as: Populus tomentosa, Euonymus japonicus, Ailanthus altissima, Sorphora japonica, Sabina chinensis, Cedrus deodara. All the six tree species are divided into three categories: good SO_2 absorption tree species such as Ailanthus altissima, Euonymus japonicus, Populus tomentosa, mean sensitivity to SO_2 pollution such as Sorphora japonica, sensible to SO_2 pollution such as Sabina chinensis and Cedrus deodara. After the dust detetion test, Populus tomentosa and Ailanthus altissima are good dust detention urban greening tree species.
     The resistance of the urban greening tree species to SO_2 pollution is tested under single SO_2 pollution fumigation, so the result may not be suitable for the natural condition. So the following outside experiment is carried out.
     Four categories functional areas are screened out, for example, the representative pollution area, traffic hinge pollution area, normal pollution area, cleanness area. In the five sorts of areas, five common urban greening tree species are chosen. And the ingredients of the air are measured. The samples of the urban greening tree species are carried to the lab and are tested.
     The experiment shows that, the physiological indexes are different from each other, moreover have reached the significant positive or negative correlation. And in the same place, the indexes are also very different. The sequence of pollution tolerance ability can be ranked as: poplar, Buxus microphylla, Ailanthus altissima, Sorphora japonica, Sabina chinensis. The pollution degree of the seven tested sites in Lanzhou can be ranked as: The oil refining plant, the chemical plant, the rubber plant, xiguan station, xizhan station, Lanzhou jiaotong university, xinglongshan mountain. The experiment can offer theories and practices for the air pollution management in Lanzhou city.
引文
[1] 蒋高明.木本树种对大气污染指示与监测作用研究:博士论文.北京:中科院树种研究所,1993.
    [2] Kunzli, N., Ackermann, L. U., Brandli, O. et al.. Clinically "small" effects of air pollution on FVC have a large public health impact. Swiss Study on Air Pollution and Lung Disease in Adults(SAPALDIA). European Respiratory Journal, 2000, 15(1): 131-136
    [3] Peters, A., Perz, S. , Doting, A. et al.. Increases in heart rate during an air pollution episode. American Journal of Epidemiology, 1999, 150(i0): 1094-1098.
    [4] Wong, C. M., Hu, Z. G., Lam, T. H. et al.. Effects of ambient air pollution and environmental tobacco smoke on respiratory health of non-smoking women in HongKong. International Journal of Epidemiology, 1999, 28(5): 859-864.
    [5] Campbell, M. J. & Tobias, A.. Causality and temporality in the study of short-term effects of air pollution on health. International Journal of Epidemiology, 2000, 29(2): 271-273.
    [6] 张志杰,张维平.环境污染生物监测与评价.北京:中国环境科学出版社,1991,1-204.
    [7] Dodd,I.C.&Doley,D..Growth responses of cucumber seedlings to sulphur dioxide fumigation in a tropical environment.Environmental&Experimental Botany,1998,39(1):41-47.
    [8] Mudd,J.B.&Kozlowski,T.T.Responses of plants to air pollution.Academic Press.刘富林译.北京:科学出版社,1975,1-335.
    [9] 王英斌.全球树种生存告急.环境,1998,11:15.
    [10] 李吉跃,罗红艳,刘增.北京市大气污染状况及抗污染树种的选择.首都绿化委员会办公室,北京市科协技术学会编,“21世纪的首都绿化”.北京:中国林业出版社,1999,249-251.
    [11] 殷京生,孙曰.环境现代化:一个不能忽略的城市发展问题.环境,1998,10:6-7.
    [12] 吴国平,胡伟,腾恩江.我国四城市空气中PM2.5和PM10的污染水平.中国城市科学,1999,19(2):133-137.
    [13] 曹洪法.我国大气污染及其对树种的影响.生态学报,1990,10(1):7-12.
    [14] 张镭,陈长和,李淑霞等.兰州城市大气污染和可能的技术控制措施.环境科学研究,2000,13(4):18-21.
    [15] 骆永明,查宏光,宋静等.大气污染的树种修复.土壤,2002,3:113-119.
    [16] 孔国辉,陈宏通,刘世忠等.广东园林绿化树种对大气污染的反应及污染物在叶片中的积累.热带亚热带树种学报,2003,11(4):297-315.
