含锌电炉粉尘处理及工艺参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含锌电炉粉尘的成球是配碳球团直接还原技术处理该粉尘的前提,因此首先对试验所用的含锌电炉粉尘的粒度组成和成球性能进行了研究。结果表明:试验所用的含锌电炉粉尘粒度较细,均小于5μm,对成球非常有利,在不加任何粘结剂的条件下生产的球团亦能满足试验要求。在造球实验中还讨论了C/O、成球时间等参数对球团落下强度、抗压强度等性能的影响。
     为了考察配碳球团处理含锌电炉粉尘技术的可行性,对配碳球团的直接还原技术处理电炉粉尘进行了研究,并完成了半工业扩大性试验,优化了其参数,得到了还原焙烧法的合理工艺条件:碳的过量系数为1.2,还原温度为1150℃,料层厚度为30mm,加热时间为70min。还原后的球团为半金属化球团,其TFe含量50%左右,最高可达54.7%;金属化率60%~70%,最高可达88%;通过差热分析和化学分析方法,确定了收集粉尘中ZnO的含量,表明收集粉尘含ZnO在90%以上,达到了国标规定的等级氧化锌的标准。球团中锌的还原挥发率达90%以上,而球团内残锌含量已达到低于2%的试验要求,完全可以作为高炉炼铁的配料,实现冶金能源的二次利用,说明用配碳球团的直接还原技术处理含锌电炉粉尘是成功的。研究结果为该技术在工业生产中的应用奠定了基础,也为国内外钢铁行业找到了一种能有效回收有价金属资源且具有环境保护意义的处理含锌电炉粉尘的方法。
     为了考察装料容器对球团料层温度分布的影响和在非随炉加热过程中,热的炉底对料层传热的影响,运用FLUENT6.1.22商用软件分别计算了长方体装料容器和圆柱体装料容器的温度分布,找出了各种球团料层的温度分布的低温区域,为下一步提高料层升温速度和提高处理含锌电炉粉尘的效率提供了依据,模拟结果显示,对于料层高度为30mm的球团料,在放入加热炉内大概20分钟左右,高温炉底由供热炉底开始转化为吸热炉底。
     最后,通过对炉型优缺点的对比,确定采用转底炉处理含锌电炉粉尘,并对整个工艺的经济效益进行了分析,表明在现行ZnO价位下,用转底炉来处理含锌电炉粉尘,可以实现电炉粉尘的综合利用,不仅有较好的环保效益,而且还有较好的经济效益。
Pelletizing of electric Arc Furnace (EAF) dusts include zinc was the base of the technology of carbon-containing pellets direct reduction, so it studied the Particle size and the pelletizing-property of the EAF(electric arc furnace) dust. Experimental results show that the EAF dusts of Nan jing steel are so fine that all particles are less-than 5μm, which is very benefit to pelletize. The performance of pellets could reach experimental requirements without any binder. laboratory experiments studied the effects fallen strength and compression strength what C/O、time infects and so on.
     In order to studied feasibility of disposing electric Arc Furnace (EAF) dusts with carbon-containing pellets, it studied carbon-containing pellets direct reduction, and semi-industrial scale research was carried, proving feasibility of the equipment and heating-way that devised for the experiment. Research results show that the equipment and heating-way that devised for the experiment are working well. Besides, imposing the technology of carbon-containing pellets direct reduction to dispose EAF dusts had been studied, semi-industrial scale experiments were finished as well, and parameters has been optimized, the better parameters of roasting reduction method are shown as follows: excess coefficient of carbon 1.2, reduction temperature 1150℃, anticipate thickness 30mm, reduction time 60min,The treated pellets were semi-metallic pellet, total Ferrum content in the treated pellet was about 50%, the best got up to 54.7%; metallic ratio was about 60%-70%, the best got up to 88%; zinc oxide content in the collected zinc oxide powder exceeded 90%, while the percent of zinc content in the pellets is lower than 2%, which can meet the requirement of experiments, so the pellets can be used as the assistant materials of Blast Furnace, to some degree this realizes the recycle of metallurgical energy sources, it was proved that succeeded to recycle electric arc furnace(EAF) dust for carbon-containing pellets direct reducing technology. This is the first attempt to put the technique into practice in our country, at besides the author explored the parameters and heating-way of roasting reduction method, finally obtained the best parameters(reduction time、reduction temperature、carbon-oxygen ratio、heating-way、thickness of feed layer and so on). It will establish a hard basic for the industry production and application, of course, find a good means that were economy and efficiency and environmental to disposed EAF.
