miR-431靶作用Eya4基因调控耳蜗功能的研究及双侧耳道闭锁患者Baha效果分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分基础研究miR-431靶作用Eya4基因调控耳蜗功能的研究
     目的研究miR-431对耳蜗功能的影响及与耳聋的关系,以补充阐明遗传性耳聋的病因。同时探讨miR-431调控耳蜗功能的可能分子机制,为遗传性耳聋的预防和治疗提供理论基础。
     方法主要采用Real-time PCR和microRNA原位杂交技术确定miR-431在小鼠耳蜗的时空表达谱。利用已构建的miR-431转基因(Transgenic, Tg)小鼠,进行听性脑干反应(ABR)测试评估小鼠听力,在动物水平了解miR-431对耳蜗功能的影响。利用小鼠基底膜铺片和耳蜗切片等技术探求miR-431转基因小鼠导致听力下降的耳蜗结构变化。应用生物信息学软件预测并利用双荧光素酶报告基因系统明确miR-431的靶基因。最后利用PC12细胞和原代培养的新生小鼠螺旋神经节细胞,在细胞水平进一步验证miR-431对神经元发育和分化的影响。
     结果miR-431在新生小鼠的耳蜗中的螺旋神经节、Corti器和血管纹中高表达,表达量随小鼠发育而逐渐减少。检测了A和B两个系13周龄的miR-431Tg小鼠和同窝的野生型(Wildtype, Wt)小鼠的听力,miR-431Tg小鼠听觉反应域明显高于Wt小鼠。miR-431Tg小鼠基底膜毛细胞可见点状缺失,螺旋神经节细胞分布较wt小鼠稀疏,石蜡切片上测量Rosenthal小管中螺旋神经节细胞密度显示,miR-431Tg小鼠明显低于wt小鼠。本研究发现,Eya4是miR-431的一个靶基因,miR-431Tg小鼠耳蜗中EYA4蛋白的含量减少。在PC12细胞中过表达miR-431抑制PC12细胞的分化。同时,miR-431Tg小鼠耳蜗原代螺旋神经节细胞成熟神经元数量和轴突长度降低。
     结论miR-431在小鼠耳蜗中过表达可导致小鼠听力下降。miR-431的高表达抑制了其靶基因Eya4的翻译,使EYA4蛋白形成受阻,进而导致螺旋神经节细胞数量减少,损害了听觉信号传导径路。
     第二部分临床研究双侧耳道闭锁患者Baha效果分析
     目的评估双侧先天性耳道闭锁患者应用骨锚式助听器(Bone-anchored hearing aid. Baha)后的听力效果及满意度,并分析术后并发症发生情况及预防和处理方法。
     方法对16例行单侧Baha植入术的双侧先天性耳道闭锁患者进行回顾性分析。分别测试患者在声场中裸耳与应用植入式Baha后的平均听阈,并应用普通话言语测听材料(Mandarin Speech Test Materials, MSTM)测试言语识别率(Speech Discrimination Scores, SDS)及言语识别阈(Speech Reception Threshold, SRT)。以Baha应用情况调查问卷和儿童格拉斯格受益列表(Glasgow children's benefit inventory, GCBI)评估患者应用Baha后的生活质量提高程度和满意度。总结16例患者术后皮肤并发症的发生情况和处理方法。
     结果患者裸耳平均听阈为61.6±7.8dB HL,应用植入式Baha后平均听阈为23.8±5.9dB HL。在45dB HL和65dB HL给声强度下,裸耳SDS分别为6.7±7.4%和56.5±7.4%,应用植入式Baha后SDS提高至86.5±4.4%和90.1±3.4%。裸耳平均SRT为60.6±7.5dB HL,应用植入式Baha后降至24.7±5.0dB HL。Baha应用情况调查问卷显示患者应用Baha均获得满意效果,GCBI平均受益分数为45.6±14.4分。16例患者中共发生皮肤并发症5例。对1-2级皮肤反应者给予局部抗生素处理;3级反应者行二次手术切除增生皮肤及肉芽组织,其中1例患者更换9m桥基。
     结论双侧先天性耳道闭锁患者应用植入式Baha后听阈及言语识别能力得到明显提高,生活质量亦获得显著改善,患者主观满意度较高。桥基周围皮肤感染、皮肤过度增生是Baha植入术最常见的并发症。
Part One Basic Research miR-431Involves in Regulating Cochlear Function by Targeting Eya4
     Objective To study the function of miR-431in cochleae in order to understand the relationship between microRNAs and hearing loss, and help clarify the cause of hereditary deafness. To provide the theoretical basis for prevention and treatment of hereditary deafness in the future.
