用户名: 密码: 验证码:
利用锆英石制备ZrO_2-SiC、ZrN-Si_3N_4复合粉体及ZrN-Sialon结合刚玉复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次以锆英石为原料,对其材料化利用进行了研究,为实现矿产的综合利用开辟一条新途径。在热力学分析的基础上,采用碳热还原(氮化)法制备出ZrO2-SiC和ZrN-Si3N4复合粉体,探讨了其合成机理;将ZrO2-SiC复合粉体应用于Al2O3-C质耐火材料中,研究了其添加量对耐火材料性能的影响;通过原位反应制备了Al2O3-ZrO2-SiC-C系复合耐火材料,探讨了在刚玉质和Al2O3-C质耐火材料中原位生成ZrO2-SiC材料的可行性。还以锆英石、碳黑、氧化铝微粉和电熔刚玉为原料,成功制备出ZrN-Sialon结合刚玉复合材料,并对其性能进行了研究。主要结论如下:
     (1)分析了CO(g)、SiO(g)、ZrO(g)、N2(g)和02(g)等气相分压对Si-C-O、Zr-C-O、Zr-Si-C-0及Si-C-N-0等体系相稳定性的影响。
     (2)研究了加热温度和添加La203对ZrO2-SiC复合粉体合成过程的影响,并探讨了其合成机理和La2O3的催化作用机理。结果表明,在本实验条件下,提高加热温度和添加La2O3有利于ZrSiO4的分解及SiC的生成;不添加La2O3时,适宜的合成温度为1600℃;当添加2%质量分数的La2O3时,其合成温度降低为1530℃。
     (3)以电熔刚玉、天然石墨和酚醛树脂为原料,自合成ZrO2-SiC和工业SiC粉体为添加剂制成Al2O3-C质耐火材料,研究了添加剂加入量对耐火材料性能的影响,并分析了添加剂的抗氧化及抗热震机理。结果表明,添加ZrO2-SiC及工业SiC粉体均有利于降低Al2O3-C质耐火材料的显气孔率,提高其体积密度和常温耐压强度,改善其抗氧化性及抗热震性。在本实验条件下,添加6%质量分数的ZrO2-SiC复合粉体及工业SiC粉后,耐火材料的抗氧化和抗热震性能最佳。
     (4)以电熔刚玉、天然石墨、锆英石及碳黑为原料,利用碳热还原反应在刚玉质和Al2O3-C质耐火材料中原位合成ZrO2-SiC材料。研究了原料组成、成型压力及加热温度等因素对材料制备及性能的影响。结果表明,以电熔刚玉、锆英石和碳黑为原料,在氩气气氛中于1530℃保温4h可以合成出Al2O3-ZrO2-SiC复合耐火材料;当加入20%(质量分数)锆英石和碳黑时,Al2O3-ZrO2-SiC材料的体积密度为2.58g/cm3。将适量的锆英石添加到Al2O3-C耐火材料中,于1500℃下保温4h可以原位合成Al2O3-ZrO2-SiC-C复合耐火材料;在200MPa压力下成型于该温度下合成材料的体积密度为2.73g/cm3,质量损失率为7.69%。
     (5)研究了原料组成、加热温度和保温时间等工艺因素对ZrN-Si3N4复合粉体合成过程的影响,并探讨了其合成机理。结果表明,配料组成中碳黑的含量越大,碳热还原反应进行得越完全,但配C量存在一个最佳值;提高加热温度和延长保温时间均有利于ZrSiO4的分解及Si3N4和ZrN的生成。综合考虑,锆英石与碳黑的质量配比为100/40、1500℃保温12h是较理想的合成条件。
     (6)根据有关反应的热力学数据绘制了Al2O3-ZrO2-SiO2-C-N2体系优势区图,分析了CO气相分压和温度对体系相稳定性的影响。研究了原料组成和加热温度等工艺因素对ZrN-Sialon结合刚玉复合材料制备及性能的影响,并探讨了其合成机理。结果表明,提高加热温度和增加锆英石和碳黑加入量均有利于ZrSiO4的分解及Sialon和ZrN的生成;在本实验条件下,制备ZrN-Sialon结合刚玉复合材料的适宜温度为1500℃。
In this paper, the utilization of zircon by means of materials synthesis was studied using zircon as the main starting materials, which developed a new route for the comprehensive application of mineral resources. Based on the thermodynamic analysis, ZrO2-SiC and ZrN-Si3N4 composite powders were prepared by carbothermal reduction (nitridation) reaction, and the synthesis mechanisms of them were discussed. Furthermore, the ZrO2-SiC composite powder was applied into Al2O3-C refractories to study the effect of its addition on properties of the refractories. In addition, the Al2O3-ZrO2-SiC-C refractories were prepared by in-situ reaction, and the feasibility of in-situ synthesis of ZrO2-SiC composite in corundum and Al2O3-C refractories was discussed. Moreover, zircon, carbon black, alumina micropowder and fused corundum were used as the starting materials for the preparation of ZrN-Sialon bonded corundum composite to study the properties of the material. The following conclusions were obtained.
