电解-SBR联合处理高盐高浓度制药废水工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地分析了制药废水的种类和特性。通过实际工程项目的经验了解到单独的生化法难以处理高浓度制药废水,甚至导致污泥死亡。本文以杭州市神鹰医药化工有限公司生产废水(COD_(Cr) 4100~7800mg/L,TN60~95mg/L,NH_4~+-N35~40mg/L,pH2.0~4.0)作为研究对象,考虑到制药废水成分复杂、COD高且难降解的特点和电解法处理废水的高效、易操作且能提高废水可生化性等优点,设计了以电解法为预处理联合SBR法处理制药废水的方案。论文主要研究结果如下:
     1、通过测定电解槽中制药废水COD_(Cr)、色度、可生物降解性的变化,考察了停留时间、反应温度、废水浓度、电解电压、pH值、电解质、阴阳极转换频率、电极联接方式等电解主要操作条件对制药废水处理效果的影响。并通过同Na_2SO_4、NaNO_3等电解质作对比实验来说明NaCl产生的电解阳极间接氧化的存在。实验结果表明,Cl~-所导致的阳极间接氧化促进了COD_(Cr)的去除,且阳极间接氧化在电解过程中占主导地位。
     2、实验所用废水本身Cl~-含量较高,因此无需添加NaCl即可发生电解阳极间接氧化。在本实验中,以30伏直流电压为电解电压,调节废水pH为7.5,电解时间为60min,测得废水COD_(Cr)降低41.4%,色度去除率为96.9%,废水的B/C比从原来的0.17提高到0.34,说明废水的可生化性得到提高,并通过对处理前后的废水组分进行的色质联用分析得到进一步的验证。
     3、耐盐微生物的培养驯化是高含盐量废水SBR法处理的最重要的步骤,可使废水中盐对该系统所产生的不利影响降到最低程度。采用限制性曝气方式和非限制性曝气方式进行的对比试验发现,非限制性曝气方式取得较为理想的COD处理效果。
     4、本试验分别开展了恒温和变温度条件下DO和ORP作为过程控制参数的可行性研究。采用SBR法研究了不同曝气量、初始MLSS浓度和进水COD浓度等条件下温度对反应过程中DO和ORP变化的影响。结果表明,恒温条件下DO作为过程控制参数是可行的;环境温度的波动极大地影响了反应器内DO的
    
    浙江大学硕士毕业论文
    变化趋势,而ORP的变化趋势基本不受影响。提出当环境温度变化时,采用O即
    作为控制参数更能反映有机物的降解情况。试验中还发现,ORP凹点出现的时
    间与进水COD浓度有关,O即的上升速率与COD降解程度有关。通过以上实
    验研究可以实现SBR法处理制药废水的在线控制,合理安排曝气量和曝气时间,
    最终达到节约能源的目的。
     在通过电解预处理后,废水经中和和稀释后加入到SBR反应器中生化,平
    均出水eonc, 230mg/L,SBR出水再经絮凝沉淀CODe,降到loomg几以下,色度
    由最初的200降低到10以下。
Systematic analysis of the varieties and characteristics of the pharmaceutical wastewater was conducted. Based on the experience of practical projects, we found that it was unfeasible to treat the pharmaceutical wastewater only with biological methods, it even caused the death of sludge. Considering high COD, complex composition and recalcitrant organic compounds in pharmaceutical wastewater and effectiveness and ease in operation of electrolysis, an schemes of electrolysis-SBR was established.
    Experiments were conducted to study the changes in chromaticity, COD and the biodegradability of pharmaceutical wastewater. The objective of this paper is to advance the knowledge of the influence of residence time, polar distance, initial reaction temperature, initial wastewater concentration, voltage, pH and electrolyte , electrode sort, switching frequency of anode and cathode, polar coupling type on the electrolysis efficiency. Chloride is widely presented in many wastewater, so it's worth studying the increase of chromaticity and COD removal by anode indirect oxidation without filling in any other electrolyte. Compared with the effects of Na2SO4, NaNO3 on the electrolysis efficiency, the results of the experiment showed that the COD removal can be mainly attributed to the indirect oxidation effect of NaCl in electrolysis process. The results indicate that the presence of Cl-can achieve higher COD removal because of anode indirect oxidation.
