耳蜗雪旺细胞来源的Wnt1对耳蜗移植干细胞分化的影响及其分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1目的
     神经干细胞(neural stem cells, NSC)的移植为神经系统退行性疾病和损伤的治疗提供了新的思路,但是移植入内耳的神经干细胞向神经元分化的效率很低,这成为移植的外源性神经干细胞替代治疗螺旋神经神经元(spiral ganglion neurons, SGNs)变性的主要障碍。在本研究中,我们验证了耳蜗螺旋神经元损伤后的局部微环境更有利于移植的外源性神经干细胞向神经元方向分化,并初步阐明了其分子机制。
     2方法
     我们通过向耳蜗圆窗龛局部给予药物ouabain建立大鼠螺旋神经元损伤动物模型。然后将分离、培养的神经干细胞移植进入正常、及螺旋神经元损伤后的耳蜗鼓阶。用免疫荧光染色和实时定量RT-PCR等技术来鉴定螺旋神经元损伤后内耳局部微环境对移植的神经干细胞分化的的影响,并初步阐明其分子机制。最后我们使用transwell共培养系统通过体外实验验证我们的假设。
     3结果
     通过将外源性干细胞植入螺旋神经元损伤的动物耳蜗内,我们发现,与对照组耳蜗相比,移植的神经干细胞在螺旋神经元损伤耳蜗中更易分化成MAP2阳性的神经元。采用实时定量PCR和免疫荧光法,我们也证明了在螺旋神经元损伤耳蜗内,螺旋神经节内卫星细胞(雪旺细胞的一类,外周神经节内的雪旺细胞称卫星细胞)中Wnt1(Wnt信号通路配体)的表达显着增加。我们进一步证实,神经干细胞表达Wnt信号通路受体和Wnt信号通路胞内关键组件。在以上结果基础上我们提出假设,雪旺细胞所产生Wnt1可能参与了移植神经干细胞向神经元分化的调控。我们使用transwell共培养系统在体外验证这一假设。我们将感染了慢病毒载体高表达Wnt1的耳蜗雪旺氏细胞与神经干细胞共培养,结果显示:与高表达Wnt1的雪旺细胞共培养的神经干细胞,分化为MAP2阳性神经元的比例显着增加,然而这种促进分化的作用可被DKK1(Wnt信号通路抑制剂)抑制。
     4结论
     这些结果表明,耳蜗雪旺氏细胞来源的Wnt1可激活移植神经干细胞的胞内Wnt信号通路,从而促进其向神经元的分化。详尽的阐明损伤微环境的改变对移植外源性干细胞的影响,有助于我们提出更有效的策略以突破移植神经干细胞向神经元的分化率低这一屏障。
1Objective
     While neural stem cell (NSC) transplantation is widely expected to become atherapy for nervous system degenerative diseases and injuries, the low neuronaldifferentiation of NSCs which were transplanted into the inner ear is a majorobstacle for the successful treatment of spiral ganglion neuron (SGN)degeneration. In this study, we validated whether the local microenvironmentinfluences the neuronal differentiation of transplanted NSCs in the inner ear.
     2Methods
     Ouabain was locally administered to the round window niche to establish theSGN degeneration animal model. NSCs were isolated, cultured and transplantedinto the scala tympani of control or SGN-degenerative cochleae.Immunofluorescence staining and real-time RT-PCR were used to identify theeffect of the inner ear local microenvironment on the neuronal differentiation oftransplanted NSCs. Lentiviral vector infection and transwell co-culture systemwas used in vitro.
     3Results
     Using a rat SGN degeneration model, we demonstrated that transplantedNSCs were more likely to differentiate into MAP2+neurons in SGN-degenerative cochleae than in control cochleae. Using real-time quantitativePCR and an immunofluorescence assay, we also proved that the expression ofWnt1(a ligand of Wnt signaling) increases significantly in Schwann cells in theSGN-degenerative cochlea. We further verified that NSC cultures expressreceptors and signaling components for Wnts. Based on these expressionpatterns, we hypothesized that Schwann cell-derived Wnt1and Wnt signalingmight be involved in the regulation of the neuronal differentiation oftransplanted NSCs. We verified our hypothesis in vitro using a co-culture system.We transduced a lentiviral vector expressing Wnt1into cochlear Schwann cellcultures and co-cultured them with NSC cultures. Co-culture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage ofNSCs that differentiated into MAP2+neurons, whereas this differentiationenhancing effect was prevented by Dkk1(an inhibitor of the Wnt signalingpathway).