     (1) The effects of partial pressures of CO, SiO, ZrO, N2 and O2 gases on the phase stability in Si-C-O, Zr-C-O, Zr-Si-C-O and Si-C-N-O systems.
     (2) The effects of heating temperature and La2O3 addition on the synthesis process of ZrO2-SiC composite powder were studied, and the synthesis mechanism and the catalysis action of La2O3 were discussed. The results show increasing the heating temperature and the addition of La2O3 were favorable for the decomposition of zircon and the formation of SiC in this experimental condition. The proper temperature to synthesize ZrO2-SiC composite powder was 1600℃while the sample without La2O3 addition, and the temperature was decreased to 1530℃when the sample added with 2% La2O3.
     (3) The Al2O3-C refractories were prepared by using fused corundum, natural graphite and phenolic resin as the starting materials and the synthesized ZrO2-SiC composite powder and industrial SiC powder as the additives to investigate the effects of their additions on properties of the refractories, and the mechanisms of oxidation resistance and thermal shock resistance of the additives were discussed. The results show that the bulk density, cold crushing strength, oxidation resistance and thermal shock resistance of the refractories could be improved by the additions of ZrO2-SiC composite powder and industrial SiC powder, however, the apparent porosity was decreased. In this experimental condition, the refractories added with 6% ZrO2-SiC composite powder or industrial SiC powder had the best oxidation resistance and thermal shock resistance.
     (4) Fused corundum, natural graphite, zircon and carbon black were used as the starting materials for in-situ synthesis of the ZrO2-SiC composite in corundum and Al2O3-C refractories by carbothermal reduction reaction, and the effects of composition of the starting materials, forming pressure and heating temperature on the preparation and properties of the composite were studied. The results show that the Al2O3-ZrO2-SiC composite could be synthesized at 1530℃for 4h in argon gas by using fused corundum, zircon and carbon black as the starting materials. The bulk density of the Al2O3-ZrO2-SiC composite by the addition of 20% zircon and carbon black reached 2.58g/cm3. Moreover, when adding moderate zircon into the Al2O3-C refractories, the Al2O3-ZrO2-SiC-C composite could be synthesized at 1500℃for 4h by in-situ reaction. The bulk density and the mass loss ratio of the synthesized composite reached 2.73g/cm3 and 7.69%, respectively.
     (5) The effects of composition of the starting materials, heating temperature and holding time on the synthesis process of ZrN-Si3N4 composite powder were studied, and the synthesis mechanism was discussed. The results show that the carbothermal reduction reaction was more sufficient with the increasing of the carbon black content in sample, however, it had an optical value. Increasing the heating temperature and holding time could promote the decomposition of zircon and the formation of Si3N4 and ZrN, and the optimum synthesis condition was mass ratio of zircon and carbon black of 100/40, synthesizing temperature of 1500℃and holding time of 12h.
     (6) The predominant region diagram of Al2O3-ZrO2-SiO2-C-N2 system was plotted through the thermodynamic data of some reactions to analyze the effects of partial pressure of CO gas and temperature on the stability of phases. In addition, the effects of composition of the starting materials and heating temperature on the preparation process and properties of the ZrN-Sialon bonded corundum composite were studied, and the synthesis mechanism was discussed. The results show that increasing the heating temperature as well as zircon and carbon black content were in favor of the decomposition of zircon and the formation of Sialon and ZrN. In this experimental condition, the proper temperature to synthesize ZrN-Sialon bonded corundum composite was 1500℃.
