地黄低聚糖对同种异体脂肪组织来源干细胞移植治疗小型猪急性心肌梗死效应及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:尽管急性心肌梗死(AMI)的治疗取得了一定进步,但仍面临着诸多挑战。干细胞移植治疗AMI是一种很有潜力的方法,但缺血心肌局部恶劣的微环境严重阻碍了其疗效的发挥。
     目的:评价地黄低聚糖(RGOs)对同种异体脂肪组织来源干细胞(ASCs)移植治疗小型猪AMI的疗效,探讨其可能的机制。
     方法:
     第一部分:热水法提取生地黄中的RGOs,经阳离子和阴离子交换树脂洗脱,活性炭柱层析纯化RGOs,以高效液相色谱法(HPLC)检测其水苏糖含量。
     第二部分:酶消化法及贴壁法从小型猪腹股沟脂肪组织中分离、培养ASCs,流式细胞仪鉴定其分子表型;CCK-8法观察不同浓度RGOs对ASCs增殖的影响。
     第三部分:人ASCs(hASCs)经RGOs(0.1mg/ml)预处理12h并继续干预,ELISA法观察不同时间点hASCs培养上清液中血管内皮生长因子(VEGF),肝细胞生长因子(HGF),胰岛素样生长因子-1(IGF-1),碱性成纤维细胞生长因子(bFGF),基质细胞衍生因子-lα(SDF-lα)浓度的变化。
     第四部分:过氧化氢(200μM)联合血清饥饿(H2O2/SD,6h)模拟氧化应激微环境,诱导小型猪ASCs凋亡。观察RGOs(0.01mg/ml、0.1mg/ml、1mg/ml、10mg/ml)预处理12h并继续干预对ASCs凋亡的影响。AnnexinV-FITC/PI检测细胞凋亡率,CCK-8法测定细胞活性,酶标仪比色法测定细胞caspase-3的活性,Western-blot法测定细胞Bax、Bcl-2的表达。
     第五部分:17头小型猪随机分为4组:对照组(C组,n=5),单纯RGOs组(R组,n=4),单纯ASCs移植组(A组,n=4),RGOs+ASCs联合治疗组(RA组n=4)。球囊封堵左前降支90分钟构建小型猪AMI模型,造模1周后(7~10天)经冠状动脉移植同种异体ASCs(0.8×106/kg)。RGOs组造模前3天及造模后1月饲以RGOs粗提物(4g,2/日)。移植后8周,MRI评价各组心脏结构及功能变化,荧光显微镜及激光共聚焦扫描观察ASCs存活及分化,免疫组织化学法观察梗死区域微血管密度,Masson三色染色法评价梗死区纤维化程度,TUNEL法检测梗死边缘区心肌细胞凋亡,Western blot法测定梗死边缘区心肌细胞Bax、Bcl-2的表达。
     结果:
     第一部分:地黄粗提物及提纯物得率分别为地黄原药材的41.64%和35.14%,HPLC法检测RGOs提纯物中水苏糖占31.15%。
     第二部分:成功从小型猪腹股沟脂肪组织中分离并培养了ASCs,第四代ASCs分子表型CD29、CD44、CD90、CD105呈阳性表达,而CD31、CD34、CD45、HLA-DR均呈阴性表达。RGOs在一定浓度范围(0.01mg/ml~1mg/ml)内对体外培养的小型猪ASCs具有促增殖作用,最佳浓度为0.1mg/ml。
     第三部分:RGOs(0.1mg/ml)可以促进体外培养的hASCs分泌VEGF、HGF、IGF-1、SDF-1α,但对于bFGF的分泌无明显影响,其促旁分泌作用具有一定的时效性。
     第四部分:RGOs在一定浓度范围(0.1mg/ml~10mg/ml)可以减轻H2O2/SD引起的ASCs损伤,表现在细胞凋亡率下降,细胞活性增加,caspase-3活性降低,Bax表达下调,Bcl-2表达上调。
     第五部分:与C组比较,仅RA组可以明显改善左心室功能,增加梗死区室壁厚度,减小左心室质量指数及梗死体积(p <0.05);RA组ASCs的存活多于A组(p <0.01);RA组梗死区域微血管密度明显高于其他3组(p <0.01),而3组间无显著差异;与C组比较,A组以及RA组均能明显降低梗死区纤维化程度(p <0.05,p <0.01);与C组比较,R组及RA组均能明显减少心肌细胞凋亡(p <0.05,p <0.01);与C组比较,三组Bax的表达均明显下降(p<0.01),R组及RA组Bcl-2的表达明显升高(p <0.01)。
     结论:RGOs可以提高ASCs移植的效率,其作用机制可能与RGOs改善缺血心肌局部的微环境,促进ASCs增殖、存活,增强ASCs的旁分泌功能及抗凋亡有关。
Background: Treatment of acute myocardial infarction (AMI) remains muchchallenge, though there have been enormous progresses in ischemic heart disease.Cell-based repair is emerging as a potential novel therapy for AMI. However, theefficacy of cell-based therapy is hindered by the deleterious local milieu of themyocardium.
     Objective: The study was conducted to evaluate whether Rehmannia GlutinosaOligosaccharides (RGOs) treatment can increase the efficacy of allogenic adiposetissue-derived stem cells (ASCs) transplantation in Chinese miniswine with AMIand to explore the potential mechanisms.
     Methods and results:
     The first part: Crude extract RGOs was extracted by boiled water fromRehmannia root and was further separated by cation exchange resin and anionexchange resin eluting and by charcoal column chromatography. The stachyose,the main component in the RGOs, was determined by High Performance LiquidChromatography (HPLC). The outputs of crude extract RGOs and purifiedproduct from raw material were41.64%and35.14%, respectively; and purifiedRGOs contained31.15%stachyose.