     Methods We investigated the spatial-temporal expression profiles of miR-431in cochleae of mice using Real-time PCR and miRNA in situ hybridization. miR-431Transgenic(Tg) mice were established andauditorybrainstemresponses (ABRs) were detected to examine whether there was a difference of hearing ability between the Tg and Wt mice. We also used surface preparation technique of cochlear basilar membrane and cochlear sections to investigate the structural changes in the cochleae of Tg mice. We used bioinformatics softwares to predict the target mRNA of miR-431and confirmed the directinteractionbetweenmiR-431and the3'UTRof Eya4mRNA by luciferasereporterassay. Stable over-expression of miR-431wasachieved in PC12cells and the primary spiral ganglion neurons(SGN) of new born mice were cultured. Experiments in vitro further verified the inhibiting effects of miR-431in neurons.
     Results miR-431were highly expressed in SGN, Corti organ and striavascularis in cochleae of the new born mice and the expression were gradually reduced along with the developement. ABRs were detected in the Tg and Wt mice of A line and B line. The ABR thresholds were significantly higher in Tg mice compared to Wt mice. Few hair cells were missing in basal membrane of cochleae of Tg mice, and SGNs were sparse in Rosenthal canals of Tg mice. The density of SGNs of Tg mice was significantly lower than that of Wt mice. Eya4was confirmed as the target gene of miR-431by luciferasereporterassay and the EYA4content detected in cochleae of Tg mice was lower compared to Wt mice. The differentiation was inhibited in PC12cells in which miR-431were stably over-expressed. The proportion of mature neurons and the length of axons was also less in SGN primary culture of cochleae of miR-431Tg mice.
     Conclusion Over-expression of miR-431in cochleae of mice could result in hearing loss. Excessive miR-431inhibited the translation of its target mRNA-Eya4, leading to down regulation of EYA4protein. The deficiency of EYA4may be the reason of sparse SGNs in cochleae of Tg mice.
     Part Two Clinical Research The Efficacy of Bone-Anchored Hearing Adis in Patients With Congenital Bilateral Aural Atresia
     Objective To evaluate the efficacy and satisfaction of bone-anchored hearing aids (Bahas) in patients with bilateral aural atresia. And to discuss the prevention and treatment of postoperative complications.
     Methods Baha was implanted during auricle reconstruction surgery, or after the auricle was rebuilt. Mean pure-tone threshold and speech audiometry test using Mandarin Speech Test Materials (MSTM) and results were compared among patients unaided and with Baha. Scores from the Baha user questionnaire and Glasgow Children's Benefit Inventory (GCBI) were used to measure patient satisfaction and subjective health benefit. Retrospective analysis of16patients underwent Baha implantation were conducted to summarize the complications and treatment.
     Results The mean speech discrimination scores measured in a sound field with a presentation level of45dB HL were6.7±7.4%unaided and86.5±4.4%with Baha. Scores with a presentation level of65dB HL were56.5±7.4%unaided and90.1±3.4%with Baha. The unaided speech reception threshold was60.6±7.5dB HL and24.7±5.0dB HL with Baha. The mean pure-tone threshold of the patients was61.6±7.8dB HL unaided and23.8±5.9dB HL with Baha. The Baha application questionnaire demonstrated excellent patient satisfaction. The average benefit score of GCBI was45.6±14.4. Five patients suffered from skin complications. Patients had a Holgers Grade1-2skin reaction were cured by local application of antibiotics; and the patients experienced Holgers Grade3skin reaction were taken revision surgeries for excessive soft tissue growth. One patient replaced the Baha abutment with a longer9.0mm one.
     Conclusion The implanted Baha has been one of the most reliable methods of auditory rehabilitation for patients with bilateral aural atresia. It can improve the patient's speech recognition performance and the quality of life. Infection and skin overgrowth around the abutment was the most common complications of Baha implantation.
引文
1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. Dec 31993:75(5):843-854.
    2. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. Feb 24 2000;403(6772):901-906.
    3. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell. Jan 23 2004;116(2):281-297.
    4. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal. Oct 13 2004:23(20):4051-4060.
    5. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. Sep 25 2003;425(6956):415-419.
    6. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell. Feb 20 2009; 136(4):642-655.