引文
1.张玲,林德松.我国稀有金属资源现状分析[J],地质与勘探,2004,40(1):27-30
    2. 张力.锆铪分离工艺的发展及现状[J],稀有金属快报,2004,23(5):26-29
    3.冯润棠,秦岩,邓永超,等.含锆原料及其在耐火材料中的应用[J],稀有金属快报,2004,23(6):36-40
    4.汪镜亮.锆英石及其应用[J],矿产综合利用,1997,(3):43-49
    5.陈敏,于景坤,王楠.耐火材料与燃料燃烧[M],沈阳:东北大学出版社,2005:62-67,146-196
    6.张德琦.锆英石在玻璃制造业中的应用[J],建材工业信息,1996,(18):5-6
    7. 西北轻工业学院主编.陶瓷工艺学[M],北京:中国轻工业出版社,1980:166
    8.成岳.锆英石的选矿及应用综述[J],矿产保护与利用,1995,(4):40-43
    9.赵世柯,黄勇,汪长安,等.添加Y2O3的ZrSiO4/a-Al2O3混合粉体的反应烧结[J],硅酸盐学报,2002,30(6):775-779
    10.施鹰,黄校先,严东生.锆英石陶瓷的晶界特性对其高温力学性能的影响[J],无机材料学报,1996,11(1):97-100
    11.郭玉香,栾舰,田凤仁.锆英石对镁砂烧结性及其制品性能的影响[J],耐火材料,2001,35(5):281-282
    12.李友胜,李楠.锆英石微粉对镁质浇注料性能的影响[J],耐火材料,1998,32(5):254-256,259
    13.林先桥,刘忠江,郭敬娜,等.锆英石对MgO-Al2O3质浇注料性能的影响[J],材料与冶金学报,2005,4(1):197-200
    14.王晓廷,王云,赵亮,等.ZrSi04对刚玉制品抗热震稳定性能的影响[J],包钢科技,2003,29(3):5-6
    16.袁章福,曾加庆,万天骥,等.等离子体加热脱Si02制取ZrO2的C-N-O图[J],化工冶金,1997,18(4):289-294
    17.袁章福,罗敏,唐勇,等.锆英石热分解的实验研究[J],化工冶金,1995,16(3):212-218
    18.余润洲,唐绍裘,杜海清.碳热还原ZrSiO4制备ZrO2(Y2O3)和SiC纳米粉末[J],化工学报,2001,52(1):76-78
    19.陈岚,李锐星,梁焕珍,等.ZrO2陶瓷的制备及应用研究进展[J],功能材料,2002,33(2):129-132,135
    20.茹红强.SiC/Sialon复相耐火材料和Sialon/SiCp陶瓷复合材料的制备与性能[D],沈阳:东北大学,2004
    21.王诚讯,侯谨,张义先.复合不定型耐火材料[M],北京:冶金工业出版社,2005:1-24
    22.张宁,龙海波,刘昊,等.碳化硅纳米粉体研究进展[J],无机盐工业,2007,39(3):1-4
    23.宋祖伟,戴长虹,翁长根.碳化硅陶瓷粉体的制备技术[J],青岛化工学院学报,2001,22(2):135-138,163
    24.刘海涛,杨郦,张树军,等.无机材料合成[M],北京:化学工业出版社,2003:305-307
    25.张利峰,燕青芝,沈卫平,等.燃烧合成制备高纯β-SiC超细粉体[J],硅酸盐通报,2007,26(3):431-435
    26.韩兵强,李楠.高能球磨法在纳米材料研究中的应用[J],耐火材料,2002,36(4):240-242
    27.杨晓云,黄震威.球磨Si、C混合粉末合成纳米SiC的高分辨电镜观察[J],金属学报,2000,36(7):684-688
    28. Raman V. Synthesis of silicon carbide through the sol-gel process from different precursors[J], J Mater Sci,1995,30:2686-2690
    29.张洪涛,徐重阳.Sol-Gel法制备纳米碳化硅粉体的研究[J],功能材料,2000,31(4):366-368
    30. Mitchell B S, Zhang H Y. Formation of nanocrystalline silicon carbide powder from chlorine-containing polycarbo silane precursors [J], J Am Ceram Soc,1999,82(8): 2249-2254
    31.谢凯,张长瑞.低分子聚合物气相热裂解制备碳化硅超微粉的研究[J],硅酸盐学报,1996,24(3):262-268
    32.杨修春,韩高荣.化学气相反应法制备纳米碳化硅的研究[J],功能材料,1998,29(5):523-526
    33.战可涛,线全刚,郑丰,等.激光法制备高纯纳米SiC粉体及其产率[J],北京化工大学学报,2002,29(5):75-78
    34. Guo J Y, Gitzhofer F, Boulos M I. Induction plasma synthesis of ultrafine SiC powders from Si and CH4[J], J Mater Sci,1995,30:5589-5599