     The second part: The ASCs of miniswine were isolated and cultured from adiposetissue harvested from inguinal regions by enzyme digestion and adherent. Themolecular phenotypes of ASCs at passages4were examined by flow cytometry,and results showed that ASCs were positive for CD29, CD44, CD90and CD105,but negative for CD31, CD34, CD45and HLA-DR. According to CCK-8colorimetry's results, RGOs could accelerate proliferation of ASCs in vitro in acertain range of concentration (0.01mg/ml~1mg/ml), and the best proliferative effect was observed at concentration of0.1mg/ml.
     The third part: To determine whether RGOs (0.1mg/ml) pretreatment for12hourscauses increase of vascular endothelial growth factor (VEGF), hepatocyte growthfactor (HGF), insulin-like growth factor-1(IGF-1), basic fibroblast growth factor(bFGF) and stromal cell derived factor-lα (SDF-lα) release from human ASCs(hASCs) in vitro. The levels of VEGF, HGF, IGF-1, bFGF, SDF-1α in the hASCssupernatant were determined by enzyme-linked immunosorbent assay (ELISA).The results indicated that RGOs could promote the secretion of VEGF, HGF,IGF-1and SDF-1α in a time-dependent manner, but the secretion of bFGF did notincrease significantly.
     The fourth part: To investigate whether RGOs (0.01mg/ml,0.1mg/ml,1mg/ml,10mg/ml) pretreatment for12hours and continued presence could protect ASCsagainst apoptosis in a model of oxidative stress consisting of hydrogen peroxide-and serum deprivation-induced in vitro. Apoptosis of ASCs was assessed using anAnnexin V-FITC/PI apoptosis kit. Cell activity was determined by CCK-8assay.Caspase-3activity was detected by applying a caspase-3assay kit. Expression ofBax and Bcl-2was investigated using Western blot analysis. We found that RGOssignificantly attenuated hydrogen peroxide-and serum deprivation-induced ASCsapoptosis, showing a decreased apoptosis rate, an increase in cell activity, adecreased caspase-3activity, a down-regulated Bax expression and anup-regulated Bcl-2expression.
     The fifth part: Seventeen Chinese miniswine were divided into four groups:control (group C, n=5); RGOs alone (group R, n=4), administration crude extractalone from the3rd day prior to AMI to one month post AMI (4g, two times perday); ASCs transplantation alone (group A, n=4) and RGOs+ASCs (group RA,n=4). AMI models were created by occlusion of the left anterior descendingcoronary artery for90minutes. One week later (the7th to10th day post AMI),allogenic ASCs (0.8×106/kg) were injected into left anterior descending coronaryartery. At8weeks post transplantation, magnetic resonance imaging (MRI) showed that the left ventricular ejection fraction and wall thickness of infarctedregions were increased while the left ventricular mass index, the infarct size weredecreased only in group RA compared with group C (P<0.05). ASCs survivalwas significantly better in group RA than in group A (P<0.01). Microvasculardensities both in the infracted zone and the peri-infarct zone also increasedsignificantly in group RA but not in other three groups (P<0.01). Massontrichrome stain showed that there was less fibrosis with more survivingmyocardium in group A and group RA than that in group C (P<0.05and P<0.01). TUNEL assay indicated that RGOs administration significantly decreasedcell apoptosis in peri-infarct myocardium in group R and group RA (P<0.05andP<0.01). Western blot analysis indicated that the expression levels of Bax ingroup R, group A and group RA were significantly decreased (P<0.01,versusgroup C). However, the expression levels of Bcl-2in group R and group RA weresignificantly increased (P<0.01,versus group C).
     Conclusion: RGOs treatment improves the therapeutic efficacy of ASCstransplantation by improving the local milieu of the ischemic myocardium,promoting ASCs proliferation and survival, enhancing paracrine function and byanti-apoptosis.
引文
1.国家药典委员会编.中华人民共和国药典(2005年版)[M].北京:化学工业出版社,2005:82-83.
    2.郑虎占,董泽宏,余靖.中药现代研究与应用[M].北京:学苑出版社,1999:1752-1753.
    3. Tomoda M, Miyamoto H, Shimizu N, et al. Characterization of twopolysaccharides having activity on the reticuloendothelial system from theroot of Rehmannia glutinosa[J].Chem Pharm Bull,1994,42(3):625-629.
    4. Tomoda M, Miyamoto H, Shimizu N, et al. Structural features andanti-complementary activity of rehmannan SA, a polysaccharide from the rootof Rehmannia glutinosa[J].Chem Pharm Bull,1994,42(8):1666-1668.
    5. Tomoda M, Miyamoto H, Shimizu N, et al. Two acidic polysaccharides havingreticuloendothelial system-potentiating activity from the raw root ofRehmannia glutinosa [J].Biol Pharm Bull,1994,17(11):1456-1459.
    6.陈力真.地黄免疫抑瘤活性成分的分离提取与药理作用(简报)[J].中国中药杂志,1993,18(8):502.
    7.狄维,王林,王升启.寡糖及其衍生物的生物活性研究进展[J].中国药物化学杂志,2002,12(4):243-248.
    8.吕秀华,娄维义,党永岩,等.电泳技术的发展和应用[J].农业与技术,2001,21(3):43.
    9. Kitagawa I, Nishimura T, Furubayashi A, et al. On the constituents of rhizomeof Rehmannia glutinosa Libosch. forma hueichingensis Hsiao[J].YakugakuZasshi1971,91(5):593-596.
    10. Tomoda M, Kato S,Onuma M, et al. Water-soluble constituents ofRehmanniae Radix.I. Cabohy-drates and acids of Rehmannia glutinosa f.hueichingensis [J].Chem Pharm Bull,1971,19(7):1455-1460.