    7. Soukup GA. Little but loud:small RNAs have a resounding affect on ear development. Brain research. Jun 24 2009; 1277:104-114.
    8. Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. Sep 22 2006;126(6):1203-1217.
    9. International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. Oct 21 2004;431 (7011):931-945.
    10. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. Jan 14 2005;120(1):15-20.
    11. Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science. Jul 8 2005:309(5732):310-311.
    12. Weston MD, Pierce ML, Rocha-Sanchez S, Beisel KW, Soukup GA. MicroRNA gene expression in the mouse inner ear. Brain research. Sep 21 2006;1111(1):95-104.
    13. Friedman LM, Dror AA, Mor E, et al. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proceedings of the National Academy of Sciences of the United States of America. May 12 2009;106(19):7915-7920.
    14. Elkan-Miller T, Ulitsky I, Hertzano R, et al. Integration of transcriptomics, proteomics, and microRNA analyses reveals novel microRNA regulation of targets in the mammalian inner ear. PloS one. 2011;6(4):e18195.
    15. Ushakov K, Rudnicki A, Avraham KB. MicroRNAs in sensorineural diseases of the ear. Frontiers in molecular neuroscience.2013;6:52.
    16. Mencia A, Modamio-Hoybjor S, Redshaw N, et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nature genetics. May 2009;41(5):609-613.
    17. Lewis MA, Quint E, Glazier AM, et al. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nature genetics. May 2009;41(5):614-618.
    18. Wheeler G, Ntounia-Fousara S, Granda B, Rathjen T, Dalmay T. Identification of new central nervous system specific mouse microRNAs. FEBS letters. Apr 172006;580(9):2195-2200.
    19. O'Neill ME, Marietta J, Nishimura D, et al. A gene for autosomal dominant late-onset progressive non-syndromic hearing loss, DFNA10, maps to chromosome 6. Human molecular genetics. Jun 1996;5(6):853-856.
    20. Wayne S, Robertson NG, DeClau F, et al. Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Human molecular genetics. Feb 1 2001;10(3):195-200.
    21. Glueckert R, Bitsche M, Miller JM, et al. Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic f ibroblast growth factor. The Journal of comparative neurology. Apr 1 2008;507(4):1602-1621.
    22. Sacheli R, Nguyen L, Borgs L, et al. Expression patterns of miR-96, miR-182 and miR-183 in the development inner ear. Gene expression patterns:GEP. Jun 2009;9(5):364-370.
    23. Friedman LM, Dror AA, Avraham KB. Mouse models to study inner ear development and hereditary hearing loss. The International journal of developmen tal biology.2007; 51 (6-7):609-631.
    24. Huang CM, Shui HA, Wu YT, et al. Proteomic analysis of proteins in PC12 cells before and after treatment with nerve growth factor: increased levels of a 43-kDa chromogranin B-derived fragment during neuronal differentiation. Brain research. Molecular brain research. Aug 15 2001:92(1-2):181-192.
    25. Lu SH, Yang Y, Liu SJ. An investigation on the division of neuronal PC12 cells induced by nerve growth factor. Sheng li xue bao:[Acta physiologica Sinica]. Oct 25 2005;57(5):552-556.
    26. Das KP, Freudenrich TM, Mundy WR. Assessment of PC12 cell differentiation and neurite growth:a comparison of morphological and neurochemical measures. Neurotoxicology and teratology. May-Jun 2004;26(3):397-406.
    27. Bever MM, Fekete DM. Atlas of the developing inner ear in zebrafish. Developmental dynamics. Apr 2002;223(4):536-543.
    28. Bissonnette JP, Fekete DM. Standard atlas of the gross anatomy of the developing inner ear of the chicken. The Journal of comparative neurology. May 13 1996;368(4):620-630.
    29. Stone JS, Cotanche DA. Hair cell regeneration in the avian auditory epithelium. The International journal of developmental biology. 2007:51(6-7):633-647.
    30. Pennacchio LA. Insights from human/mouse genome comparisons. Mammalian genome. Jul 2003:14(7):429-436.
    31. Leibovici M, Safieddine S, Petit C. Mouse models for human hereditary deafness. Current topics in developmental biology.2008;84:385-429.
    32. Ohlemiller KK. Contributions of mouse models to understanding of age-and noise-related hearing loss. Brain research. May 26 2006:1091(1):89-102.