    35. Garcia C, Viera G. Characterization of silicon and silicon carbide nanometric powder using infrared phase-modulated ellipsometry[J], Adv Sci Tech,1999,14: 317-321
    36.戴学刚.碳化硅粉末的制备与应用进展[J],化工冶金,1996,17(2):181-185
    37. Tong L R, Reddy R G. Thermal plasma synthesis of SiC nano-powder/nano-fibers[J], Mater Res Bull,2006,41(12):2303-2310
    38.王零森.特种陶瓷[M],长沙:中南工业大学出版社,2003:169-182
    39.徐维忠.耐火材料[M],北京:冶金工业出版社,1998:148-155
    40.王锐,高峰,李道火.Si3N4超微粉体及其制备[J],安徽建筑工业学院学报,2006,14(2):49-51
    41. Weimer A W. Effect of Si metal addition to C-SiO2 precursors for synthesizing Si3N4 by carbothermal nitridation[J], J Mater Sci Lett,1998,17(2):123-125
    42.陈宏,穆柏春,郑黎明.氮化硅微粉制备技术[J],辽宁工学院学报,2006,26(3):191-195
    43.徐协文,刘其城,郑子樵.自蔓延法制备氮化硅粉时的氮气压力[J],中南工业大学学报,2003,34(1):58-62
    44.高纪明,肖汉宁,刘东明,等.溶胶-凝胶法制备Si3N4(Y2O3)粉末的研究[J],无机材料学报,1997,12(4):499-504
    45. Luo F, Zhu D M, Su X L, et al. Properties of hot-pressed of SiC/Si3N4 nanocomposites[J], Mater Sci Eng A,2007,458(1/2):7-10
    46. Manukyan K V, Kharatyan S L, Blugan G, et al. Combustion synthesis and compaction of Si3N4-TiN composite powder[J], Ceram Inter,2007,33(3):379-383
    47.张立明,禄向阳.β-Sialon结合刚玉材料性能的研究[J],耐火材料,2001,35(1):46-49
    48.罗星源,孙加林,王金相,等.β-Sialon结合刚玉耐火材料的合成[J],耐火材料,1999,33(3):133-135
    49.刘雄章,赵会敏,仇卫华.β-Sialon及β-Sialon-Al2O3的制备与性能研究[J],耐火材料,2002,36:81-84
    50.李亚伟,李楠,王斌耀,等.p-赛隆(Sialon)/刚玉复相耐火材料研究[J],无机材料学报,2000,15(4):612-618
    51.钱扬保,王福明,徐利华.粘土碳热还原氮化二步法制备β-sialon结合刚玉复相材料[J],耐火材料,2002,36(2):77-79
    52. Li N, Wu Y Q. Sintering, microstructure and alkali-resistance of the materials in Al2O3-Si3N4 system[C], Proceeding of UNITECR'95, Kyoto, Japan,1995:371-378
    53.石玉敏.β-Sialon粉体的合成中试及Sialon结合SiC、刚玉耐火材料的研究[D],沈阳:东北大学,2000
    54.都兴红,张广荣,张伟民,等.Sialon结合刚玉耐火材料的制备[J],耐火材料,1997,31(5):275-278
    55.张海军,刘战杰,钟香崇.β-sialon结合刚玉复合材料的性能[J],硅酸盐学报, 2005,33(11):1308-1313
    56.王笑一,彭达岩,文洪杰.赛隆结合刚玉复相材料的研究进展及应用现状[J],耐火材料,2005,39(3):199-202
    57.谭清华.Sialon及其复相材料的合成、结构和性能研究[D],武汉:武汉科技大学,2006
    58.金从进,朱伯铨,汪宁,等.赛隆结合刚玉滑板的性能及使用[J],耐火材料,2003,37(5):303-304
    59.张玉军,张伟儒.结构陶瓷材料及其应用[M],北京:化学工业出版社,2005:9-92
    60.周泽华,丁培道,陈蓓,等.相含量的变化对氧化锆陶瓷性能的影响[J],材料热处理学报,2002,23(1):43-46
    61.尹衍升,李嘉.氧化锆陶瓷及其复合材料[M],北京:化学工业出版社,2004:7
    62.王诚训,张义先,于青.ZrO2复合耐火材料[M],北京:冶金工业出版社,2003:42-43,245-254
    63.田守信,陈肇友,沈添志.含碳耐火材料,中Si与SiC抑制碳氧化的机理[J],耐火材料,1995,29(1):11-15
    64.山口明良.碳复合耐火材料[J],耐火材料,1994,28(3):128-132