    11.王太霞,李景原,胡正海.地黄的形态结构与化学成分研究进展[J].中草药,2004,35(5):585-587.
    12.边宝林,王宏洁,倪慕云.地黄及其炮制品中总糖及几种主要糖的含量测定[J].中国中药杂志,1995,20(8):469.
    13. Kubo M, Asano T, Matsuda H, et al. Studies on Rehmanniae Radix.Ⅲ. Therelation between changes of constituents and improvable effects onhemorheology with the processing of roots of Rehmannia glutinosa[J].Yakugaku Zasshi,1996,116(2):158-168.
    14.温学森,杨世林,马小军,等.地黄在加工炮制过程中HPLC谱图的变化[J].中草药,2004,35(2):153-156.
    15. Kitagawa I, Fukuda Y, Taniyama T, et al. Chemical studies on crude drugprocessing.X. On the constituents of Rehmanniae Radixes (4): comparison ofthe constituents of various Rehmanniae Radixes originating in China, Korea,and Japan [J].Yakugaku Zasshi,1995,115(12):992-1003.
    16. Tomoda M, Tanaka T, Kondo N, et al. Water-soluble constituents ofRehmanniae Radix.Ⅱ.On the Constituents of roots of Rehmannia glutinosavar. purpurea[J].Chem Pharm Bull,1971,19(11):2411-2413.
    17. Kitagawa I, Hori K, Kawanishi T, et al. On the constituents of the root ofFukuchiyama jio, the Hybrid of Remannia glutinosa var. purpurea and R.glutinosa forma hueichingensis [J].Yakugaku Zasshi,1998,118(10):464-475.
    18.刘福君,赵修南,汤建芳,等.地黄低聚糖对快速老化模型小鼠造血功能的影响[J].中国药理学通报,1997,13(6):509-512.
    19.刘福君,赵修南,聂伟,等.地黄低聚糖增强小鼠免疫功能的作用[J].中国药理学通报,1998,14(1):90.
    20.刘福君,赵修南,聂伟,等.地黄低聚糖对小鼠免疫和造血功能作用[J].中药药理与床,1997,13(5):19-21.
    21.刘副君,赵修南,汤建芳,等.地黄低聚糖对SAMP8小鼠造血祖细胞增殖的作用[J].中国药理学与毒理学杂志,1998,12(2):127.
    22.张汝学,周金黄,张永祥,等.去胸腺对大鼠糖代谢的影响及地黄寡糖对其的调节作用[J].中国药理学通报,2002,18(2):194-197.
    23.张汝学,贾正平,谢景文,等.老年大鼠糖代谢变化及地黄寡糖对其的改善作用[J].中国老年学杂志,2002,22(5):408-409.
    24.张汝学,周金黄,张永祥,等.去胸腺对大鼠糖代谢的影响及地黄寡糖对其的调节作用[J].中国药理学通报,2002,18(2):194-197.
    25.张汝学,周金黄,贾正平,等.地黄寡糖抗糖尿病药理作用及机制研究回顾[J].中药药理与临床,2003,19(2):48-50.
    26.魏小龙,茹祥斌.低分子量地黄多糖对p53基因表达的影响[J].中国药理学报,1997,18(5):471-474.
    27.魏小龙,茹祥斌,刘福君,等.低分子量地黄多糖对癌基因表达的影响[J].中国药理学与毒理学杂志,1998,12(2):159-160.
    28.魏小龙,茹祥斌.低分子量地黄多糖体外对Lewis肺癌细胞p53基因表达的影响[J].中国药理学通报,1998,14(3):245-248
    29.杨菁,石海燕,李莹,等.地黄寡糖对脑缺血再灌注所致痴呆大鼠学习记忆功能的影响[J].中国药理学与毒理学杂志,2008,22(3):165-169.
    30.石海燕,李莹,史佳琳,等.地黄寡糖对血管性痴呆大鼠学习记忆能力及海马乙酰胆碱的影响[J].中药药理与临床,2008,24(2):27-29.
    1. Zuk PA, Zhu M, Mizuno H, et a1. Multilineage cells from human adiposetissue: Implications for cell-based therapies [J].Tissue Eng,2001,7(2):211-228.
    2. MochizukT, Muneta T, Sakaguchi Y. Higher chondrogenic potential of fibroussynovium and adipose synovium-derived cells compared with subcutaneousfat-derived cells: Distinguishing properties of mesenchymal stem cells inhumans [J].Arthritis Rheum,2006,4(3):843-853.
    3. Planat-Benard V, Silvestre JS, Cousin B, et a1. Plasticity of human adiposelineage cells toward endothelial cells: physiological and therapeuticperspectives [J].Circulation,2004,109(5):656-663.
    4. Gronthos S, Franklin DM, Leddy HA, et al. Surface protein characterizationof human adipose tissue-derived stromal cells [J]. Cell Physiol,2001,189(1):54-63.
    5. Zuk PA, ZhuM, Aahjian P, et al. Human adipose tissue is a source ofmultipotent stem cells [J]. Mol Biol Cell,2002,13(12):4279-4295.
    6. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for definingmultipotent mesenchymal stromal cells. The International Society for CellularTherapy position statement [J]. Cytotherapy,2006,8(4):315-317.
    7. Sliva WA Jr, Covas DT, Panepucci RA, et al. The profile of gene expressionof human marrow mesenchymal stem cells [J].Stem cells,2003,21(6):661-669.
    8. Aust L, Devlin B, Foster SJ, et al. Yield of human adipose derived adult stemcells from liposuction aspirates [J]. Cytotherapy,2004,6(1):7214.