     4Conclusion
     These results suggested that Wnt1derived from cochlear Schwann cellsenhanced the neuronal differentiation of transplanted NSCs through Wntsignaling pathway activation. Alterations of the microenvironment deservedetailed investigation because they may help us to conceive effective strategiesto overcome the barrier of the low differentiation rate of transplanted NSCs.
引文
1. INCESULU A, NADOL JB, JR. Correlation of acoustic threshold measures andspiral ganglion cell survival in severe to profound sensorineural hearingloss: implications for cochlear implantation. Ann Otol Rhinol Laryngol1998;107:906-911.
    2. ALTSCHULER RA, O'SHEA KS, MILLER JM. Stem cell transplantation forauditory nerve replacement. Hear Res2008;242:110-116.
    3. COLEMAN.B., HARDMAN.J.,.A. C. fate of embryonic stem cellstransplanted into the deafened mammalian cochlea. Cell Transplant2006;15:369–380.
    4. PARKER MA. neural stem cells injected into the sound-damaged cochleamigrate throughout the cochlea and express markers of haircells,suppprting cells, and spiral ganglion cells. Hear Res2007;232:29-43.
    5. MATSUOKA AJ. In vivo and in vitro characterization of bonemarrow-derived stem cells in the cochlea. laryngoscope2006;116:1363-1367.
    6. KONDO T. Sonic hedgehog and retinoic acid synergistically promotesensory fate specification from bone marrow-derived pluripotent stem cells.PNAS2005;102:4789-4799.
    7. HU Z. Survival and neural differentiation of adult neural stem cellstransplanted into the mature inner ear. Exp Cell Res2005;302:40-47.
    8. SHEPHERD RK, COCO A, EPP SB. Neurotrophins and electrical stimulationfor protection and repair of spiral ganglion neurons following sensorineuralhearing loss. Hear Res2008;242:100-109.
    9. SEKIYA T, KOJIMA K, MATSUMOTO M, AL. E. Cell transplantation to theauditory nerve and cochlear duct. Exp Neurol.2006;198:12-24.
    10. MATSUOKA A.J, KONDO T, MIYAMOTO R.T, AL. E. Enhanced Survival ofBone-Marrow-Derived Pluripotent Stem Cells in an Animal Model ofAuditory Neuropathy. Laryngoscope2007;117:1629-1635.
    11. LANG H, SCHULTE B.A, GODDARD J.C, AL. E. Transplantation of MouseEmbryonic Stem Cells into the Cochlea of an Auditory-Neuropathy AnimalModel: Effects of Timing after Injury. JARO2008;9:225–240.
    12. SEKIYA T, KOJIMA K, MATSUMOTO M, KIM TS, TAMURA T, ITO J. Celltransplantation to the auditory nerve and cochlear duct. Exp Neurol2006;198:12-24.
    13. BRANTJES H, BARKER N, VAN ES J, CLEVERS H. TCF: Lady Justice castingthe final verdict on the outcome of Wnt signalling. Biol Chem2002;383:255-261.
    14. WODARZ A, NUSSE R. Mechanisms of Wnt signaling in development. AnnuRev Cell Dev Biol1998;14:59-88.
    15. HABAS R, DAWID IB, HE X. Coactivation of Rac and Rho by Wnt/Frizzledsignaling is required for vertebrate gastrulation. Genes Dev2003;17:295-309.
    16. HUELSKEN J, BIRCHMEIER W. New aspects of Wnt signaling pathways inhigher vertebrates. Curr Opin Genet Dev2001;11:547-553.
    17. KUHL M, SHELDAHL LC, PARK M, MILLER JR, MOON RT. The Wnt/Ca2+pathway: a new vertebrate Wnt signaling pathway takes shape. TrendsGenet2000;16:279-283.
    18. GILES RH, VAN ES JH, CLEVERS H. Caught up in a Wnt storm: Wntsignaling in cancer. Biochim Biophys Acta2003;1653:1-24.
    19. LEE SM, TOLE S, GROVE E, MCMAHON AP. A local Wnt-3a signal isrequired for development of the mammalian hippocampus. Development2000;127:457-467.