    65. Yang X F, Wang J X and Y B. Influence of Ultra-Fine B4C and Nano-SiO2 on the properties of Alumina-Graphite Refractories[J], China's Refractories,2004,13(4): 21-25
    66. Yamaguchi A. Thermolchemical analysis for reaction process of aluminium and aluminium-compouds in carbon-containing refractories [J], Taikabutsu Overseas, 1987,7(2):11-16
    67.田守信,陈肇友.含炭制品中β-SiC与Al4C3的形成反应[J],耐火材料,1989,23(2): 1-4
    68.李有奇,柯昌明,李楠.铝碳质材料抗氧化研究进展[J],材料导报,2005,19(10):77-79,83
    69.黄卫国.含碳耐火材料的含硼抗氧化剂[J],耐火材料,2001,35(2):104
    70.李光辉.添加剂对滑板抗氧化性的影响[J],耐火材料,2001,35(3):140
    71.田守信,陈肇友.添加物对Al2O3-C制品性能的影响[J],耐火材料,1988,22(4):14-17
    72.侯谨,宋希文,孙加林,等.Mn对Al2O3-ZrO2-C耐火材料抗氧化性能影响[J],耐火材料,2004,38(4):252-254,257
    73.郭贵宝,宋希文,赵文广,等.添加锰粉对铝碳耐火材料抗氧化性的影响[J],包头钢铁学院学报,2004,23(2):118-121
    74. Li Y Q, Ke C M, Li Y S, et al. Effect of metallic Zn powder on oxidation of Al2O3-C refractories[J], China's Refractories,2006,15(4):29-33
    75.孙勇.添加剂对铝碳质耐火材料性能的影响[D],沈阳:东北大学,2006
    76.岳昌盛,叶方保,李庭寿,等.加入β-Sialon对铝碳质材料性能的影响[J],耐火材料,2006,40(6):440-442
    77.徐国涛,杨熹文,薛启文,等.氮化硅对烧成铝炭耐火材料的性能影响[J],硅酸盐通报,1999,(5):18-22
    78.程秀梅译.含碳耐火材料中添加ZrB2的性状和效果[J],国外耐火材料,1994,(11):52-57
    79.于景坤,戴文斌,戴淑平.赛隆-碳化硅系复合材料的合成及其应用[J],东北大学学报(自然科学版),2003,24(9):824-827
    80. Li X M, Rigaud M. Proceedings of ISR'96, Haikou, China,1996,514-521
    81.李红霞,刘国齐,杨彬,等.连铸用功能耐火材料的发展[J],耐火材料,2001,35(1):45-49
    82.陈肇友,田守信.Al与Si添加剂对Al2O3-C材料抗保护渣侵蚀的影响[J],金属学报,1989,25(3):191-195
    83.印永嘉,奚正楷,李大珍.物理化学简明教程[M],北京:高等教育出版社,1992:8-9
    84.梁英教,车荫昌.无机物热力学数据手册[M],沈阳:东北大学出版社,1993:449-479
    85.陈肇友.化学热力学与耐火材料[M],北京:冶金工业出版社,2005:494-539
    86.陈肇友Si-C-0复杂体系中的化学反应[J],耐火材料,2003,37(6):311-315
    87.李虹,黄莉萍,蒋薪.碳热还原法制备氮化硅的反应过程分析[J],无机材料学报,1996,11(2):241-246
    88.陈俊红,孙加林,占华生,等.P-Si3N4在含碳材料中转化为SiC的研究[J],耐火材料,2005,39(2):98-100
    89.丘泰,徐洁,’李远强,等.SiO2-C-N2系统中气相对相稳定性的影响[J],无机材料学报,1995,10(3):326-330
    90. Satapathy L N, Ramesh P D, Agrawal D, et al. Microwave synthesis of phase-pure, fine silicon carbide powder[J], Mater Res Bull,2005,40(10):1871-1882
    91. Lin Y J, Tsang C P. The effects of starting precursors on the carbothermal synthesis of SiC powders[J], Ceram Inter,2003,29(1):69-75
    92.张淑会,杨合,薛向欣,等.原料组成和氩气流量对铁尾矿合成碳化硅粉末的影响[J],东北大学学报(自然科学版),2006,27(10):1114-1117
    93. Sujirote K, Leangsuwan P. Silicon carbide formation from pretreated rice husks[J], J Mater Sci,2003,38(23):4739-4744
    94.何恩广,王晓刚,陈寿田.用硅质煤矸石合成SiC的研究[J],硅酸盐学报,2001,29(1):72-75,79