    9. PuissantB, Barreau C, Bourin P, et al. Immunomodulatory effects of humanadipose tissue-derived stem cells: comparison with bone marrowmesenchymal stem cells[J]. Br Haematol,2005,129(1):118-129.
    10. De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expressionof stem cellmobilization-associated molecules on multi-lineage cells from adipose tissueand bone marrow[J].Immunol Lett,2003,89(2/3):267-270.
    11. Li TS, Ito H, Hayashi M, et al. Cellular expression of integrin-beta(1) is ofcritical importance for inducing therapeutic angiogenesis by cellimplantation[J]. Cardiovasc Res,2005,65(1):64-72.
    12.吴志奎,王蕾,蔡永春,等.糖生物学研究与传统中医药发展[J].深圳中西医结合杂志,2001,12(2):73-75.
    13.尹明.地黄低聚糖对自体骨骼肌成肌细胞移植治疗心肌梗死效应和机制的研究.中国人民解放军军医进修学院(硕士论文集)[M].2006,34-35.
    14.王玉红,陈光辉,张琰琴,等.地黄低聚糖对脂肪间充质干细胞增殖的影响[J].解放军药学学报,2008,24(1):19-22.
    1. Gnecchi M, Zhang Z, Ni A, et al. Paracrine Mechanisms in Adult Stem CellSignaling and Therapy [J]. Circ Res,2008,103(10):1204-1219.
    2. Gnecchi M, He H, Noiseux N,et al. Evidence supporting paracrine hypothesisfor Akt-modified mesenchymal stem cell-mediated cardiac protection andfunctional improvement [J]. FASEB J,2006,20(6):661-669.
    3. Li W, Ma N, Ong LL, et al. Bcl-2engineered MSCs inhibited apoptosis andimproved heart function [J]. Stem Cells,2007,25(8):2118-2127.
    4. Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances thebenefit of cardiac progenitor cell therapy for treatment of myocardialinfarction by inducing CXCR4expression [J]. Circ Res,2009,104(10):1209-1216.
    5. Niagara MI, Haider HKh, Jiang S, et al. Pharmacologically preconditionedskeletal myoblasts are resistant to oxidative stress and promoteangiomyogenesis via release of paracrine factors in the infarcted heart[J]. CircRes,2007,100(4):545-555.
    6. Murry CE, Soonpa MH, Reineeke H, et al. Haematopoietic stem cells do nottrandifferentiate into cardiac myocytes in myocardial infarcts[J]. Nature,2004,428(6983):664-668.
    7. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cellsadopt mature haematopoietic fates in ischemic myocardium [J]. Nature,2004,428(6983):668-673.
    8. Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cellsexpress genes encoding a broad spectrum of arteriogenic cytokines andpromote in vitro and in vivo arteriogenesis through paracrine mechanisms[J].Circ Res,2004,94(5):678-685.
    9. Togel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protectagainst ischemic acute renal failure through differentiation-independentmechanisms[J]. Am J Physiol Renal Physiol,2005,289(1): F31-F42.
    10. Di Camp1i C, Zocco MA, Saulnier N, et al. Safety and efficacy profile ofG-CSF therapy in patients with acute and chronic liver failure [J]. Dig LiverDis,2007,39(12):1071-1076.
    11. Neuhuber B, Timothy Himes B, Shumsky JS, et al. Axon growth andrecovery of function supported by human bone marrow stromal cells in theinjured spinal cord exhibit donor variations [J]. Brain Res,2005,1035(1):73-85.
    12. Takahashi M, Li TS, Suzuki R, et al. Cytokines produced by bone marrowcells can contribute to functional improvement of the infarcted heartbyprotecting cardiomyocytes from ischemic injury [J]. Am J Physiol HeartCirc Physiol,2006,291(2): H886-H893.
    13. Farhadi J, Jaquiery C, Barbero A, et al. Differentiation-dependentup-regulation of BMP-2, TGF-betal,and VEGF expression by FGF-2inhuman bone marrow stromal cells[J]. Plast Reconstr Surg,2005,116(5):1379-1386.
    14. Jost MM,Ninci E, Meder B,et al. Divergent effects of GM-CSF and TGFbone marrow-derived macrophage arginase-1activity, MCP-1expression, andmatrix metalloproteinase-12: a potential role during arteriogenesis [J].FASEB J,2003,17(15):2281-2283.
    15. Crisostomo PR, Wang M, Herring CM, et al. Gender differences in injuryinduced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6expression:role of the55kDa TNF receptor (TNFRl)[J]. J Mol Cell Cardiol,2007,42(1):142-149.
    16. Sadat S, Gehmert S, Song YH, et al. The cardioprotective effect of stem cellsis mediated by IGF-I and VEGF [J]. Biochem Biophys Res Commun,2007,363(3):674-679.
    17. Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derivedstem cells: a critical role of secretory factors on human dermal fibroblasts [J].J Dermatol Sci,2007,48(1):15-24.
    18. Kilroy GE, Foster SJ, Wu X, et al. Cytokine profile of human adipose-derivedstem cells: expression of angiogenic, hematopoietic, and proinflammatoryfactors [J]. J Cell Physio1.2007,212(3):702-709.
    19.刘福军,程军平,赵修南,等.地黄多糖对正常小鼠造血干细胞、祖细胞及外周血像的影响[J].中药药理与临床,1996,12(2):12-14.
    20.尹明,王士雯,高磊,等.不同浓度地黄低聚糖对离体培养成年大鼠骨骼肌成肌细胞增殖的影响[J].中国中西医结合急救杂志,2008,15(4):195-197.
    21.尹明,王士雯.地黄低聚糖对自体骨骼肌成肌细胞移植治疗心肌梗死的效应和机制[J].世界急危重病医学杂志,2006,3(4):1364-1365.
