基于钝化多孔硅的光纤SO_2传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硫(SO_2)的大量排放造成了严重的大气污染,对人类的生存环境带来巨大的威胁,严格控制SO_2排放迫在眉睫,而采用有效手段动态连续监测大气中SO_2含量则是控制SO_2排放的前提。目前用于SO_2含量检测的方法仍存在一定不足,迫切需要研发可实时在线连续监测SO_2的新技术。多孔硅是一种以硅原子簇为骨架的海绵状新型功能材料,具有室温发光的特性且在SO_2气氛中其发光会发生猝灭,因此可以作为全固态新型传感基底材料。基于实验室前期工作,论文以n型单晶硅片作为原料,采用电化学阳极氧化法在单晶硅表面制备多孔硅薄膜并对其进行钝化处理,形成具有一定抗氧化能力同时具备SO_2传感性能的多孔硅材料。具体内容包括:
     (1)综述目前用于SO_2含量检测的国内外检测手段,分析多孔硅功能材料制备、钝化处理、应用的国内外研究现状及发展方向;
     (2)实验部分研究了电化学阳极氧化法制备多孔硅的条件,提出了形成多孔硅且用于SO_2气体传感的最佳制备条件:电流密度50mA·cm-2,电解液组成HF/C2H5OH=1:1(V/V),阳极氧化时间为15min,同时采用300W碘钨灯照射其抛光面;提出了基于无机强酸和醇混合溶液的紫外光(UV)氧化法,考察了钝化处理后多孔硅发光的稳定性,结果表明经该方法钝化处理的多孔硅在空气中放置12个月后仍然保持良好的发光性能,钝化效果好且对SO_2气体非常敏感;
     (3)开展基于钝化多孔硅传感SO_2的定性、定量研究,获取了SO_2气体传感的响应时间和可逆性。结果表明钝化处理后的多孔硅对SO_2气体表现出良好的荧光猝灭特性和可逆性,多孔硅荧光猝灭幅度与SO_2浓度之间呈正相关;同时针对典型大气污染源其他气体的含量考察了多孔硅对SO_2的选择性,发现除NO2(>100ppm)会对多孔硅的发光产生轻微的影响外,其他气体(CO、CO2、NO)均无影响;最后结合分子猝灭的动力学原理和Stern-Volmer方程得到了多孔硅用于SO_2检测的分段线性响应范围为10~14000ppm。
SO_2 is a primary pollutant, which is the major factor leads to acid rain. Acid rain brings tremendous hazard to nature and human being. So monitoring SO_2 in environment is a critical part in pollution prevention. At present, several methods and instruments are available to monitor the concentration of SO_2 via different systems. However, these techniques have their own limits, such as high working temperature or the preparation of electrodes is complex, most of them involve big-sized analysis apparatus or complex test system, it can not monitor SO_2 in-situ. New approaches to the detection and analysis of SO_2 appear to be in urgent need.
     As novel functional material, porous silicon (PS) electrochemically etched in hydrofluoric acid (HF) solutions has attracted considerable interest because of its strong photoluminescence property under room temperature. The photoluminescence of the etched PS quenched in the SO_2 atmosphere and high concentration of typical atmospheric and industrial waste gases does not evoke a quenching response. Then lots of idea is presented to use PS as the material to detect the concentration of SO_2 in the air.
     Based on the former work of our team, n-type silicon wafer is used as the start material to prepare porous silicon film by electrochemical anodic oxidation, then a steady photoluminescence PS is obtained by surface passivation. It is expected to get a functional PS material which is anti-oxidized in the air and excellent sensing property to SO_2. The main points of this dissertation are as following:
     (1) It is summarized that the current studies situation and perspective orient of detecting SO_2, preparation mechanism and applied research status of porous silicon.
     (2) The optimal condition to prepare the PS for SO_2 detecting is presented: current density 50mA·cm-2, electrolyte HF/C2H5OH=1:1(V/V), oxidized time 15min. Based on the former passivation methods, a new method is presented by immerging the fresh etched PS with inorganic acid and alcohol solution via UV-irradiation for 30min to obtain a stable photoluminescence PS. This method doesn’t diminish the sensitivity of PS to SO_2. It showed improved sensitivity and reversibility in response to SO_2. The photoluminescence of the passivated PS is very steady after it was stored in ait for 12monthes.