    95.于景坤,刘承军,姜茂发.原位合成莫来石-碳化硅系复合材料[J],东北大学学报(自然科学版),2002,23(11):1070-1072
    96. Han B Q, Li N. Preparation of P-SiC/Al2O3 composite from kaolinite gangue by carbothermal reduction[J], Ceram Int,2005,31(2):227-231
    97. Liu X K, Luo F, Zhu D M, et al. Microwave permittivity of SiC-Al2O3 composite powder prepared by sol-gel and carbothermal reduction[J], Trans Nonferrous Met Soc China,2006,16:494-497
    98. Lin Y J, Tsang C P. Fabrication of mullite/SiC and mullite/zirconia/SiC composites by "dual" in site reaction syntheses[J], Mater Sci Eng A,2003,344(1/2):168-174
    99. Elias F N, Kiminami R A. Al2O3/mullite/SiC powders synthesized by microwave-assisted carbothermal reduction of kaolin[J], Ceram Int,2001,27(7): 815-819
    100.Mariappan L, Kannan T S, Umarji A M. In situ synthesis of Al2O3-ZrO2-SiCw ceramic matrix composites by carbothermal reduction of natural silicates[J], Mater Chem Phys,2002,75(1/3):284-290
    101.Zhang H J, Han B Q, Liu Z J. Fabrication and oxidation of bauxite-based β-sialon-bonded SiC composite[J], Mater Res Bull,2006,41(9):1681-1689
    102.Amroune A, Fantozzi G, Dubois J, et al. Formation of Al2O3-SiC powder from andalusite and carbon[J], Mater Sci Eng A,2000,290(1/2):11-15
    103.李亚伟,李楠,李文忠,等.碳热还原粘土合成Al2O3-SiC复相陶瓷粉末[J],中国陶瓷,2000,36(3):13-16
    104.张淑会,薛向欣,金在峰.铁矿石尾矿合成碳化硅粉末[J],硅酸盐学报,2006,34(5):596-600
    105.Filsinger D H, Bourrie D B. Silica to silicon:key carbothermic reactions and kinetics[J], J Am Ceram Soc,1990,73(6):1726-1732
    106.Chen S H, Lin C I. Effect of contact area on synthesis of silicon carbide through carbothermal reduction of silicon dioxide[J], J Mater Sci Lett,1997,16(9):702-704
    107.Guterl V C, Ehrburger P. Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation[J], Carbon,1997,35(10/11):1587-1592
    108.唐惠庆,张圣弼,郭兴敏.La2O3对MnO2碳热还原的催化[J],化工冶金,2000,21(4):346-350
    109. Chan C F, Argent B B, Lee W E. Influence of additives on slag resistance of Al2O3-SiO2-SiC-C refractory bond phases under reducing atmosphere[J], J Am Ceram Soc,1998,81(12):3177-3188
    110.Sahajwalla V, Wu C D, Khanna R, et al. Kinetic study of fractors affecting in situ reduction of silica in carbon-silica mixtures for refractories [J], ISIJ Inter,2003,43(9): 1309-1315
    111.Yamaguchi A. Behaviors of SiC and Al added to carbon containing refractories [J], Taikabutsu Overseas,1984,4(3):14-18