    20. CHENN A, WALSH CA. Regulation of cerebral cortical size by control of cellcycle exit in neural precursors. Science2002;297:365-369.
    21. LIE DC, COLAMARINO SA, SONG HJ, DESIRE L, MIRA H, CONSIGLIO A,LEIN ES, JESSBERGER S, LANSFORD H, DEARIE AR, GAGE FH. Wntsignalling regulates adult hippocampal neurogenesis. Nature2005;437:1370-1375.
    22. HIRABAYASHI Y, ITOH Y, TABATA H, NAKAJIMA K, AKIYAMA T, MASUYAMAN, GOTOH Y. The Wnt/beta-catenin pathway directs neuronal differentiationof cortical neural precursor cells. Development2004;131:2791-2801.
    23. KLEBER M, SOMMER L. Wnt signaling and the regulation of stem cellfunction. Curr Opin Cell Biol2004;16:681-687.
    24. TOLEDO EM, COLOMBRES M, INESTROSA NC. Wnt signaling inneuroprotection and stem cell differentiation. Prog Neurobiol2008;86:281-296.
    25. ZECHNER D, FUJITA Y, HULSKEN J, MULLER T, WALTHER I, TAKETO MM,CRENSHAW EB,3RD, BIRCHMEIER W, BIRCHMEIER C. beta-Catenin signalsregulate cell growth and the balance between progenitor cell expansion anddifferentiation in the nervous system. Dev Biol2003;258:406-418.
    26. CHENN A, WALSH CA. Increased neuronal production, enlarged forebrainsand cytoarchitectural distortions in beta-catenin overexpressing transgenicmice. Cereb Cortex2003;13:599-606.
    27. MACHON O, VAN DEN BOUT CJ, BACKMAN M, KEMLER R, KRAUSS S. Roleof beta-catenin in the developing cortical and hippocampal neuroepithelium.Neuroscience2003;122:129-143.
    28. OTERO JJ, FU W, KAN L, CUADRA AE, KESSLER JA. Beta-catenin signalingis required for neural differentiation of embryonic stem cells. Development2004;131:3545-3557.
    29. DAI C, STOLZ DB, KISS LP, MONGA SP, HOLZMAN LB, LIU Y.Wnt/beta-catenin signaling promotes podocyte dysfunction andalbuminuria. J Am Soc Nephrol2009;20:1997-2008.
    30. MUROYAMA Y, FUJIHARA M, IKEYA M, KONDOH H, TAKADA S. Wntsignaling plays an essential role in neuronal specification of the dorsalspinal cord. Genes Dev2002;16:548-553.
    31. YU JM, KIM JH, SONG GS, JUNG JS. Increase in proliferation anddifferentiation of neural progenitor cells isolated from postnatal and adultmice brain by Wnt-3a and Wnt-5a. Mol Cell Biochem2006;288:17-28.
    32. LEE HY, KLEBER M, HARI L, BRAULT V, SUTER U, TAKETO MM, KEMLER R,SOMMER L. Instructive role of Wnt/beta-catenin in sensory fatespecification in neural crest stem cells. Science2004;303:1020-1023.
    33. ARMATI PJ. The Biology of Schwann Cells: Development, Differentiationand Immunomodulation. Sydney: CAMBRIDGE UNIVERSITY PRESS,2007.
    34. JESSEN KR. Glial cells. Int J Biochem Cell Biol2004;36:1861-1867.
    35. CHEN YY, MCDONALD D, CHENG C, MAGNOWSKI B, DURAND J,ZOCHODNE DW. Axon and Schwann cell partnership during nerve regrowth.J Neuropathol Exp Neurol2005;64:613-622.
    36. BHATHEJA K, FIELD J. Schwann cells: origins and role in axonalmaintenance and regeneration. Int J Biochem Cell Biol2006;38:1995-1999.
    37. WEBBER C, ZOCHODNE D. The nerve regenerative microenvironment: earlybehavior and partnership of axons and Schwann cells. Exp Neurol2010;223:51-59.
    38. IMAIZUMI T, LANKFORD KL, KOCSIS JD. Transplantation of olfactoryensheathing cells or Schwann cells restores rapid and secure conductionacross the transected spinal cord. Brain Res2000;854:70-78.
    39. AZANCHI R, BERNAL G, GUPTA R, KEIRSTEAD HS. Combined demyelinationplus Schwann cell transplantation therapy increases spread of cells andaxonal regeneration following contusion injury. J Neurotrauma2004;21:775-788.