    As the wastewater used in this experiment was rich in chloride, electrolysis anode indirect oxidation occurred without filling in NaCl. The results showed that the use of electrolysis technology could remove about 96.9% of chromaticity and 41.4% of COD and improve the biodegradability of pharmaceutical wastewater from 0.17 to 0.34. volts d.c. of 30 voltages, 7.5 of pH value and a retention time of 60 minutes were recommended for the process design of electrolysis. This was verified ulteriorly by chromatogram-mass spectrum.
    
    
    Acclimation procedures are of utmost importance when high salinity wastewater was to be treated with SBR treatment. While the process was affected slightly, proper acclimation methods minimize negative effects and the process would yield a good quality effluent. Compared with confined movement way of SBR process, unconfmed way played a more important role in the good removal efficiency of COD.
    At present, there are some problems in the study of DO and ORP as control parameters, because the researches are usually developed in the invariable temperature. However, environmental temperature is changing in the wastewater treatment. The effect of environmental temperature on and ORP as control parameter was studied specially in some experiments carried on a sequencing batch reactor(SBR) fed with pharmaceutical wastewater in this paper. It was carried out in the invariable temperature and in the variable temperature, respectively. Results showed that DO as control parameter is valid in the invariable temperature, and the law of variation in DO during organism removal were influenced with the environmental temperature, at different experiment condition of aeration intensity, MLSS concentration or inflow nutrition concentration, but the variation in ORP were not influenced with it. The reason that the DO was influenced was also discussed. This paper brought forward that the control parameter using ORP was
    accurate and reliable when environmental temperature changed. In addition, inflow COD concentration and the time that ORP concave value appeared was connected, and the speed that ORP in curve ascended related with the COD concentration during the degradation. So it can be made on-line control of aeration intensity and aeration time.
    After the pre-treatment of pharmaceutical wastewater with electrolysis, the supernatant was neutralized and diluted and then was added to SBR reactor. Compared with the pharmaceutical wastewater without electrolysis, results showed that the average CODcr value of SBR effluent was 230mg/L, after flocculent sedimentation, CODcr reduced to le
引文
1 Ulker B. O., Savas K.. Color removal from textile effluents by electrochemical destruction[J]. Journal of Environmental Scienoe and Health Pan A—Environmental Science and Engineering, 1994, 29(1): 1-16.
    2 Vlyssides A. G., et al.. Electrochemical oxidation of a textile dye and finishing waste using a Pt/Ti electrode[J]. J. Environ. Sci. Health-environ. Sci. Eng. Toxic Hazard Subst. Control, 1998, 33(5): 847-853. C. L. K.
    3 Tennakoon. Electrochemical treatment of human wastes in a parcked bed reactor[J]. Appl. Electrochem., 1996,26:99-104
    4 佘宗莲,田由芸.厌氧.好氧序列间歇式反应器处理生物制药废水的研究.环境科学研究,1998,11(1):49-52.
    5 马文鑫,陈卫中等.制药废水预处理技术探索.环境污染与防治,2001,23(2):87-89.
    6 吴敦虎,聂英华.混凝法处理制药废水的研究,水处理技术。2000,26(1):53-55.
    7 王雅琼,许文林,赵丽君.絮凝.电解法处理麻黄素废水研究,水处理技术,1996,22(3):168-172.
    8 邓颖,郑泽根.复合型光催化剂TiO2/a-Fe203/Fe降解四环素溶液的研究(Ⅰ).重庆建筑大学学报,1999,21(5),52-56.
    9 包南,邓丛蕊.负载型TiO2固定相光催化氧化法降解水中呋吗唑酮.中国环境科学,1998,18(5):458-462.
    10 方明成。吴珊.生化制药废水处理小试研究.水利水电科技进展,1999,19(5):44-45.
    11 王才,韩超.制药废水生化处理试验研究.给水排水,1999,25(3):41-43.
    12 郑金声,孟琪莉.厌氧-好氧-气浮法处理抗生素污水工程实例.给水排水,1999,25(8):36-38.
    13 何霞,李波.深井曝气法处理制药厂废水的优势菌株的生态学研究.环境保护科学,2000,26(6):10-11.