    112.Inshikawa M, Nanri H, Wakamatsu M, et al. High temperature oxidation of SiC-based monolithic refractories:Effect of B4C on oxidation[J], Taikabutsu Overseas,1996,16(1):8-12
    113.Kawakami T, Aratani K, Hasegawa S, et al. Effects of Si and SiC addition on the properties of Al2O3-C refractories[J], Taikabutsu Overseas,1988,8(3):18-20
    114. Sun Y, Yu J K. Effects of B4C and SiC additions on properties of alumina-graphite refractories[C], Proceedings of ISR'07, Beijing, China,2007:177-179
    115.Yu J K, Hiragushi K. Synthesis of Al2O3-SiC composite from pyrophyllite and clay and its application in carbon-containing refractories[J], Taikabutsu,1998,50(7): 375-383
    116.Chen M, Song Y L, Yu J K. Oxidation protection of MgO-CaO-C refractories by addition of CaB6[C], Proceedings of ISR'07, Beijing, China,2007:134-137
    117.钱之荣,范广举.耐火材料实用手册[M],北京:冶金工业出版社,1992:19-26
    118.朱丽慧,黄清伟.反应烧结碳化硅材料的抗热震性能研究[J],耐火材料,2001,35(4):202-204
    119.陈敏,王楠,于景坤,等.碳化硅添加剂对含碳钙锆复合耐火材料性能的影响[J],东北大学学报(自然科学版),2005,26(3):256-259
    120.Jia Q L, Zhang H J, Li S P, et al. Effect of particle size on oxidation of silicon carbide powders[J], Ceram Inter,2007,33(2):309-313
    121. Yang K, Yang J, Lin Z M, et al. Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter[J], Mater Res Bull,2007, 42(9):1625-1632
    122.丘泰,龚亦农,徐洁,等.碳热还原法低温合成SiC粉末的研究[J],江苏陶瓷,2001,34(2):12-15
    123.张海军,张梅,李文超,等.O'-Sialon-ZrO2-SiC复合材料的合成热力学分析及其制备[J],北京科技大学学报,2000,22(1):66-69
    124.Kurt A O, Dabies T J. Synthesis of Si3N4 using sepiolite and various sources of carbon[J], J Mater Sci,2001,36:5895-5901
    125.Tatli Z, Thompson D P. Low temperature densification of silicon nitride materials[J], J Eur Ceram Soc,2007,27(2/3):791-795
    126. Yang Y, Chen Y X, Lin Z M, et al. Synthesis of α-Si3N4 using low-a-phase Si3N4 diluent by the seeding technique[J], Scripta Materialia,2007,56(5):401-404
    127.王华,戴永年.氮化硅及其微粉的制备[J],耐火材料,1996,30(2):113-115
    128.刘启德.利用木质素-二氧化硅溶胶-凝胶合成纳米Si3N4(Y2O3)粉末的研究[J],材料导报,2000,14(11):57-58
    129.李应泉,廖际常,邓朝权,等.二氧化硅碳热还原法制取Si3N4粉的研究[J],稀有金属材料与工程,1994,23(1):40-49
    130.张德,阮丽梅.用天然石英合成氮化硅的研究[J],非金属矿,2001,24:35-36,49
    131.王华,戴永年.用稻壳合成氮化硅超微粉的最佳条件试验研究[J],昆明理工大学学报,1996,21(6):26-30,35
    132.张淑会.高硅铁矿石尾矿整体材料化利用研究[D],沈阳:东北大学,2007
    133.Arik H. Preparation of Si3N4 by carbothermal reduction and nitridation of sepiolite[J], J Mate Sci,1999,34(4):835-842