    22.王玉红,陈光辉,张琰琴,等.地黄低聚糖对脂肪间充质干细胞增殖的影响[J].解放军药学学报,2008,24(1):19-22.
    23.王新华,王士雯,李泱,等.地黄低聚糖诱导骨髓间充质干细胞向心肌样细胞分化的实验研究[J].解放军医学杂志,2009,34(4):412-414.
    24.王玉红,陈光辉,王舒,等.地黄低聚糖对人脂肪组织源性间充质干细胞分泌血管内皮细胞生长因子的影响[J].心脏杂志,2009,21(3):332-335.
    25. Losordo DW, Vale PR,Symes JM, et al. Gene therapy for myocardialangiogenesis,initial clinical results with direct myocardial injection ofphVEGF165as sole therapy for myocardial ischemia[J].Circulation,1998,98(25):2800-2804.
    26. Uruno A, Sugawara A, Kanatsuka H, et al. Hepatocyte growth factorstimulates nitric oxide production through endothelial nitric oxide synthaseactivation by the phosphoinositide3-kinase/Akt pathway and possibly bymitogen-activated protein kinase kinase in vascular endothelial cells[J].Hypertens Res,2004,27(11):887-895.
    27. Kubota T, Namiki A, Fukazawa M,et al. Concentrations of hepatocytegrowth factor,basic fibroblast growth factor,and vascular endothelial growthfactor in pericardial fluid and plasma[J]. Japanese Heart Journal,2004,45(6):989-998.
    28. Clanachan AS,J aswal J S,Gandhi M,et al. Effects of inhibition ofmyocardial extracellular-responsive kinase and P38mitogen-activated proteinkinase on mechanical function of rat heart safter prolonged hypothermicischemia [J]. Transplantation,2003,75(2):173-180.
    29. Xu M, Uemura R, Dai Y, et al. In vitro and in vivo effects of bone marrowstem cells on cardiac structure and function [J]. J Mol Cell Cardiol,2007,42(2):441-448.
    30. Takahashi M, Li TS, Suzuki R, et al. Cytokines produced by bone marrowcells can contribute to functional improvement of the infarcted heart byprotecting cardiomyocytes from ischemic injury[J]. Am J Physiol Heart CircPhysiol,2006,291(2): H886-H893.
    1. Lennon SV, Martin SJ, Gotter TG. Dose-dependent induction of apoptosis inhuman tumor cell lines by widely diverging stiumuli [J]. Cell Prolif,1991,24(2):203-214.
    2. Cook SA, Sugden PH, Clerk A. Regulation of Bcl-2family proteins duringdevelopment and in response to oxidative stress in cardiac myocytes:association with changes in mitochondria membrance potential [J]. Circ Res,1999,85(10):940-949.
    3. Von Harsdorf R, Li PF, Dietz R, et al.Signaling pathways in reactiveoxygen species-induced cardiomyocyte apoptosis [J]. Circulation,1999,99(22):2934-2941.
    4. Chen GG, Sin FL, Leung BC, et al. Glioblastoma cells deficient inDNA-dependent protein kinase are resistant to cell death [J]. J Cell Physiol,2005,203(1):127-132.
    5. Baxa DM, Luo X, Yoshimura FK. Genistein induces apoptosis in T lymphomacells via mitochondrial damage [J].Nutr Cancer,2005,51(1):93-101.
    6. Castedo M, Ferri K, Roumier T, et al. Quantitation of mitochondrialalterations associated with apoptosis [J]. J Immunol Methods,2002,265(1-2):39-47.
    7. Zhivotovsky B. Caspases: the enzymes of death [J]. Essays Biochem,2003,39:25-40.
    8. Philchenkov AA. Caspases as regulators of apoptosis and other cell functions[J]. Biochemistry (Mosc),2003,68(4):365-376.
    9. Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin: acomprehensive update of caspase substrates [J]. Cell Death Differ,2003,10(1):76-100.
    10. Hughes PD, Belz GT, Fortner KA, et al. Apoptosis regulators Fas and Bimcooperate in shutdown of chronic immune responses and prevention ofautoimmunity [J]. Immunity,2008,28(2):197-205.
    11. Youle RJ, Strasser A. The BCL-2protein family: opposing activities thatmediate cell death [J]. Nat Rev Mol Cell Biol,2008,9(1):47-59.
    12. Chipuk JE, Green DR. How do BCL-2proteins induce mitochondrialoutermembrane permeabilization?[J]. Trends Cell Biol,2008,18(4):157-164.
    13. Jurgensmeier JM,Xie Z,Deveraux Q,et al.Bax directly induces release ofcytochrome c from isolated mitochondrial [J]. Proc Natl Acad Sci USA,1998,95(9):4997-5002.
    14. Desagher S,Osen-Sand A,Nichols A,et al. Bid-induced conformationalchange of Bax is responsible for mitochondrial cytochrome c release duringapoptosis[J].J Cell Biol, l999, l44(5):891-90l.
    15. Chatterjee S, Stewart AS, Bish LT, et a1. Viral gene transfer of theantiapoptotic factor Bcl-2protects against chronic postischemic heartfailure[J].Circulation,2002,106(12Suppl1):I212-I217.
    16. Mertens HJ, Heinerman MJ, Evers JL. The expression of apoptosis-relatedproteins Bcl-2and Ki67in endometrium of ovulatory menstrual cycles [J].Gynecol Obstet Invest,2002,53(4):224-230.
    17.肖卫民,蒋碧梅,石永忠,等.过氧化氢通过线粒体通路和死亡受体通路诱导心肌细胞凋亡[J].中国动脉硬化杂志,2003,11(3):185-188.