    33. Kikkawa Y, Seki Y, Okumura K, et al. Advantages of a mouse model for human hearing impairment. Experimental animals/Japanese Association for Laboratory Animal Science.2012;61(2):85-98.
    34. Dror AA, Avraham KB. Hearing impairment:a panoply of genes and functions. Neuron. Oct 21 2010:68(2):293-308.
    35.马宁,高旭.转基因动物在microRNA研究中的应用.生物化学与生物物理 进展.2009:36(9):1095-1100.
    36. Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. May 2 2006;103(18):7024-7029.
    37. Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell. Jan 23 2009;136(2):215-233.
    38. Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes & development. Feb 15 2003; 17(4):438-442.
    39. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Developmental cell. Oct 2006;11(4):441-450.
    40. Soukup GA, Fritzsch B, Pierce ML, et al. Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Developmental biology. Apr 15 2009;328(2):328-341.
    41. Li H, Kloosterman W, Fekete DM. MicroRNA-183 family members regulate sensorineural fates in the inner ear. The Journal of neuroscience. Mar 32010;30(9):3254-3263.
    42. Wang XR, Zhang XM, Du J, Jiang H. MicroRNA-182 regulates otocyst-derived cell differentiation and targets T-boxl gene. Hearing research. Apr 2012;286(1-2):55-63.
    43. Weston MD, Pierce ML, Jensen-Smith HC, et al. MicroRNA-183 family expression in hair cell development and requirement of microRNAs for hair cell maintenance and survival. Developmental dynamics. Apr 2011:240(4):808-819.
    44. Gu C, Li X, Tan Q, Wang Z, Chen L, Liu Y. MiR-183 family regulates chloride intracellular channel 5 expression in inner ear hair cells. Toxicology in vitro. Feb 2013;27(1):486-491.
    45. Wang C, Li Q. Identification of Differentially Expressed MicroRNAs During the Development of Chinese Murine Mammary Gland. Journal of Genetics and Genomics.2007;34(11):966-973.
    46. Tanaka T, Sugaya S, Kita K, et al. Inhibition of cell viability by human IFN-beta is mediated by microRNA-431. International journal of oncology. May 2012;40(5):1470-1476.
    47. Tanaka T, Arai M, Jiang X, et al. Downregulation of microRNA-431 by human interferon-beta inhibits viability of medulloblastoma and glioblastoma cells via upregulation of SOCS6. International journal of oncology. May 2014;44(5):1685-1690.
    48. Schultz NA, Andersen KK, Roslind A, Willenbrock H, Wojdemann M, Johansen JS. Prognostic microRNAs in cancer tissue from patients operated for pancreatic cancer--five microRNAs in a prognostic index. World journal of surgery. Nov 2012;36(11):2699-2707.
    49. Kanaan Z, Roberts H, Eichenberger MR, et al. A plasma microRNA panel for detection of colorectal adenomas:a step toward more precise screening for colorectal cancer. Annals of surgery. Sep 2013;258(3):400-408.
    50. Borsani G, DeGrandi A, Ballabio A, et al. EYA4, a novel vertebrate gene related to Drosophila eyes absent. Human molecular genetics. Jan 1999;8(1):11-23.
    51. Verhoeven K, Van Camp G, Govaerts PJ, et al. A gene for autosomal dominant nonsyndromic hearing loss (DFNA12) maps to chromosome 11q22-24. American journal of human genetics. May 1997;60(5):1168-1173.
    52. Tadjuidje E, Hegde RS. The Eyes Absent proteins in development and disease. Cellular and molecular life sciences:CMLS. Jun 2013:70(11):1897-1913.
    53. Heanue TA, Reshef R, Davis RJ, et al. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Sixl, homologs of genes required for Drosophila eye formation. Genes & development. Dec 15 1999:13(24):3231-3243.
    54. Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL. The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell. Dec 26 1997:91(7):881-891.
    55. Ohto H, Kamada S, Tago K, et al. Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Molecular and cellular biology. Oct 1999;19(10):6815-6824.
    56. Liu XZ, Hope C, Walsh J, et al. Mutations in the myosin VIIA gene cause a wide phenotypic spectrum, including atypical Usher syndrome. American journal of human genetics. Sep 1998;63(3):909-912.
    57. Miller SJ, Lan ZD, Hardiman A, et al. Inhibition of Eyes Absent Homolog 4 expression induces malignant peripheral nerve sheath tumor necrosis. Oncogene. Jan 212010; 29 (3):368-379.