    [17] 胡羡聪,张德强,孔国辉等.大气SO_2、氟化物对树种生理生态指标的影响.热带亚热带树种学报,2003,11(4):372-378.
    [18] 孔国辉,陆耀东,刘世忠.大气污染对38种木本树种的伤害特征.热带亚热带树种学报,2003,11(4):319-328.
    [19] 高绪评.树种在监测空气污染中的作用.环境监测管理与技术,1992,4(4):67-69.
    [20] 张琼.用敏感树种验证有害气体的危害.中学生物学,2005,21(2):34-35.
    [21] 张桂萍,粟建华.树种在环境保护中的作用.晋东南师范专科学校学报,2002,19(2):35-36.
    [22] 兰州市环保局.兰州环境质量报告(1996-2000年).
    [23] 杨丽.城市园林绿地规划.北京:中国林业出版社,1995.
    [24] 王焕校.污染生态学基础.昆明:云南大学出版社,1990:71-108
    [25] 周速,石泉花.树种与大气污染.新乡教育学院学报,2003,16(4):77-78.
    [26] 李庆杰.大气污染对树种的影响与对策.岱宗学刊,2000,(3):45-46.
    [27] 吴鹏程,罗健謦.苔藓树种与大气污染,环境科学,1979,3:68-72.
    [28] Singh, S. K., Rao, D. N. , Agrawal M. et al.. Air pollution tolerance index of plants. Journal of Environmental Management, 1991, 32: 45-55.
    [29] Heck, W. W., Dunning, J. A. & Hindawi, I. J.. Ozone: Nonlinear relation of dose and injury in plants. Science, 1966, 151(3710): 577-578.
    [30] Smith, W. H., Parker, J. C. & Freeman, W. W.. Exposure of cut flowers to Ethylene in the presence and absence of Carbon Dioxide. Nature, 1966, 211(5044): 99-100.
    [31] Goodman, (3. T. & Roberts, T. M.. Plants and soils as indicators of metals in the air. Nature, 1971, 231(5301): 287-292.
    [32] Dugger, W. M., Taylor, O. C., Klein, W. H. et al.. Action spectrum of peroxyacetyl nitrate damage to bean plants. Nature, 1963, 198(4875): 75-76.
    [33] 蒋高明.大气污染指示树种的研究.城市环境与城市生态,1992,5(4):40-45.
    [34] 孔祥生,张妙霞,郭秀璞.Cd毒害对玉米幼苗细胞膜透性及保护酶活性的影响.农业环境保护,1999,18(3):133-134.
    [35] 连玉武,林卓煌,黄道营.几种树种对大气中SO_2暴露的生理特性研究.污染防治技术,1994,7(4):59-62.
    [36] 杨志刚.大气污染对香樟叶片几种生理生化指标的影响.常熟高专学报,2003,17(2):3-75.
    [37] 陆长梅,吴国荣,顾龚平.大气污染对悬铃木叶片几种生理生化指标的影响.扬州教育学院学报,2000,3:15-17.
    [38] 杨居荣,黄翌.树种对重金属的耐性机理.生态学杂志,1994,13(6):20-26.
    [39] 彭鸣,王焕校,吴玉树等.镉、铅诱导的玉米(zea mays L-)幼苗细胞超微结构的变化,中国环境科 学,1991,11(6):426-431.
    [40] Branquinho, C., Brown, D. H. & Catarino, E. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescene, Environmet Experim Bot, 1997, 38:165-179.
    [41] 杨丹慧,许春辉,王可玢等.镉离子对菠菜叶绿体色素蛋白质复合物及激发能分配的影响.树种学报,1990,32(3):198-204.
    [42] 郑淑颖.二氧化硫污染对树种影响的研究进展.生态科学,2000,19(1):59-64.
    [43] 刘荣坤.二氧化硫对树种伤害及其机理的研究.中国环境科学,1982,6:75-78.
    [44] 邹晓燕,刘厚田,刘若安.树种对SO_2的敏感性与超氧化物歧化酶活性的关系.中国环境科学,1989,9(6):427-432.
    [45] 张太平,段昌群.玉米在重金属污染条件下的生态分化与品种退化.应用生态学报,1999,10(6):743-747.