    40. ULLIAN EM, HARRIS BT, WU A, CHAN JR, BARRES BA. Schwann cells andastrocytes induce synapse formation by spinal motor neurons in culture.Mol Cell Neurosci2004;25:241-251.
    41. GAVAZZI I, COWEN T. Can the neurotrophic hypothesis explain degenerationand loss of plasticity in mature and ageing autonomic nerves? J Auton NervSyst1996;58:1-10.
    42. SCHICHO R, SKOFITSCH G, DONNERER J. Regenerative effect of humanrecombinant NGF on capsaicin-lesioned sensory neurons in the adult rat.Brain Res1999;815:60-69.
    43. UTLEY DS, LEWIN SL, CHENG ET, VERITY AN, SIERRA D, TERRIS DJ.Brain-derived neurotrophic factor and collagen tubulization enhancefunctional recovery after peripheral nerve transection and repair. ArchOtolaryngol Head Neck Surg1996;122:407-413.
    44. LEWIN GR, BARDE YA. Physiology of the neurotrophins. Annu RevNeurosci1996;19:289-317.
    45. KUFFLER DP. Promoting and directing axon outgrowth. Mol Neurobiol1994;9:233-243.
    46. OPPENHEIM RW, HOUENOU LJ, JOHNSON JE, LIN LF, LI L, LO AC,NEWSOME AL, PREVETTE DM, WANG S. Developing motor neurons rescuedfrom programmed and axotomy-induced cell death by GDNF. Nature1995;373:344-346.
    47. RICHARDSON PM, MCGUINNESS UM, AGUAYO AJ. Axons from CNSneurons regenerate into PNS grafts. Nature1980;284:264-265.
    48. SPOENDLIN H. Anatomy of cochlear innervation. Am J Otolaryngol1985;6:453-467.
    49. TOESCA A. Central and peripheral myelin in the rat cochlear and vestibularnerves. Neurosci Lett1996;221:21-24.
    50. HURLEY PA, CROOK JM, SHEPHERD RK. Schwann cells revert tonon-myelinating phenotypes in the deafened rat cochlea. Eur J Neurosci2007;26:1813-1821.
    51. BOHNE BA, HARDING GW. Neural regeneration in the noise-damagedchinchilla cochlea. Laryngoscope1992;102:693-703.
    52. LAWNER BE, HARDING GW, BOHNE BA. Time course of nerve-fiberregeneration in the noise-damaged mammalian cochlea. Int J Dev Neurosci1997;15:601-617.
    53. WISE AK, RICHARDSON R, HARDMAN J, CLARK G, O'LEARY S. Resproutingand survival of guinea pig cochlear neurons in response to theadministration of the neurotrophins brain-derived neurotrophic factor andneurotrophin-3. J Comp Neurol2005;487:147-165.
    54. GLUECKERT R, BITSCHE M, MILLER JM, ZHU Y, PRIESKORN DM,ALTSCHULER RA, SCHROTT-FISCHER A. Deafferentation-associated changesin afferent and efferent processes in the guinea pig cochlea and afferentregeneration with chronic intrascalar brain-derived neurotrophic factor andacidic fibroblast growth factor. J Comp Neurol2008;507:1602-1621.
    55. WHITLON DS, TIEU D, GROVER M, REILLY B, COULSON MT. Spontaneousassociation of glial cells with regrowing neurites in mixed cultures ofdissociated spiral ganglia. Neuroscience2009;161:227-235.
    56. HANSEN MR, VIJAPURKAR U, KOLAND JG, GREEN SH. Reciprocal signalingbetween spiral ganglion neurons and Schwann cells involves neuregulinand neurotrophins. Hear Res2001;161:87-98.
    57. BOSTROM M, KHALIFA S, BOSTROM H, LIU W, FRIBERG U,RASK-ANDERSEN H. Effects of neurotrophic factors on growth and glial cellalignment of cultured adult spiral ganglion cells. Audiol Neurootol2009;15:175-186.
    58. MORRIS JK, MAKLAD A, HANSEN LA, FENG F, SORENSEN C, LEE KF,MACKLIN WB, FRITZSCH B. A disorganized innervation of the inner earpersists in the absence of ErbB2. Brain Res2006;1091:186-199.