     (3)According to the experimental results of porous silicon sensing SO_2 qualitatively and quantitatively, it is discovered that photoluminescence quenching values of porous silicon oxidized by n-type single-crystal silicon wafers correlated with concentration of SO_2 positively. Moreover, researching the selectivity of passivated PS to SO_2 based on the typical pollution source, it shows that the selectivity of the PS is excellent, but the NO2 affects the selectivity only when its concentration is over 100ppm. According to dynamics mechanism of molecule quenching and Stern-Volmer equation, the linear response range of PS to detect SO_2 10~14000ppm is obtained.
     This technic applies the novel passivated PS and a mini-size fiber spectrometer to achieve SO_2 sensing process. This system is different from the big-sized analysis apparatus or complex test system. It is a simple, feasible and portable method to monitor SO_2.
引文
[1] 王庆一. 能源政策研究[C].中国能源研究会,北京,2002.
    [2] 孙荣庆. 我国二氧化硫污染现状与控制对策[J].中国能源 2003,(25):25-28.
    [3] 秦杰,邹声文. 我国二氧化硫排放总量将逐年减少[J].科学时报 2002,(2):91.
    [4] 王世玲. 二氧化硫污染一年吃掉5000亿[R].21世纪经济报道,2006.8.7,1-2.
    [5] 孙红梅,彭慰先,孙桂娟. 二氧化硫光谱检测技术[J].环境监测管理与技术,2004.3(16):25.
    [6] MT. Kelly, J.K.M. Chun, A.B. Bocarsly. A silicon sensor for SO2[J]. Nature. 1996.382: 214-215.
    [7] 黎学明,杨建春,陈伟民. 基于多孔硅光激荧光淬灭效应的SO2传感器[J].光电子·激光. 2001,12(10): 992.
    [8] 王世香,王琴,邹法俊,余运海. 我国二氧化硫污染状况及控制对策[J].信阳农业高等专科学校学报, 2002.3(12):20.
    [9] 二氧化硫的危害[R/OL].电站技术文章. (2006.9.9). http:// www.cnpower.org.
    [10] 王代长,蒋新,卞永荣.模拟酸雨对不同土层酸度和K+淋湿规律的影响[M].环境科学,2003,24(2):30-34.
    [11] 樊后保. 酸雨对森林衰退关系研究综述[J].福建林学院学报,2003,22(1):88-92.
    [12] 吴劲兵,汪家权,孙世群. 酸沉降农业经济损失估算[J].合肥工业大学学报(自然科学版),2002,25(1): 100-104.
    [13] 廖柏寒,蒋青. 我国酸雨中盐基离子的重要性[J].农业环境保护,2001,20(4): 254-256.
    [14] 樊后保. 酸雨与森林衰退关系研究综述[J].福建林学院学报,2003,23(1):88-92
    [15] 汪 家 权 , 吴 劲 兵 , 李 如 忠 等 . 酸 雨 研 究 进 展 与 问 题 探 讨 [J]. 水 科 学 进展,2004,15(4):526-530.
    [16] 金关莲, 汪志达. 环境科学与技术[M]. 北京:高等教育出版社, 1998.
    [17] 李志, 大气中二氧化硫测定方法的研究[J]. 环境监测 2000, 18(2): 23-25.
    [18] 刘锐, 王宇峰, 刘汉初. 还原光度法测定大气中二氧化硫[J]. 环境监测报, 2001, 19(2): 40-41.
    [19] 李学强, 田小燕, 龚波林. 荧光素荧光法测定大气中二氧化硫的研究[J]. 环境监测报, 1999, 20(4):20-22.
    [20] 张华. 碘量法测定废气中二氧化硫含量准确度的研究[J]. 科技情报开发与经济. 2002.12(3): 122-123.
    [21] 王建伟. 烟道气二氧化硫测定方法的选优[J].城市环境与城市生态.1999.6(12):26-27.
    [22] 崔九思, 王钦源, 王汉平. 大气污染检测方法[M]. 北京. 化学工业出版社. 1997: 1-1284.
    [23] W.L.Crider. Methane composition of urban atmospheres[J].Anal.Chem.1965.37:1770-1773.
    [24] 陈九江. 紫外吸收法测定SO2浓度的电路设计[J].电测与仪表.2000, (4):27-29.
    [25] Jules Duchesne B. Rosen. Contribution to the study of elec-tronic spectra of bent triatomic molecules[J]. Journal of ChemicalPhysics, 1947, 15(9):631-644.