    58. Nordlund J, Milani L, Lundmark A, Lonnerholm G, Syvanen AC. DNA methylation analysis of bone marrow cells at diagnosis of acute lymphoblastic leukemia and at remission. PloS one.2012;7(4):e34513.
    59. Sahly I, Andermann P, Petit C. The zebrafish eyal gene and its expression pattern during embryogenesis. Development genes and evolution. Jul 1999;209(7):399-410.
    60. Kozlowski DJ, Whitfield TT, Hukriede NA, Lam WK, Weinberg ES. The zebrafish dog-eared mutation disrupts eyal, a gene required for cell survival and differentiation in the inner ear and lateral line. Developmental biology. Jan 1 2005; 277 (1):27-41.
    61. Furuya M, Qadota H, Chisholm AD, Sugimoto A. The C. elegans eyes absent ortholog EYA-1 is required for tissue differentiation and plays partially redundant roles with PAX-6. Developmental biology. Oct 15 2005;286(2):452-463.
    62. Ahmed M, Wong EY, Sun J, Xu J, Wang F, Xu PX. Eyal-Sixl interaction is sufficient to induce hair cell fate in the cochlea by activating Atohl expression in cooperation with Sox2. Developmental cell. Feb 14 2012;22(2):377-390.
    63. Depreux FF, Darrow K, Conner DA, et al. Eya4-def icient mice are a model for heritable otitis media. The Journal of clinical investigation. Feb 2008:118(2):651-658.
    64. 张旭.Treacher collins综合征致病基因筛查及BOR与eya4基因在内耳发育中的功能研究[博士],北京协和医学院(中国医学科学院)北京协和医学院清华大学医学部中国医学科学院;2013.
    1. Melnick M, Myrianthopoulos NC, Paul NW. External ear malformations: epidemiology, genetics, and natural history. Birth defects original article series.1979;15(9):i-ix,1-140.
    2. Siegert R, Mattheis S, Kasic J. Fully implantable hearing aids in patients with congenital auricular atresia. The Laryngoscope. Feb 2007;117(2):336-340.
    3. Chang SO, Choi BY, Hur DG. Analysis of the long-term hearing results after the surgical repair of aural atresia. The Laryngoscope. Oct 2006:116(10):1835-1841.
    4. Shonka DC, Jr., Livingston WJ,3rd, Kesser BW. The Jahrsdoerfer grading scale in surgery to repair congenital aural atresia. Archives of otolaryngology--head & neck surgery. Aug 2008; 134 (8):873-877.
    5. Weerda H. Classification of congenital deformities of the auricle. Facial plastic surgery:FPS. Oct 1988;5(5):385-388.
    6. 张华,王硕,陈静,et al.普通话言语测听材料.中国听力语言康复科学杂志.2008(6):16-18.
    7. Zhu M, Fu QJ, Galvin JJ,3rd, et al. Mandarin Chinese speech recognition by pediatric cochlear implant users. International journal of pediatric otorhinolaryngology. Jun 2011;75(6):793-800.
    8. Powell RH, Burrell SP, Cooper HR, Proops DW. The Birmingham bone anchored hearing aid programme:paediatric experience and results. The Journal of laryngology and otology. Supplement.1996; 21:21-29.
    9. Badran K, Bunstone D, Arya AK, Suryanarayanan R, Mackinnon N. Patient satisfaction with the bone-anchored hearing aid:a 14-year experience. Otology & neurotology. Aug 2006;27 (5):659-666.
    10. McDermott AL, Williams J, Kuo M, Reid A, Proops D. Quality of life in children fitted with a bone-anchored hearing aid. Otology & neurotology:official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. Apr 2009;30(3):344-349.
    11. Holgers KM, Tjellstrom A, Bjursten LM, Erlandsson BE. Soft tissue reactions around percutaneous implants:a clinical study of soft tissue conditions around skin-penetrating titanium implants for bone-anchored hearing aids. The American journal of otology. Jan 1988; 9(1):56-59.
    12. Ricci G, Della Volpe A, Faralli M, et al. Results and complications of the Baha system (bone-anchored hearing aid). European archives of oto-rhino-laryngology. Oct 2010;267(10):1539-1545.
    13. Lustig LR, Arts HA, Brackmann DE, et al. Hearing rehabilitation using the BAHA bone-anchored hearing aid:results in 40 patients. Otology & neurotology:official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. May 2001;22(3):328-334.