    18. Facchinetti F, Furegato S, Terrazzino S, et al. H2O2induces upregulation ofFas and Fas ligand expression in NGF-differentiated PC12cells: modulationby cAMP [J]. J Neurosci Res,2002,69(2):178-188.
    19.樊淼,,杨菁,白剑,等.地黄寡糖及其主要成分对大鼠脑片氧化应激损伤保护作用研究[J].中药药理与临床,2009,25(5):64-67.
    20. Yu HH, Kim YH, Jung SY, et al. Rehmannia glutinosa activates intracellularantioxidant enzyme systems in mouse auditory cells [J]. Am J Chin Med,2006,34(6):1083-1093.
    21. Yu HH, Seo SJ, Kim YH, et al. Protective effect of Rehmannia glutinosa onthe cisplatin-induced damage of HEI-OCl auditory cells through scavengingfree radicals[J]. I Ethnopharmacol,2006,107(3):383-388.
    22. Li Y, Bao Y, Jiang Bo, et al. Catalpol protects primary cultured astrocytesfrom in vitro ischemia-induced damage [J]. Int J Dev Neurosci,2008,26(3-4):309–317.
    23. Hu L, Sun Y, Hu J. Catalpol inhibits apoptosis in hydrogen peroxide-inducedendothelium by activating the PI3K/Akt signaling pathway and modulatingexpression of Bcl-2and Bax [J]. Eur J Pharmacol,2010,628(1-2):155–163.
    1. Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms ofmyocardial regeneration [J]. Physiol Rev,2005,85(4):1373-1416.
    2. Dimmeler S,Zeiher AM. Cell Therapy of acute myocardial infarction: openquestions [J]. Cardiology,2009,113(3):155-160.
    3.武卫红,温学森,赵宇.地黄寡糖及其药理活性研究进展[J].中药材,2006,29(5):507-510.
    4.王玉红,王舒,张琰琴,等.地黄低聚糖抗过氧化氢诱导的脂肪间充质干细胞凋亡的保护作用[J].中国康复理论与实践,2008,14(4):314-315.
    5.王玉红,陈光辉,张琰琴,等.地黄低聚糖对脂肪间充质干细胞增殖的影响[J].解放军药学学报,2008,24(1):19-22.
    6.尹明,王士雯,高磊,等.不同浓度地黄低聚糖对离体培养成年大鼠骨骼肌成肌细胞增殖的影响[J].中国中西医结合急救杂志,2008,15(4):195-198.
    7. Orlic D, Hill JM, Arai AE. Stem cells for myocardial regeneration [J]. CircRes2002,91(12):1092-1102.
    8. Sen A, Lea-Currie YR, Sujkowska D, et al. Adipogenic potential of humanadipose derived stromal cells from multiple donors is heterogeneous [J]. JCell Biochem,2001,81(2):312-319.
    9. Zuk PA, Zhu M, Ashjian P, et a1. Human adipose tissue is a source ofmultipotent stem cells [J].Mol Biol Cell,2002,13(12):4279-4295.
    10. Wickham MQ, Erickson GR, Gimble JM, et al. Multipotent stromal cellsderived from the infrapatellar fat pad of the knee [J]. Clin Orthop Relat Res,2003,(412):196-212.
    11. Huang JI, Zuk PA, Jones NF, et al. Chondrogenic potential of multipotentialcells from human adipose tissue [J]. Plast Reconstr Surg,2004,113(2):585-594.
    12. Dragoo JL, Samimi B, Zhu M, et a1.Tissue-engineered cartilage and boneusing stem cells from human infrapatellar fat pads[J]. J Bone Joint Surg Br,2003,85(5):740-747.
    13. Lendeckel S, Jodicke A, Christophis P, et al. Autologous stem cells (adipose)and fibrin glue used to treat widespread traumatic calvarial defects: casereport [J]. J Craniomaxillo fac Surg,2004,32(6):370-373.
    14. Lawson-Smith MJ, McGeachie JK. The identification of myogenic cells inskeletal muscle, with emphasis on the use of tritiated thymidineautoradiograpgy and desmin antibodies [J]. J Anat, l998,192(Pt2):161-171.
    15. Rangappa S, Fen C, Lee EH, et al. Transformation of adult rnesenchymalstem cells isolated from the fatty tissue into cardiomyocytes [J]. Ann ThoracSurg,2003,75(3):775-779.
    16. Kang SK, Jun ES, Bae YC, et a1. Interactions between human adiposestromal cells and mouse neural stem cells in vitro [J]. Brain Res Dev BrainRes,2003,145(1):141-149.
    17. Yang SX, Xu GY, Zhao NN. Timing-window and therapeutic effects of stemcell transplantation: A Meta-analysis [J]. Zhongguo Zuzhi Gongcheng Yanjiuyu Linchuang Kangfu,2007,11(11):2164-2166.
    18. Bartunek J, Wijns W, Heyndrickx GR, et al. Timing of intracoronarybone-marrow-derived stem cell transplantation after ST-elevation myocardialinfarction[J]. Nat Clin Pract Cardiovasc Med,2006,(Suppl1):S52-S56.
    19. Freyman T, Polin G, Osman H, et al. A quantitative, randomized studyevaluating three methods of mesenchymal stem cell delivery followingmyocardial infarction [J]. Eur Heart J,2006,27(9):1114–1122.
    20. Hou D, Youssef EA, Brinton TJ, et al. Radiolabeled cell distribution afterintramyocardial, intracoronary, and interstitial retrograde coronary venousdelivery: implications for current clinical trials [J]. Circulation,2005,112(9suppl): I150–I156.
    21. Gnecchi M., Zhang Z., Ni A., et al. Paracrine mechanisms in adult stem cellsignaling and therapy [J]. Circ Res,2008,103(10):1204-1219.