    [26] D.Golomb, K.Watanabe, F.Fmarmo. Collection of sulfur doixide on membrane filters[J]. Journal of Chemical Physics, 1962, 36(4):958-960.
    [27] H.Okabe. Fluorescence and prodissociation of sulfur dioxide[J].Journal of the American Chemical Society,1971,93:7095-7097.
    [28] Hideo Okabe, P. L. Splitstone, J. J. Ball. Ambient and source SO2 detector based on a fluorescence method. Journal of the Air Pollution Control Association, 1973, 23(10):514-516.
    [29] Frederic P. Schwarz, Hideo Okabe, Julian K. Fluorescence detection of SO2 in air at the parts per billion level. Whittakr. Anal. Chem., 1974, 46:1024-1028.
    [30] 张新祥,张胜利,陈荣. 荧光光度法测定二氧化硫的基础研究[J]. 光谱学与光谱分析. 1999. 19(6): 878-879.
    [31] 许汉英,王柯敏,王大宁. 高灵敏度二氧化 硫光纤传感器的研究[J]. 高等学校化学学报. 1998. 19(9):1401-1404.
    [32] T.M.A. Razek, M.J. Miller, S.S.M.hassan. Optical sensor for sulfur dioxide based on fluorescence quenching[J]. Talanta. 1999. (50): 491-498.
    [33] HAUS R,SCHAFER K,BAUTZER W,et al.Mobile fourier-transform infrared spectroscopy onitor of air pollution[J].ApplOpt,1994,33(24):5682 5683.
    [34] Agbor N E, Petty M C, Monkman A P.Polyaniline thin films for gas sensing[J]. Sensors and Actuators B, 1995, 28:173-179.
    [35] Lee Y J, Kim H B. Development of a SAW gas sensor for monitoring SO2 gas[J].Sensors and Actuators A,1998,64:173-178.
    [36] Roh Y R,Chung D S,Bas YH.Properties of LiTaO3 single crystals for SAW device applications[J].SensorsMater.,1995,(7):75-84.
    [37] A.Uhlir. Electrolytic shaping of Germanu and silicon[J].Bell syst.Tech.J.1956,35:333-347.
    [38] R.T. Pickery. Stain films on silicon[J].J. Phys. Chem. Solids. 1960. 14: 104.
    [39] L.T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Appl. Phys. Lett. 1990. 57(10): 1046-1048.
    [40] 鲜跃仲,薛键,张文 . 新型 SO2 气体电化学传感器的研究 [J]. 高等学校化学学报.2000.21(9):137-137.
    [41] O. Bisi, S. Ossicini, L. Pavesi. Porous silicon: a quantum sponge structure for silicon based optoelectronics[J]. Surface Science Reports. 2000. 38: 1-126.
    [42] K.D. Hirschman, L. Tsybesk, S.P. Duttagupta, et.al. Silicon-based visible light-emitting devices integrated into microelectronic circuits[J]. Nature. 1996. 384: 338-340.
    [43] Ludemman R, Damiani B, Rohatgi A.Novel processing of solar cells with porous silicon texturing[A].Proceedings of 28th IEEE Photovoltaic Specialists Conference[C],USA,2000,229-302.
    [44] 谢荣国, 席珍强,马向阳等.用化学腐蚀制备多孔硅太阳电池减反射膜的研究[J].材料科学与工程,2002,20(4):507–509.
    [45] Diener J,kunzner N,Kovaler D,etal.Dichronic Bragg reflection based on birefringent porous silicon[J].Appl,Phys Lett,2001,78(240):3887-3889.
    [46] M. Archer, P. M. Fauchet. Electrical Sensing of DNA Hybridization In Porous Silicon Layers[J]. Phys. Stat. Sol. 2002(5):55.
    [47] Barillaro G, Nannni A, Pieri F, APSFET: a new porous silicon based gas sensing device[J].Sensors and Actuators B,2003,93:263-270.
    [48] Liu Rong, Schmedake Thomas A, Li Yang Yang. Novel porous silicon vapor sensor basedon polarization interferometry[J].Sensors and Actuators B,2002,87:58-62.
    [49] Panehri L , Oton C J , Gaburro Z , etal.Very sensitive porous silicon NO2 sensors[J].Sensor and Actuators B,2003,89:237-239.
    [50] Wenyi zhang, Elder A.de Vasconcelos, H.Uchida, T Katsube etal. A study of silicon Schottky diode structures for NOx gas detection[J].Sensors and Actuators B 2000,65,154-156.