     In order to see about the influence of the charge container to the distribution of pellets temperature and of the hot furnace bottom to the material layer heat transfers, FLUENT6.1.2 has been used to calculate the temperature distribution of simulating quadrate and columnar container. Find out the point of the lowest temperature distribution of every container. It can be the foundation of raising the rate of material layer’s temperature heightening and rising the efficiency of disposing EAF dusts containing Zn. The simulative result shows that, when the material layer is 30mm, 20min later after put into the stove, the heat supply hearth is becoming decalescence hearth.
     At the end, Pass to the contrast of the furnace type about merit and shortcoming, make sure that recycle of Electric Arc Furnace (EAF) dusts with rotary hearth, owing to the economic analysis of whole craft, show value of ZnO now, disposing Electric Arc Furnace (EAF) dusts with rotary hearth, integrated utilization about electric Arc furnace (EAF) dusts, it not only have good environment, but also high economical benefit.
引文
[1]许亚华.电炉粉尘的处理和综合利用.钢铁,1996,31(6):66~69,42
    [2]D.k.Xia and C.A.Pickles . Caustic roasting and leaching of electric Arc furnace dust.. Canadian Metallurgical Quarterly, 1999, Vol.38,No.3, pp.175-186
    [3]彭兵,张传等.电弧炉粉尘的治理.矿产综合利用,2000(4):33~37
    [4]Tahir Sofilic, Alenka Rastovcan-Mioc. Characterization of steel mill electric-arc furnace dust. Journal of Hazardous Materials,2004 (B109):59–70
    [5]Darlene M.Fritz . Electric arc furnace dust treatment symposium IV. Iron and Steel Engineer, 1994, 71 (3): 53
    [6]M. C. Mantovani, C. Takano and P. M. Bu chler. EAF and secondary dust characterisation. Ironmaking and Steelmaking, 2004,VOL 31 NO 4: PP.325~334
    [7]Karl-Heinz B, Dillinger H,Lehm kuchler Heimz-Juergen L S .Recycling of Iron and Steel Works Wastes Using the Inmetco Direct Reduction Process[J]. Metallurgical Plant and Technology, 1997,13(4):7~8.
    [8]ZhaoYoucai, RobertStanforth. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. Journal of Hazardous Materials B80 (2000):223–240
    [9]J.R.Donald and C.A.Pickles. reduction of electric arc furnace dust with solid iponpowder. Canadian Metallurgical Quarterly.VOL.35.NO.2PP.255-267, 1996
    [10]D. Ionescu, etc. Glassification of eaf dust: the limit for Fe2O3 and ZnO content and an assessment of leach performance. Canadian Metallurgical Quarterly, vol.36.NO.4. pp.269-281 1997
    [11]N.Menad,etc. Study of the presence of fluorine in the recycled fractions during carbothermal treatment of EAF dust. Waste Management 2003(23): 483-491
    [12]AnaI.Ferna′ndez, JosepM.Chimenos, etc. Stabilization of Electrical Arc Furnace Dust with Low-Grade MgO Prior to Landfill. Journal of environmental enginering, 2003, march: 275~279
    [13]彭兵,张传福等.电弧炉炼钢粉尘的固化处理.中南工业大学学报,2000,31(2):124~126
    [14]王谦, J. W Graydon 等.FeCl2 处理电炉炉尘的热力学计算.重庆大学学报,2003,26(6):73~77
    [15]王敏,陈伟庆.电炉粉尘循环利用造泡沫渣.北京科技大学学报,2001,23(1):15~17
    [16]梁君,陈伟庆等.含锌粉尘用于铁水预脱硅.北京科技大学学报,2002,24(6):606~609.
    [17]刘百臣,代书华等.含锌电炉粉尘配碳球团的冶金特性.东北大学学报(自然科学版), 2004,25(5):431~434.
    [18]欧阳东,广钢电炉粉尘分析及治理利用探讨,炼钢,2004 ,20 (6):19~22.