    
    
    14 杨意东,杨丽君.高浓度有机废水固定化生物处理技术的研究.给水排水,2000,26(1):43-48.
    15 董庆华,徐苏娟.苯妥英钠清洁生产工艺,污染防治技术,2000,13(2):103-104.
    16 杨建民.接触氧化.气浮处理制药废水.给水排水,1995,21(1):23-24.
    17 程里,马骁懿,陈飞跃,袁相理.缩合.电解法处理苯胺废水,化工环保,1994,14:290-296.
    18 贺启环,陈立伟.微电解.生化工艺处理化工制药生产废水的试验与实践,污染防治技术,1998,11(4):237-239.
    19 陈武,李凡修,梅平.废水处理的电化学方法研究进展,湖北化工,2001,1:10-12.
    20 刘俊良,张红梅,高永.电解法处理染料生产废水技术研究.河北建筑科技学院学报,1998,15(3):63~66.
    21 李长海,杜长海,王元瑞.导流电凝聚活性印染废水脱色试验,吉林工学院学报,1998,19(4):10-13.
    22 聂云,李伟森,时晓庆,袁立群,孙银月.电解法处理含氰镀铜废液的试验研究,天津冶金,1999,3:39-42.
    23 何晓莉等.管式电凝聚法处理印染废水COD的特性,研究给水排水,2000,26(5):33-35.
    24 杨云军,李庭刚,堵国成,沈志松,陈坚,张国平.电解氧化法预处理垃圾渗滤液,环境科学研究,2003,16(6):53-56.
    25 张宝贵,韩梅,王建伟,彭霓虹,冯建兴.电解法处理硫化物恶臭污水的研究,南开大学学报(自然科学),1995,28(4):11-13.
    26 张贵芬,吴琳.电凝聚法处理电镀含铬废水影响因素的实验,环境保护科学,1997,23(6):9-12.
    27 U. Bakir Ogutveren, E. Toru and S. Koparal. Removal of cyanide by anodic oxidation for wastewater treatment. Water research, 1999, 33(8): 1851-1856.
    28 Sibel Zor, Birgul Yazici, Mehmet Erbil and Hasan Galip. The electrochemical degradation of linearalkyibenzenesulfonate (LAS) on platinum electrode. Water Research, 1998, 32(3): 579-586.
    
    
    29 Gianluca Ciardelli and Nicola Ranieri. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation. Water Research, 2001, 35(2): 567-572.
    30 L. Szpyrkowicaz, F.Zilio-Grandi, S.N.Kaul and S. Rigoni-stem. Electrochemical treatment of copper cyanide wastewaters using stainless steel electrodes. Water Research, 1998, 38(6): 261-268.
    31 Ya xiong, Peter J. Strunk, Hongyun Xia, Xihai Zhu and Hans T. Karlsson. Treatment of dye wastewater containing acid orange Ⅱ using a cell with three-phase three-dimensional electrode. Water Research, 2001, 35(17): 4226-4230.
    32 Oehr K. Electrochemical decolorization of kraft mill effluents. J. WPCF, 1978, 50: 286-289.
    33 Cer6n-Rivera, M, Dátvila-Jiménez M M, Elizalde-González M P. Degradation of the textile dyes Basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes. Chemosphere, 2004, 55(1): 1-14.
    34 陈繁忠,李穗中.废水净化的电化学技术进展,重庆环境科学,1997,19(6):19-21.
    35 张永利,马中汉.电凝聚法处理废水的效能和作用的研究,哈尔滨建筑工程学院学报,1989,22(1):79-87.
    36 Li Choung Chiang, Juu-En Chang, Ten Chin Wen. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Research, 1995, 29 (2): 671-678.
    37 Lidia Szpyrkowicz, Claudia Juzzolino and Santosh N. Kaul. A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochiorite and fenton reagent. Water research, 2001, 35(9): 2129-2136.
    38 Zhimin Qiang, Jih-Hsing Chang, Chin-Pao Huang. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 2002, 36: 85-94.
    39 De Koninck Mathieu, Brousse Thierry, Bélanger Daniel. The electrochemical generation of ferrate at pressed iron powder electrodes: effect of various operating parameters. Electrochimica Acta, 2003, 48(10): 1425-1433.