    22. Gaustad KG, Boquest AC, Anderson BE, et a1. Differentiation of humanadipose tissue stem cells using extracts of rat cardiomyocytes [J]. BiochemBiophys Res Commun,2004,314(2):420-427.
    23.裘月,杜冠华,屈志炜,等.常用补益中药抗脂质过氧化作用比较[J].中国药学杂志,1996,31:83-86.
    24. Yu HH, Kim YH, Jung SY, et al. Rehmannia glutinosa activates intracellularantioxidant enzyme systems in mouse auditory cells [J]. Am J Chin Med,2006,34(6):1083-1093.
    25. Kim SS, Son YO, Chun JC, et al. Antioxidant property of an activecomponent purified from the leaves of paraquat-tolerant Rehmannia glutinosa[J]. Redox Rep.2005,10(6):311-318.
    26. Ohnishi S, Sumiyoshi H, Kitamura S, et al. Mesenchymal stem cells attenuatecardiac fibroblast proliferation and collagen synthesis through paracrineactions[J]. FEBS Lett,2007,581(21):3961-3966.
    27. Dill T, Sch chinger V, Rolf A, et al. Intracoronary administration of bonemarrow-derived progenitor cells improves left ventricular function in patientsat risk for adverse remodeling after acute ST-segment elevation myocardialinfarction: results of the Reinfusion of Enriched Progenitor cells And InfarctRemodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiacmagnetic resonance imaging substudy [J]. Am Heart J,2009,157(3):541-547.
    28.夏菁,陈光辉,刘宏斌,等.脂肪间充质干细胞移植对犬心肌梗死后心功能的影响[J].中国临床康复,2006,10(45):33-35.
    29.王磊.地黄低聚糖对脂肪间充质干细胞移植治疗猪心肌梗死后心力衰竭的实验研究(军医进修学院硕士论文)[M].45-47.
    30. Puissant B, Barreau C. Immunomodulatory effect of human adiposetissue-derived adult stem cells: comparison with bone marrow mesenchymalstem cells [J]. Br J Haematol,2005,129(1):118-129.
    31. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromalcells [J]. Blood,2007,110(10):3499-3506.
    32.国家药典委员会编.中华人民共和国药典(2005年版)[M].北京:化学工业出版社,2005:82-83.
    1. Dimmeler S,Zeiher AM. Cell therapy of acute myocardial infarction: openquestions [J]. Cardiology,2009,113(3):155-160.
    2. Gnecchi M., Zhang Z., Ni A., et al. Paracrine mechanisms in adult stem cellsignaling and therapy [J]. Circ Res,2008,103(10):1204-1219.
    3. Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms ofmyocardial regeneration [J]. Physiol Rev,2005,85(4):1373-1416.
    4. Orlic D, Kajstura J, Chimenti S,et al. Bone marrow cells regenerate infractedmyocardium [J]. Nature,2001,410(6829):701-705.
    5. Murry CE, Soonpaa MH, Reinecke H,et al. Haematopoietic stem cells do nottransdifferentiate into cardiac myocyte in myocardial infarcts[J]. Nature,2004,428(6983):664-668.
    6. Thoelen M, Vandenabeele F, Rummens JL, et al. Ultrastructure oftransplanted mesenchymal stem cells after acute myocardial infarction [J].Heart,2004,90(9):1046.
    7. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion ofbone-marrow-derived cells with Purkinje neurons, cardiomyocytes andhepatocytes [J]. Nature,2003,425(6961):968-973.
    8. Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derivedstromal cells augments collateral perfusion through paracrine mechanisms [J].Circulation,2004,109(12):1543-1549.
    9. Gnecchi M, He H, Liang OD, etal. Paracrine action accounts for markedprotection of ischemic heart by Akt-modified mesenchymal stem cells [J].Nat Med,2005,11(4):367–368.
    10. Gnecchi M, He H, Noiseux N,et al. Evidence supporting paracrine hypothesisfor Akt-modified mesenchymal stem cell-mediated cardiac protection andfunctional improvement [J]. FASEB J,2006,20(6):661-669.
    11. Ahmadi H, Baharvand H, Ashtiani SK, et al. Safety analysis and improvedcardiac function following local autologous transplantation of CD133(+)enriched bone marrow cells after myocardial infarction[J]. Curr NeurovascRes,2007,4(3):153-160.
    12. Numaguchi Y, Sone T, Okumura K, et al. The impact of the capability ofcirculating progenitor cell to differentiate on myocardial salvage in patientswith primary acute myocardial infarction [J]. Circulation,2006,114(1Suppl):I114-I119.
    13. Zhang Z, Deb A, Zhang Z, et al. Secreted frizzled related protein2protectscells from apoptosis by blocking the effect of canonical Wnt3a [J]. J Mol CellCardiol,2009,46(3):370–377.
    14. Fedak PW, Szmitko PE, Weisel RD, et al. Cell transplantation preservesmatrix homeostasis: a novel paracrine mechanism[J]. J Thorac CardiovascSurg,2005,130(5):1430-1439.
    15. Ohnishi S, Sumiyoshi H, Kitamura S, et al. Mesenchymal stem cells attenuatecardiac fibroblast proliferation and collagen synthesis through paracrineactions[J]. FEBS Lett,2007,581(21):3961-3966.
    16. Dill T, Sch chinger V, Rolf A, et al. Intracoronary administration of bonemarrow-derived progenitor cells improves left ventricular function in patientsat risk for adverse remodeling after acute ST-segment elevation myocardialinfarction: results of the Reinfusion of Enriched Progenitor cells And InfarctRemodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiacmagnetic resonance imaging substudy[J]. Am Heart J,2009,157(3):541-547.