    14. Declau F, Cremers C, Van de Heyning P. Diagnosis and management strategies in congenital atresia of the external auditory canal. Study Group on Otological Malformations and Hearing Impairment. British journal of audiology. Oct 1999; 33 (5):313-327.
    15. Evans AK, Kazahaya K. Canal atresia:"surgery or implantable hearing devices? The expert's question is revisited". International journal of pediatric otorhinolaryngology. Mar 2007;71(3):367-374.
    16. Lambert PR. Congenital aural atresia:stability of surgical results. The Laryngoscope. Dec 1998; 108(12):1801-1805.
    17. Snik AF, Mylanus EA, Proops DW, et al. Consensus statements on the BAHA system:where do we stand at present? The Annals of otology, rhinology & laryngology. Supplement. Dec 2005; 195:2-12.
    18. Fuchsmann C, Tringali S, Disant F, et al. Hearing rehabilitation in congenital aural atresia using the bone-anchored hearing aid: audiological and satisfaction results. Acta oto-laryngologica. Dec 2010:130(12):1343-1351.
    19. van der Pouw KT, Snik AF, Cremers CW. Audiometric results of bilateral bone-anchored hearing aid application in patients with bilateral congenital aural atresia. The Laryngoscope. Apr 1998;108(4 Pt 1):548-553.
    20. Dun CA, de Wolf MJ, Mylanus EA, Snik AF, Hol MK, Cremers CW. Bilateral bone-anchored hearing aid application in children:the Nijmegen experience from 1996 to 2008. Otology & neurotology. Jun 2010;31(4):615-623.
    21. Dun CA, Agterberg MJ, Cremers CW, Hol MK, Snik AF. Bilateral Bone Conduction Devices:Improved Hearing Ability in Children With Bilateral Conductive Hearing Loss. Ear and hearing. May 212013.
    22. Kubba H, Swan IR, Gatehouse S. The Glasgow Children's Benefit Inventory:a new instrument for assessing health-related benefit after an intervention. The Annals of otology, rhinology, and laryngology. Dec 2004;113(12):980-986.
    23. Kunst SJ, Hol MK, Mylanus EA, Leijendeckers JM, Snik AF, Cremers CW. Subjective benefit after BAHA system application in patients with congenital unilateral conductive hearing impairment. Otology & neurotology. Apr 2008;29(3):353-358.
    1. Nance WE. The genetics of deafness. Mental retardation and developmental disabilities research reviews 2003; 9:109-119.
    2. 刘玉和,袁慧军.遗传性聋的基因诊断与遗传咨询.中华耳鼻咽喉头颈外科杂志2013:48:1051-1056.
    3. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nature reviews Genetics 2009; 10:295-304.
    4. Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nature reviews Molecular cell biology 2009; 10:192-206.
    5. Mencia A, Modamio-Hoybjor S, Redshaw Net al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nature genetics 2009; 41:609-613.
    6. Brown SD, Hardisty-Hughes RE, Mburu P. Quiet as a mouse:dissecting the molecular and genetic basis of hearing. Nature reviews Genetics 2008; 9:277-290.
    7. Kozomara A, Griffiths-Jones S. miRBase:annotating high confidence microRNAs using deep sequencing data. Nucleic acids research 2014; 42:D68-73.
    8. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136:642-655.
    9. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 2004; 116:281-297.
    10. Su H, Trombly MI, Chen J, Wang X. Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes & development 2009; 23:304-317.
    11. Chendrimada TP, Gregory RI, Kumaraswamy Eet al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436:740-744.
    12. Friedman LM, Dror AA, Mor Eet al. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proceedings of the National Academy of Sciences of the United States of America 2009; 106:7915-7920.
    13. Miranda KC, Huynh T, Tay Yet al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126:1203-1217.
    14. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation:microRNAs can up-regulate translation. Science 2007; 318:1931-1934.
    15. Vasudevan S, Tong Y, Steitz JA. Cell-cycle control of microRNA-mediated translation regulation. Cell cycle 2008; 7:1545-1549.
    16. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proceedings of the National Academy of Sciences of the United States of America 2008; 105:1608-1613.
    17. Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Molecular cell 2008; 30:460-471.
    18. Landgraf P, Rusu M, Sheridan Ret al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129:1401-1414.
    19. Bernstein E, Kim SY, Carmell MAet al. Dicer is essential for mouse development. Nature genetics 2003; 35:215-217.
    20. Wienholds E, Kloosterman WP, Miska Eet al. MicroRNA expression in zebrafish embryonic development. Science 2005; 309:310-311.