    59. JEON EJ, XU N, XU L, HANSEN MR. Influence of central glia on spiralganglion neuron neurite growth. Neuroscience2011;177:321-334.
    60. PETTINGILL LN, MINTER RL, SHEPHERD RK. Schwann cells geneticallymodified to express neurotrophins promote spiral ganglion neuron survivalin vitro. Neuroscience2008;152:821-828.
    61. WANG SJ, FURUSHO M, D'SA C, KUWADA S, CONTI L, MOREST DK,BANSAL R. Inactivation of fibroblast growth factor receptor signaling inmyelinating glial cells results in significant loss of adult spiral ganglionneurons accompanied by age-related hearing impairment. J Neurosci Res2009;87:3428-3437.
    62. SCHMIEDT RA, OKAMURA HO, LANG H, SCHULTE BA. Ouabain applicationto the round window of the gerbil cochlea: a model of auditory neuropathyand apoptosis. J Assoc Res Otolaryngol2002;3:223-233.
    63. LANG H, SCHULTE BA, SCHMIEDT RA. Ouabain induces apoptotic celldeath in type I spiral ganglion neurons, but not type II neurons. J Assoc ResOtolaryngol2005;6:63-74.
    64.阮芳铭,高文元,王海明,等.全耳蜗基底膜硬铺片法的改进和组化观察.海军医学杂志2002;23:151-153.
    65. LANG H, SCHULTE BA, GODDARD JC, HEDRICK M, SCHULTE JB, WEI L,SCHMIEDT RA. Transplantation of mouse embryonic stem cells into thecochlea of an auditory-neuropathy animal model: effects of timing afterinjury. J Assoc Res Otolaryngol2008;9:225-240.
    66. RICHTER CP, KUMAR G, WEBSTER E, BANAS SK, WHITLON DS. Unbiasedcounting of neurons in the cochlea of developing gerbils. Hear Res;278:43-51.
    67. LOU M, ESCHENFELDER CC, HERDEGEN T, BRECHT S, DEUSCHL G.Therapeutic window for use of hyperbaric oxygenation in focal transientischemia in rats. Stroke2004;35:578-583.
    68. LUO YJ, ZHANG GH, XU XQ, CHEN JH, LIAO M. Molecular Characterizationand SYBR Green Ⅰ-Based Quantitative PCR for Duck Hepatitis VirusType1.. Agricultural Sciences In China2008;7.
    69. KENNETH JL, THOMAS DS. Analysis of Relative Gene Expression DataUsing Real-Time Quantitative PCR and the2-2deltCt Method. methods2001;25:402-408.
    70. PAPKOFF J, SCHRYVER B. Secreted int-1protein is associated with the cellsurface. Mol Cell Biol1990;10:2723-2730.
    71. PAPKOFF J. Inducible overexpression and secretion of int-1protein. MolCell Biol1989;9:3377-3384.
    72. MATSUOKA AJ, KONDO T, MIYAMOTO RT, HASHINO E. Enhanced survivalof bone-marrow-derived pluripotent stem cells in an animal model ofauditory neuropathy. Laryngoscope2007;117:1629-1635.
    73. HU Z, WEI D, JOHANSSON CB, HOLMSTROM N, DUAN M, FRISEN J,ULFENDAHL M. Survival and neural differentiation of adult neural stemcells transplanted into the mature inner ear. Exp Cell Res2005;302:40-47.
    74. LANG H, LI M, KILPATRICK LA, ZHU J, SAMUVEL DJ, KRUG EL, GODDARDJC. Sox2up-regulation and glial cell proliferation following degenerationof spiral ganglion neurons in the adult mouse inner ear. J Assoc ResOtolaryngol2011;12:151-171.
    75. WHITLON DS, TIEU D, GROVER M. Purification and transfection of cochlearSchwann cells. Neuroscience2010;171:23-30.
    76. HU Y, LEAVER SG, PLANT GW, HENDRIKS WT, NICLOU SP, VERHAAGEN J,HARVEY AR, CUI Q. Lentiviral-mediated transfer of CNTF to schwann cellswithin reconstructed peripheral nerve grafts enhances adult retinal ganglioncell survival and axonal regeneration. Mol Ther2005;11:906-915.
    77. ZHU Y, FEUER G, DAY SL, WRZESINSKI S, PLANELLES V. Multigenelentiviral vectors based on differential splicing and translational control.Mol Ther2001;4:375-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700