    17. Dhein S, Garbade J, Rouabah D, et al. Effects of autologous bone marrowstem cell transplantation on beta-adrenoceptor density and electricalactivation pattern in a rabbit model of nonischemic heart failure [J]. JCardiothorac Surg,2006,1:17.
    18. Gnecchi M, He H, Melo LG, et al. Early beneficial effects of bonemarrow-derived mesenchymal stem cells overexpressing Akt on cardiacmetabolism after myocardial infarction [J]. Stem Cells,2009,27(4):971-979.
    19. Linke A, Muller P, Nurzynska D, et al. Stem cells in the dog heart areself-renewing, clonogenic, and multipotent and regenerate infarctedmyocardium, improving cardiac function [J]. Proc Natl Acad Sci USA,2005,102(25):8966–8971.
    20. Hagikura K, Fukuda N, Yokoyama SI,et al. Low invasive angiogenic therapyfor myocardial infarction by retrograde transplantation of mononuclear cellsexpressing the VEGF gene[J]. Int J Cardiol,2009,142(1):56-64.
    21. Chen SY, Wang F, Yan XY,et al.Autologous transplantation of EPCsencoding FGF1gene promotes neovascularization in a porcine model ofchronic myocardial ischemia[J]. Int J Cardiol,2009,135(2):223-232.
    22. Li W, Ma N, Ong LL, et al. Bcl-2engineered MSCs inhibited apoptosis andimproved heart function. Stem Cells,2007,25(8):2118-2127.
    23. Zeng B, Chen H, Zhu C,et al. Effects of combined mesenchymal stem cellsand heme oxygenase-1therapy on cardiac performance [J].Eur J CardiothoracSurg,2008,34(4):850-856.
    24. Wang X, Zhao T, Huang W,et al. Hsp20-engineered mesenchymal stem cellsare resistant to oxidative stress via enhanced activation of Akt and increasedsecretion of growth factors [J]. Stem Cells,2009,27(12):3021-3031.
    25. Penn MS. Importance of the SDF-1:CXCR4Axis in Myocardial Repair. CircRes,2009,104(10):1133-1135.
    26. Unzek S, Zhang M, Mal N,et al. SDF-1recruits cardiac stem cell-like cellsthat depolarize in vivo [J]. Cell Transplant,2007,16(9):879-886.
    27. Hu X, Yu SP, Fraser JL, et al. Transplantation of hypoxia-preconditionedmesenchymal stem cells improves infarcted heart function via enhancedsurvival of implanted cells and angiogenesis [J]. J Thorac Cardiovasc Surg,2008,135(4):799-808.
    28. Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances thebenefit of cardiac progenitor cell therapy for treatment of myocardialinfarction by inducing CXCR4expression [J]. Circ Res,2009,104(10):1209-1216.
    29. Niagara MI, Haider HKh, Jiang S, et al. Pharmacologically preconditionedskeletal myoblasts are resistant to oxidative stress and promoteangiomyogenesis via release of paracrine factors in the infarcted heart[J]. CircRes,2007,100(4):545-555.
    30. Wisel S, Khan M, Kuppusamy ML, et al. Pharmacological Preconditioning ofMesenchymal Stem Cells with Trimetazidine (1-[2,3,4-Trimethoxybenzyl]piperazine) Protects Hypoxic Cells against Oxidative Stress and EnhancesRecovery of Myocardial Function in Infarcted Heart through Bcl-2Expression[J]. J Pharmacol Exp Ther,2009,329(2):543-550.
    31. Bartunek J, Croissant JD, Wijns W, et al. Pretreatment of adult bone marrowmesenchymal stem cells with cardiomyogenic growth factors and repair ofthe chronically infarcted myocardium [J]. Am J Physiol Heart Circ Physiol,2007,292(2): H1095-H1104.
    32. Pasha Z, Wang Y, Sheikh R,et al. Preconditioning enhances cell survival anddifferentiation of stem cells during transplantation in infarcted myocardium[J]. Cardiovasc Res,2008,77(1):134-142.
    33. Lu G, Haider HK, Jiang S, et al. Sca-1+stem cell survival and engraftment inthe infarcted heart: dual role for preconditioning-induced connexin-43[J].Circulation,2009,119(19):2587-2596.
    34. Hou JF, Zhang H, Yuan X, et al. In vitro effects of low-level laser irradiationfor bone marrow mesenchymal stem cells: proliferation, growth factorssecretion and myogenic differentiation[J]. Lasers Surg Med,2008,40(10):726-733.
    35. Kang S, Yang Y, Li CJ,et al. Effectiveness and tolerability of administrationof granulocyte colony-stimulating factor on left ventricular function inpatients with myocardial infarction: a meta-analysis of randomized controlledtrials [J]. Clin Ther,2007,29(11):2406-2418.
    36. Zohlnh fer D, Dibra A, Koppara T,et al. Stem cell mobilization bygranulocyte colony-stimulating factor for myocardial recovery after acutemyocardial infarction: a meta-analysis [J]. J Am Coll Cardiol,2008,51(15):1429-1437.
    37. Katritsis DG, Sotiropoulou PA, Karvouni E,et al. Transcoronarytransplantation of autologous mesenchymal stem cells and endothelialprogenitors into infarcted human myocardium[J]. Catheter Cardiovasc Interv,2005,65(3):321-329.
    38. Bonaros N, Rauf R, Werner E,et al. Neoangiogenesis after combinedtransplantation of skeletal myoblasts and angiopoietic progenitors leads toincreased cell engraftment and lower apoptosis rates in ischemic heart failure[J]. Interact Cardiovasc Thorac Surg,2008,7(2):249-255.
    39. Shiba Y, Hauch KD, Laflamme MA. Cardiac applications for humanpluripotent stem cells [J]. Curr Pharm Des,2009,15(24):2791-2806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700