    21. Nicolson T. The genetics of hearing and balance in zebrafish. Annual review of genetics 2005; 39:9-22.
    22. Darnell DK, Kaur S, Stanislaw S, Konieczka JH, Yatskievych TA, Antin PB. MicroRNA expression during chick embryo development. Developmental dynamics:an official publication of the American Association of Anatomists 2006; 235:3156-3165.
    23. Weston MD, Pierce ML, Rocha-Sanchez S, Beisel KW, Soukup GA. MicroRNA gene expression in the mouse inner ear. Brain research 2006; 1111:95-104.
    24. Ryan DG, Oliveira-Fernandes M, Lavker RM. MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Molecular vision 2006; 12:1175-1184.
    25. Sacheli R, Nguyen L, Borgs Let al. Expression patterns of miR-96, miR-182 and miR-183 in the development inner ear. Gene expression patterns:GEP 2009; 9:364-370.
    26. Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA. MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evolution & development 2008; 10:106-113.
    27. Jin ZB, Hirokawa G, Gui Let al. Targeted deletion of miR-182, an abundant retinal microRNA. Molecular vision 2009; 15:523-533.
    28. Friedman LM, Avraham KB. MicroRNAs and epigenetic regulation in the mammalian inner ear:implications for deafness. Mammalian genome: official journal of the International Mammalian Genome Society 2009; 20:581-603.
    29. Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 2007; 18:297-300.
    30. Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD, Brown SD. ENU mutagenesis, away forward to understand gene function. Annual review of genomics and human genetics 2008; 9:49-69.
    31. Lewis MA, Quint E, Glazier AMet al. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nature genetics 2009; 41:614-618.
    32. Liu XZ, Ouyang XM, Xia XJet al. Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Human molecular genetics 2003; 12:1155-1162.
    33. Hertzano R, Montcouquiol M, Rashi-Elkeles Set al. Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfil as a target of the Pou4f3 deafness gene. Human molecular genetics 2004; 13:2143-2153.
    34. Goodyear RJ, Legan PK, Wright MBet al. A receptor-like inositol lipid phosphatase is required for the maturation of developing cochlear hair bundles. The Journal of neuroscience:the official journal of the Society for Neuroscience 2003; 23:9208-9219.
    35. Staecker H, Gabaizadeh R, Federoff H, Van De Water TR. Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngology--head and neck surgery:official journal of American Academy of Otolaryngology-Head and Neck Surgery 1998; 119:7-13.
    36. Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. The RNaseⅢ enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proceedings of the National Academy of Sciences of the United States of America 2005; 102:10898-10903.
    37. Soukup GA, Fritzsch B, Pierce MLet al. Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Developmental biology 2009; 328:328-341.
    38. Sage C, Huang M, Vollrath MAet al. Essential role of retinoblastoma protein in mammalian hair cell development and hearing. Proceedings of the National Academy of Sciences of the United States of America 2006; 103:7345-7350.
    1. Verhagen CV, Hol MK, Coppens-Schellekens W, Snik AF, Cremers CW. The Baha Softband. A new treatment for young children with bilateral congenital aural atresia. International journal of pediatric otorhinolaryngology. Oct 2008;72(10):1455-1459.
    2. Ricci G, Volpe AD, Faralli M, et al. Bone-anchored hearing aids (Baha) in congenital aural atresia:personal experience. International journal of pediatric otorhinolaryngology. Mar 2011;75(3):342-346.
    3. Kosling S, Omenzetter M, Bartel-Friedrich S. Congenital malformations of the external and middle ear. European journal of radiology. Feb 2009;69(2):269-279.
    4. Declau F, Cremers C, Van de Heyning P. Diagnosis and management strategies in congenital atresia of the external auditory canal. Study Group on Otological Malformations and Hearing Impairment. British journal of audiology. Oct 1999;33(5):313-327.
    5. Snik AF, Mylanus EA, Proops DW, et al. Consensus statements on the BAHA system:where do we stand at present? The Annals of otology, rhinology & laryngology. Supplement. Dec 2005; 195:2-12.
    6. Bosman AJ, Snik AF, Mylanus EA, Cremers CW. Fitting range of the BAHA Cordelle. International journal of audiology. Aug 2006:45(8):429-437.
    7. Whitehurst GJ, Smith M, Fischel JE, Arnold DS, Lonigan CJ. The continuity of babble and speech in children with specific expressive language delay. Journal of speech and hearing research. Oct 1991:34(5):1121-1129.