    [46] 袁长春,施苏华,赵运林.湖南四种尾矿环境下的狗牙根遗传多样性的RAPD分析.广西树种,2003,23(1):36-40.
    [47] 文传浩,段昌群,常学秀等.重金属污染下曼陀罗种群分化的RAPD分析.生态学报,2001,21(8):1239-1245.
    [48] Tomsett, A. B. & Thurman, D. A.. Molevular biology of metal tolerance of plants. Plant Cell Environ, 1988, (11): 383-394.
    [49] 段昌群.树种对环境污染的适应与树种的微进化.生态学杂志,1995,14(5):43-50.
    [50] 温达志,孔国辉,张德强等.30种园林树种对短期大气污染的生理生态反应.树种生态学报,2003,27(3):311-317.
    [51] Bradshow, A. D.. Populations of Agrostis tenuis resistant to lead and zinc poisoning. Nature, 1952,169: 1098.
    [52] Louis, P.. Evolutionary Response of Plants to Anthropogentic Pollutants.Trends in Ecology & Evoluation, 1988, 3(9): 233-236.
    [53] Merrell,D.J.著.黄瑞复等译.生态遗传学,北京:科学出版社,1991:356-370.
    [54] MacNair, M. R.. Why the evolution of resisitance to anthropogenic toxins normally involves major gene changes: the limits to natural selection. Genetica, 1991, 84:213-219.
    [55] Mark, R. , Macnair, M. R. & Tansley, T.. The Genetics of Metal Tolerance in Vascular Plants. New Phytophysio, 1993, 124: 541-559.
    [56] 刘艳菊,丁辉.树种对大气污染的反应与城市绿化.植物学通报,2001,18(5):577-586.
    [57] 彭长连,温达志,孙梓健等.城市绿化树种对大气污染的响应.热带亚热带树种学报,2002,10(4):321-327.
    [58] 何士敏,赫延令.大庆石化空气污染区树木叶片内蛋白质、核酸、游离氨基酸及过氧化物酶同工酶含量的变化.环境科学,1992,13(2):38-40.
    [59] Anderson, T. A.. Bioremediation in the rhizosphere. EnvironSci Technol, 1993, 27(13): 2630-2635.
    [60] Alkorta, I. & Garbisu, C.. Phytoremediation of organic contaminants in soils. Biores Technol, 2001,79(3): 273-276.
    [61] 符气浩,杨小波,吴庆书等.海口市大气污染的特点与主要绿化树种对大气SO_2等污染物的净化效益研究.海南大学学报(自然科学版),1995,13(41):304-308.
    [62] Simonich, S. T.. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature, 1994, 370:49-51.
    [63] Meredith, M. L.. Polychlorinated biphenyl accumulation in tree bark and wood growth rings. Environ. Sci Technol., 1987, 21: 709-712.
    [64] Trapp, S.. Sorption of lipophilic organic compounds to wood and implication for their environmental fate. Environ Sci Technol., 2001, 35: 1561-1566.
    [65] Comejo, J. J.. Studies on the decontamination of air by plant. Ecotoxicology, 1999, 8:311-320.
    [66] Schoor, J. L.. Phyremedaition of organic and nutrient contaminants. Environ. Sci. Technol., 1995, 29: 318A-323A.
    [67] Lee, I.. Involvement of mixed function oxidase systems in PCB metabolism in plant cells. Plant Cell Reports, 1995, 11: 250.
    [68] Kas, J.. Perspectives in biodegradation of alkanes and PCBs. Pure Appl Chem., 1997, 69: 2357-2369.
    [69] Gordon, M.. Phytoremediation of trichloroethylene with hybrid poplars. Environ. Health Perspect,1998, 106(suppl4): 1001-1004.
    [70] Anderson, T. A.. Comparative fate of [~(14)C] trichoroethylene in the root zone of plants from a former solvent disposal site. Environ Toxicol Chem., 1996, 12: 2041-2047.
    [71] Wolfenbarger, L. L.. The ecological risks and benefits of genetically engineered plants. Science, 2000, 290: 2088-2093.
    [72] Chaudiere, J.. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol., 1999, 37:949-962.
    [73] Omasa,K.. Air pollution and plant biotechnology prospects for phytomonitoring and phytoremediation. Tokyo:Springer-Verlag, 2002: 383-401.