    [51] Sanjay Chakane, AishaGokarna, S.V.Bhoraskar, Metallophthalocyanine coated porous silicon gas sensor selective to NO2[J]Sensors and Actuators B 2003,92,1-5.
    [52] T. Chvojka, V. Vrkosiav, I. Jelinek etal .Mechanisms of photoluminescence sensor response of porous silicon for organic species in gas and liquid phases[J]. Sensor and Actuators B, 2004 100 246-249.
    [53] S. Chan, P.M. Fauchet, Y. Li. Porous silicon microcavities for biosensing applications[J]. Phys. Stat.Sol. 2000. (a) 182: 541-546.
    [54] L.T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Appl. Phys. Lett. 1990. 57(10): 1046-1048.
    [55] Lim P, brock J R, trachtenberg I.Laser induced etching of silicon in hydrofluoric acid[J].Appl.phys Lett ,1992,60(4);486-488.
    [56] Chen Qiang wang, Qian yitan, Chen zuyao.Hydrothermal epitaxy of highly oriented TiO2thin film on silicon[J] .Appl,Phys Lett,1995, 66(13);1608-1610.
    [57] Hou xiao yuan, Fan hong lei, xu lei etal.Pulsed anodic etching: An effective method of preparing light-emmiting porous silicon[J]. Appl, Phys Lett, 1996, 66(17); 2323-2325.
    [58] 周为,福田芳雄. 多孔硅层湿法腐蚀现象的研究[J].电子元件与材料,2000,19(5);7-8.
    [59] J.M. Buriak. Silicon-Carbon bonds on porous silicon syrfaces[J]. Adv.Mater. 1999. 11(3): 265-297.
    [60] J.E.Bateman, R.D.Eagaling, D.R.Worrall, et. al. Alkylation of porous silicon by direct reaction with Alkenes and alkynes[J]. Angew.Chem.Int.Ed.. 1998. 37(19): 2693-2685.
    [61] 李新建, 张裕恒. 发光不衰减的多孔硅[J]. 物理. 1999.28(4): 51-53.
    [62] C.Tsai, K.-H.Li, J.Sarathy, et. al. Thermal treatment studies of the photoluminescence intensity of porous silicon[J]. Appl.Phys.Lett. 1991.59(22): 2814-2816.
    [63] J.C.Barbour, D.Dimos, T.R.Guiliinger, et. al. Control of photoluminescence from porous silicon[J]. Nanotechnology. 1992. 3: 202-204.
    [64] David Galbarra et al. Ammonia optical fiber sensor based on self-assembled zirconia thin films[J]. Smart Mater. Struct. 2005.14.739-744.
    [65] V. Lehmann, U. G?sele. Porous silicon formation: A quantum wire effect[J].Appl. Phys. Letters, 1991, 58(8): 856.
    [66] M. A. Tischler, R. T. Collins, J. H. Stathis, and J. C. Tsang.Luminescence degradation in porous silicon[J].Appl.Phys.Letters. 1992.60(5):639.
    [67] L. Tsybeskov, P. M. Fauchet. Correlation between photoluminescence and surface species in porous silicon: Low-temperature annealing[J]. Appl.Phys.Letters. 1994.64(15):1983.
    [68] A. Kux, D. Kovalev, F. Koch.Time-delayed luminescence from oxidized porous silicon after ultraviolet excitation[J].Appl.Phys.Letters.1995.66:49.
    [69] 张志敏.环境检测实用手册[M].中国环境科学出版社.1995.365.
    [70] Y. Ogata, H. Niki, T. Sakka, M. Iwasaki. Hydrogen in Porous Silicon-Vibrational Analysis of Sihx Species[J]. Electrochem. Soc. 142, 195.
    [71] Rocchia, E. Garrone F. Geobaldo L. Boarino, M. J. Sailor.Sensing CO2 in a chemically passivated porous silicon film[J]. phys. stat. sol. (a) 197, No. 2, 365–369.
    [72] Chael P. Schwartz, Frédérique Cunin, Ronnie W. Cheung, Michael J. Sailor. Chemical passivation of silicon surfacesfor biological applications[J].phys. stat. sol. (a) 202, No.8, 1380–1384.
    [73] Assimiliano Rocchia, Stefano Borini. Submicrometer Functionalization of Porous Silicon by Electron Beam Lithography [J].Adv.Mater.2003,15,No.17,1466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700