    40 Marco Panizza, Cristina Bocca and Giacomo Cerisola. Electrochemical treatment of
    
    wastewater containing polyaromatic organic pollutants. Water Research, 2000, 34(9): 2601-2605.
    41 Kusakabe K., Nishida H., Morooka S. and Kato Y. Simultaneous electrochemical removal of copper and chemical oxygen demand using a packed-bed electrode cell. J. appl. Eiectrochem. 1986, 16: 121-126.
    42 Nigel J. Bunce, Michelle Chartrand and Peter Keech. Electrochemical treatment of acidic aqueous ferrous sulfate and copper sulfate as models for acid mine drainage. Water Research, 2001, 35(18): 4410-4416.
    43 Noriyuki Sonoyama, Kohichi Ezaki and Tadayoshi Sakata. Continuous electrochemical decomposition of dichloromethane in aqueous solution using various column electrodes. Advances in Environmental Research, 2001, 6: 1-8.
    44 李亚新.国外印染废水的电化学处理,给水排水,1999,25(7):42-44.
    45 王慧,王建龙,占新民,钱易.电化学法处理含盐染料废水,中国环境科学,1999,19(5):441-444.
    46 熊方文,余蜀灵.脉冲电解处理工业污水技术,工业水处理,1990,10(2):10-13.
    47 高良进,程岩法.高压脉冲电凝聚浮上法处理印染废水,环境污染与防治,1992,14(5):10-13.
    48 王车礼,张登庆,陈毅忠,等.电絮凝过程电流密度与槽电压关系研究。工业水处理 2002,22(7):28~30
    49 时文中,华杰,朱国才,徐盛明.电化学法处理高盐苯酚废水的研究。化工环保 2003,23(3):129~133
    50 刘永淞,陈纯.SBR工艺特性研究[J].中国给水排水:1990,(6):5-11.
    51 彭永臻.SBR法的五大优点[J].中国给水排水,1993,9(2):29-31
    52 Drake B. A. Instrumentation and control of water and wastewater treatment and transport system. Proceeding of the 4th IAWPRC Workshop[M]. USA: IAWPRC, 1985: 573-589.
    53 D Wareham G, Hall K J, Mavinic D S. Real-time control of wastewater treatment systems Using ORP. Wat. Sci. Tech., 1993, 28(11~12):273-282.
    
    
    54 王淑莹,彭永臻,周利等.用溶解氧作为SBR法反应过程和反应时间控制参数.中国环境科学,1998,18(5):415-418.
    55 曾薇,彭永臻,王淑莹等.以溶解氧浓度作为SBR法模糊控制参数.中国给水排水.2000,16(4):5-10.
    56 Yu Ruey-Fang, Liaw Shu-Liang, Chang Cheng-Nan et al. Applying real-time control to enhance the performance of nitrogen removal in the continuous-flow SBR system. Wat. Sci. Tech., 1998, 38(3):271-280.
    57 John A Pierson, Spyros G Pavlostathis. Real-time monitoring and control of sequencing batch reactors for secondary treatment of a poultry processing wastewater. Water Environment Research, 2000, 72(5):585-592.
    58 Yongzhen Peng et al. Use of DO for parameter for fuzzy control of SBR. In: Proe of IAWQ Specialty Conference of Chemical and Petrochemical Industries Group. Beijing: 2000: 890-897
    59 Morgan-Sagastume Fernando, Allen D Grant. Effects of temperature transient conditions on aerobic biological treatment of wastewater. Water Research, 2003, 37(15): 3590-3601.
    60 电解法处理污水,水处理信息报导,1999,1:47-50.
    61 王忠.SBR工艺用于制药废水处理的探讨,河南师范大学学报:自然科学版 2002,30(1):69-72.
    62 孙力平等.污水处理新工艺与设计计算实例,科学出版社,2001:105-106.
    63 Lin C K, Katayama Y, Hosomi M, Murakami A et al.The characteristics of the bacterial community structure and population dynamics for phosphorus removal in SBR activated sludge processes. Water Research, 2003, 37(12): 2944-2952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700