    [74] Hemon, P.. Targeting of glutamine synthase to the mitochondria of transgenic tabacco. Plant Mol Biol.,1990, 15: 895-904.
    [75] Takahashi, M.. Nitrite reductase gene enrichment improves assimilation of nitrogen dioxide in Arabidopsis. Plant Phsiol., 2001, 126: 731-741.
    [76] Tripathi, B. D. & Tripathi, A.. Foliar injury and leaf diffusive resistance of rice and white bean in response to sulfur dioxide and ozone, singly and in combination. Environmental Pollution, 1992, 75(3):265-268.
    [77] Qifu, M. & Murray, E . Responses of potato plants to sulfur dioxide, water stress and their combination. New Phytologist, 1991, 118 (1): 101-110.
    [78] Biondi, E, Mignanego, L. & Schenone, G.. Correlation between environmental parameters and leaf injury in Nicotiana tabacum L.CV. Bel-W3. Environmental Monitoring and Assessment, 1992, 22(1):73-87.
    [79] 孔国辉,余清发,易敬度等.98种园林树种对氯气的反应和抗性的研究.生态学报,1984,4(1):21-33.
    [80] 李嘉钰,殷长寿.绿化树种对臭氧的反应和相对抗性.林业科技通讯,1983,9:22-24.
    [81] 王明启,王莉.工厂绿化抗污染树种选择的研究.吉林林学院学报,1991,7(3):58-62.
    [82] Micieta, K. & Murín, G.. Three species of genus pinus suitable as bioindicators of polluted environment. Water, Air, and Soil Pollution, 1996, 104: 413-422.
    [83] 高绪评.氯气对树种呼吸作用的影响.树种生理学通讯,1982,2:12-14.
    [84] 杨礼锐,李艳霞,孔祥明.树种叶片超氧化物岐化酶与二氧化硫大气污染关系的研究.环境科学,1989,10(5):22-26.
    [85] 韩阳,王秋雨,韩光燮.树种叶片SOD活性分析及树种抗性等级的划分.辽宁大学学报,1995,22(2):71-74.
    [86] Bacic, T. & Popovic, Z.. Preliminary report on epicuticular wax surface condition on stomata of Abies alba Mill. needles from Risnjak National Park in Croatia. Acta Biologica Cracoviensia Series Botanica, 1998, 40:25-31
    [87] 王家训,胡金兰.工厂大气混合污染区观赏树种叶片气孔的研究.华中师范大学学报,1991,25(3):339-345.
    [88] 李嘉钰.复合污染条件下树木对硫、氟吸收能力的初步分析.林业科技通讯,1983,7:16-20.
    [89] Neubert, A., Kley, D., Wildt, J. et al.. Uptake of NO, NO_2 and O_3 by sunflower (Helianthus annuus L.) and tobacco plants (Nicotiana tabacum L.): Dependence on stomatal conductivity. Atmospheric Environment Part A General Topics, 1993, 27(14): 2137-2145.
    [90] Kula, E. & Hrdlicka, P.. Monitoring of nutrient and extraneous elements in the foliage of birch-trees growing in an air pollution area. Lesnictvi Prague, 1998, 44(1): 1-9.
    [91] Kondo, T., Hasegawa, K., Uchida, R. et al.. Absorption of atmospheric C_2-C_5 aldehydes by various tree species and their tolerance to C_2-C_5 aldehydes. Science of the Total Environment, 1998, 224(1-3):121-132.
    [92] Hrdlicka, E & Kula, E.. Element content in leaves of birch (Betula verrucosa Ehrh.) in an air polluted area. Trees Berlin, 1998, 13(2):68-73.
    [93] Hove, L. W. A., Bossen, M. E., Bok, E A. M. et al.. The uptake of O_3 by poplar leaves: The impact of a long-term exposure to low O_3-concentrations. Atmospheric Environment, 1999, 33(6): 907-917
    [94] Unsworth, M. H. & Ormrod, O. P.. 大气污染物对开花和结实的影响.国外农业环境保护, 1990, 1:37-38.
    [95] 刘耘.重金属粉尘污染大气对绿色树种的影响.大气环境,1990,5(4):2-5.
    [96] 贺克斌.总悬浮微粒中的沥青成分在树种中的累积.环境科学,1995,16(6):63-65.