    [19]张一敏等编著,球团矿生产技术,北京: 冶金工业出版社, 2005
    [21]王筱留.钢铁冶金学(炼铁部分) .北京:冶金工业出版社 2000:57~67,78,94
    [21]S.A.Mikhail, A.M.Turcotte.etc. Thermoanalytical study of EAF dust and its vitrification product. Thermochimica acta,1996, (86):71-79
    [22]J.R.Donald and C.A.Pikles. Reduction of electric Arc furnace dust with solid iron powder . Canadian Metallurgical Quarterly, 1996, VOL.35.NO.2: PP.255~267
    [23]张一敏等编著,球团理论与工艺, 北京: 冶金工业出版社, 1997.10
    [24]徐采栋.锌冶金物理化学.上海:上海科学技术出版社,1979:9~55
    [25]李文超.冶金热力学. 北京:冶金工业出版社,1995
    [26]邱竹贤.有色金属冶金学.北京:冶金工业出版社,1988
    [27]戴永年,赵忠.真空冶金.北京:冶金工业出版社,1988
    [28]李金城,刘正全.铁合金分析.北京:冶金工业出版社,1998.11:74~75
    [29]蔡少华 黄坤耀等.元素无机化学.中山:中山大学出版社,1999.5:246
    [30]邵俊杰.周期表与分析化学.北京:人民教育出版社,1981.8:285
    [31]魏寿昆.冶金过程热力学.上海:上海科学技术出版社,1980:6~8
    [32]魏庆成.冶金热力学.重庆: 重庆大学出版社,1996.4:242~262
    [33]杜清枝. 杨继舜.物理化学.重庆:重庆大学出版社,1997.11:385~389
    [34] O.库巴谢夫斯基.冶金热化学.北京:冶金工业出版社,1985:514~533
    [35]曲 英.炼钢学原理.北京:冶金工业出版社 1980
    [36]罗世永,张家芸.固/固反应动力学预测系统.中国稀土学报——2000 年全国冶金物理化学专辑:198~201
    [37]韩其勇.冶金过程动力学.北京: 冶金工业出版社, 1983
    [38]中国有色金属工业标准计量质量研究所编著.铅锌质量技术监督手册[M].北京:冶金工业出版社,2002.
    [39]杨学民,郭占成,含碳球团还原过程中反应分数、还原度和金属化率的关系, 上海金属 ,1995.vol.17(5):27~31
    [40]王爱军,王尚槐,配碳球团直接还原过程的数值模拟,北京科技大学学报,1998(.6):30~35
    [41]彭兵,张传富等,电炉粉尘球团直接还原的热传导模型,上海金属,2000.Vol.22.No.5 (9):25~31
    [42] D. Mazumdar, N. Kumar and P. Bverma. Heat and Mass Transfer Rates between Solid and Liquid in Gas Stirred Ladle System. Iron making and Steelmaking,1992,19(2):152~155
    [43] T. Akiyama, H. Ohta, R. Takahashi, Y. Waseda and J. yagi,Measurement and Modeling of Thermal conductivity for Dense Iron Oside and Porous Iron Ore Agglomerates in Stepwise Reduction,International ISIJ 1992,32 (7): 829~837
    [44]彭 兵,张传福等.电弧炉粉尘直接还原炉渣氧化和脱硫能力计算热力学.中南工业大学学报,2000, 31(6):497~501
    [45]彭 兵,张传福等.电弧炉粉尘等温还原的动力学研究.安徽工业大学学报,2001,18(1):13~17
    [46]王 敏,陈伟庆.电炉粉尘循环利用造泡沫渣.北京科技大学学报,2001,23(1):15~17
    [47]杨学民,郭占成等.配碳球团还原机理研究.化工冶金,1995 年 5 月,第 16 卷第 2 期:118~125
    [48]王东彦,陈伟庆,李景搪等.钢铁厂含锌铅粉尘配碳球团的冶金特性研究.烧结球团,1995 年 1 月,第 20 卷第 1 期:20~24
    [49]Qixing Yang, Borje Gustafsson. Studies on dust recycling in the electric arc furnace at Uddeholm Tooling AB. Scandinavian Journal of Metallurgy 2003, (32): 147~156
    [50]AnaI.Fernandez, JosepM.Chimenos, etc. Stabilization of Electrical Arc Furnace Dust with Low-Grade MgO Prior to Landfill. Journal of environmental engineering, 2003, march: 275~279
    [51]W.J. Bruckard, K.J. Davey , etc. Water leaching and magnetic separation for decreasing the chloride level and upgrading the zinc content of EAF steelmaking baghouse dusts. Int. J. Miner. Process. 2005, 75 :pp1~20
    [52]马兴亚等.配碳球团还原技术研究现状.烧结球团,1999,5(24): 24~27
    [53]柴毅忠等.竖式电炉使用直接还原铁的生产实践.中国钢铁年会论文集,2001: 473-476
    [54]刘麟瑞,王丕珍编.冶金炉料手册 北京:冶金工业出版社,2000.4
    [55]刘宏传, 徐日瑶,硅热法炼镁时球团在加热过程中的传热与温度分布,轻金属,1995,No.10.
    [56]许鹏言,球团矿的冶金特性,冶金能源,1993 .12. (11): 58~60
    [57]高家锐等,动量、热量、质量传输原理,P238-243 重庆大学出版社,1987.5
    [58]韩占忠, 王敬, 兰小平编.FLUENT. 北京:北京理工大学出版社, 2004
    [59]刘利平,黄万年 FLUENT 软件模拟管壳式换热器三维流场.化工装备技术.2006.3.(27):57~61
    [60]乔国林,童朝南.基于 FLUENT 的结晶器出钢温度控制的研究.冶金设备.2005.6. (3): 147~152
    [61]徐利华,延吉生等.热工基础与工业窑炉.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700