    134.Arik H. Synthesis of Si3N4 by the carbo-thermal reduction and nitridation of diatomite[J], J Eur Ceram Soc,2003,23(12):2005-2014
    135.丘泰,徐洁,龚亦农,等.碳热还原法合成Si3N4的研究[J],硅酸盐通报,1995,23(5): 14-19
    136.黄惠宁译.α相和β相氮化硅的形成机理与动力[J],陶瓷研究,1996,11(1):16-23
    137.Lencart-silva F, Vieira J M. Carbothermal reduction and nitridation of silica:nuclei planar growth controlled by silicon monoxide diffusion on the reducer surface[J], Mater Pro Tech,1999,92-93:112-117
    138.Koc R, Kaza S. Synthesis of a-Si3N4 from carbon coated silica by carbothermal reduction and nitridation[J],J Eur Ceram Soc,1998,18(10):1471-1477
    139.Liu X J, Sun X W, Zhang J J, et al. Fabrication of β-sialon powder from kaolin[J], Mater Res Bull,2003,38(15):1939-1948
    140.Tatli Z, Demir A, Yilmaz R, et al. Effects of processing parameters on the production of β-Sialonpowder from kaolinite[J], J Eur Ceram Soc,2007,27(2/3):743-747
    141.邱雄迩,潘伟,周益春,等.微波合成β-Sialon[J],稀有金属材料与工程,2007,36(2):354-358
    142.Tessier P. Alamdari H D, Dubuc R, et al. Nanocrystalline β-Sialon by reactive sintering of a SiO2-AlN mixture subjected to high-energy ball milling[J], J Eur Ceram Soc,2005,391(1/2):225-227
    143.付芳,贾晓林,张海军.溶胶-凝胶和微波碳热还原氮化合成β-Sialon超细粉[J],硅酸盐学报,2007,35(3):317-321
    144.曹林洪,蒋明学,张军战.工艺条件对粘土碳热还原氮化合成β'-Sialon粉体的影响[J],耐火材料,2001,35(5):252-254
    145.Yu J K, Ueno S. Synthesis of β-sialon whiskers from pyrophyllite[J],J Ceram Soc Japan,1997,105(9):821-823
    146.Li F J, Wakihara T, Tatami J, et al. Synthesis of P-sialon powder by carbothermal reduction-nitridation of zeolites with different compositions [J], J Eur Ceram Soc, 2007,27(5):2535-2540
    147.侯新梅,钟香崇.高铝矾土碳热还原氮化合成SiAlON的反应过程[J],耐火材料,2006,40(4):310-311
    148.姜涛,薛向欣.含钛高炉渣合成(Ca, Mg)a'-Sialon-AlN-TiN粉末[J],中国有色金属学报,2004,14(12):2009-2015
    149.曹瑛,李卫东,李金洪.硅热还原氮化法粉煤灰制备Sialon粉体的研究[J],环境矿物学,2006,25(4):357-361
    150.张海军,刘战杰,钟香崇.煤矸石还原氮化合成O'-Sialon及热力学研究[J],无机材料学报,2004,19(5):1129-1137
    151.Rahman I A, Saleh M I. The formation of β-sialon in the carbothermal reduction of digested rice husks[J], Mater Lett,1995,23(1/3):157-161
    152.韩波,张海军,钟香崇.矾土基β-SiAlON结合刚玉-碳化硅复合材料的制备及性能[J],耐火材料,2006,40(4):265-268
    153.李珍珍,张海军,钟香崇.O'-Sialon结合锆刚玉材料的制备及性能研究[J],耐火材料,2005,39(6):405-407,410
    154.侯新梅,钟香崇.高铝矾土-硅粉氮化合成SiAlON的过程研究[J],耐火材料,2005,39(5):333-336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700