    [97] 蒋高明.树种硫含量法监测大气污染数量模型.中国环境科学,1995,15(3):209-214.
    [98] 许皖菁,颜贻明,吴方正.桑叶表面氟化物吸附积累规律的统计研究.环境污染与防治,1998,20(3):19-210.
    [99] 周忠梁.北京地区抗污染树种的筛选、繁殖和示范的研究.园林科技信息.1996,9,1-19.
    [100] 苗明升.济南市绿化树种抗大气污染的调查.山东林业科技,1993,1:46-48.
    [101] 张宪政.树种叶绿素含量测定——丙酮乙醇混合液法.辽宁农业科学,1986,3:26-28.
    [102] 张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法.树种生理学通讯,1990,4:62-65.
    [103] 朱广廉,邓兴旺,左卫能.树种体内游离脯氨酸的测定.树种生理学通讯,1983,1:35-37.
    [104] 李和生,孙群,赵世杰等.植物生理生化实验原理与技术。北京:高教出版社,2005.
    [105] 董希文,崔强,王丽敏等.园林绿化树种枝叶滞尘效果分类研究.防护林科技,2005,1:28-29、88.
    [106] STATSOFT Inc.STATISTCIA FOR Windows Release 6.0.2001
    [107] 关丽杰,陶飞,劭双等.二氧化硫对树种生理生化的影响.环境保护科学,2005,31(128):51-53.
    [108] 李海亮,赵庆芳,王秀春等.兰州市大气污染对绿色树种生理生态特性的影响.西北师范大学学报.2005.41(1):55-60.
    [109] Kemple, A. K. & Macpherson, H. T.. Liberation of amino acid in perennial rye grass during wilting. Biochem, 1954, 58: 46-49.
    [110] 汤章诚.逆境条件下树种脯氨酸的积累及其可能的生态学意义.树种生理学通讯,1984,1:15-21.
    [111] Smimoff, N.. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol, 1993, 125: 27-31.
    [112] 蒋明义,郭邵川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用.树种生理学报,1997,23(4):347-352.
    [113] 肖用森,王正直.渗透胁迫下稻苗中游离脯氨酸积累与膜脂过氧化的关系.武汉树种学研究,1996,14(4):334-340.
    [114] RATU,R.C.&KRECH,K.H.著.曹洪法译.空气污染指示剂——树种酶活性和叶绿素、蛋白质含量.环境科学从刊,1980,2:71-72.
    [115] XIONG, Z. T.. Bioaccumulation and physiological effects of excess lead in a roadside pioneer species onchus oleraceus L. Environmental Pollution, 1997, 97(3): 275-279.
    [116] PANDEY, J. & PANDEY, U.. Evaluation of air pollution phytotoxicity in a seasonally dry tropical urban environment[J].Environmental Monitoring and Assessment, 1994, 33(3): 195-213.
    [117] AHMAD, Z. & QADIR, S. A.. The effects of air pollution on stomatal clogging, carbohydrate and chlrorophyll contents in certain roadside plants. Pakistan Journal of Botany, 1975, 7(1): 81-84.
    [118] DURGE, D. V. & PHADNAWlS, B. N.. Effect of dust pollution on biomass production and yield of aestivum wheat. Annals of Plant Physiology, 1994, 8(2): 146-152.
    [119] 周星文.沈阳市区大气SO_2污染程度的叶绿素含量检测分析.树种与资源,1997,6(3):63-64.
    [120] 连玉武.树种叶绿素含量与大气环境相关性研究.环境保护科学,1989,15(3):28-31.
    [121] 惠红,高绪评.水稻叶片对模拟酸雨伤害的生理反应。树种资源与科学,1996,5(3):41-45.
    [122] GUPTA, B.. Correlation of Tissues in leaves Absolute Stomatal Numbers. Annals if Botany, 1961, 25(97): 71-77.
    [123] 李思健,杜剑锋,黄刚.浅析绿色植物在改善城市环境中的作用.枣庄师范专科学校学报,2002,20(2):56-58.
    [124] 李顺,唐建华,雍枫.城市绿化抗污染树种的选择.黑龙江环境通报,2005,29(1):68,25.
    [125] 鲁敏,李英杰,鲁金鹏.绿化树种对大气污染物吸收净化能力的研究.城市环境与城市生态,2002,15(2):7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700