    8. 黄丽辉,加我君孝,韩德民,汪涛.正常与先天性重度聋婴幼儿言语前期言语发育的比较研究.中华医学杂志.2005:85(11):765-768.
    9. Yoshinaga-Itano C. Early intervention after universal neonatal hearing screening:impact on outcomes. Mental retardation and developmental disabilities research reviews.2003;9(4):252-266.
    10. Hodgetts WE, Scollie SD, Swain R. Effects of applied contact force and volume control setting on output force levels of the BAHA Softband. International journal of audiology. May 2006;45 (5):301-308.
    11. Davids T, Gordon KA, Clutton D, Papsin BC. Bone-anchored hearing aids in infants and children younger than 5 years. Archives of otolaryngology--head & neck surgery. Jan 2007;133(1):51-55.
    12. Tjellstrom A, Granstrom G. One-stage procedure to establish osseointegration:a zero to five years follow-up report. The Journal of laryngology and otology. Jul 1995;109(7):593-598.
    13. Kohan D, Morris LG, Romo T,3rd. Single-stage BAHA implantation in adults and children:is it safe? Otolaryngology--head and neck surgery:official journal of American Academy of Otolaryngology-Head and Neck Surgery. May 2008; 138(5):662-666.
    14. Ali S, Hadoura L, Carmichael A, Geddes NK. Bone-anchored hearing aid A single-stage procedure in children. International journal of pediatric otorhinolaryngology. Aug 2009;73(8):1076-1079.
    15. McDermott AL, Sheehan P. Bone anchored hearing aids in children. Current opinion in otolaryngology & head and neck surgery. Dec 2009;17(6):488-493.
    16. Bajaj Y, Wyatt ME, Gault D, Bailey CM, Albert DM. How we do it:BAHA positioning in patients with microtia requiring auricular reconstruction. Clinical otolaryngology. Oct 2005;30(5):468-471.
    17. Tjellstrom A, Hakansson B, Granstrom G. Bone-anchored hearing aids: current status in adults and children. Otolaryngologic clinics of North America. Apr 2001;34(2):337-364.
    18. Jones SE, Dickson U, Moriarty A. Anaesthesia for insertion of bone-anchored hearing aids in children:a 7-year audit. Anaesthesia. Aug 2001:56(8):777-780.
    19. House JW, Kutz JW, Jr. Bone-anchored hearing aids:incidence and management of postoperative complications. Otology & neurotology. Feb 2007:28(2):213-217.
    20. Stalfors J, Tjellstrom A. Skin reactions after BAHA surgery:a comparison between the U-graft technique and the BAHA dermatome. Otolog y& neurotology. Dec 2008:29(8):1109-1114.
    21. McDermott AL, Williams J, Kuo M, Reid A, Proops D. The birmingham pediatric bone-anchored hearing aid program:a 15-year experience. Otology & neurotology. Feb 2009;30(2):178-183.
    22. Zeitoun H, De R, Thompson SD, Proops DW. Osseointegrated implants in the management of childhood ear abnormalities:with particular emphasis on complications. The Journal of laryngology and otology. Feb 2002:116(2):87-91.
    23. Falcone MT, Kaylie DM, Labadie RF, Haynes DS. Bone-anchored hearing aid abutment skin overgrowth reduction with clobetasol. Otolaryngology--head and neck surgery. Dec 2008;139(6):829-832.
    24. 孙喜斌,梁巍,晁欣,黄鸿雁.计算机导航-聋儿听觉评估学习系统应用.中国临床康复.2002:6(21):3180.
    25. 蔡正华,黄丽辉,程晓华,亓贝尔,恩晖,彭士春.听觉及言语发育观察表可用性初探.多功学及言语疾病杂志.2010;18(2):184-185.
    26. Snik A, Leijendeckers J, Hol M, Mylanus E, Cremers C. The bone-anchored hearing aid for children:recent developments. International journal of audiology. Sep 2008; 47 (9):554-559.
    27. Hakansson B, Tjellstrom A, Rosenhall U, Carlsson P. The bone-anchored hearing aid. Principal design and a psychoacoustical evaluation. Acta oto-laryngologica. Sep-Oct 1985;100(3-4):229-239.
    28. Cremers CW, Snik FM, Beynon AJ. Hearing with the bone-anchored hearing aid (BAHA, HC 200) compared to a conventional bone-conduction hearing aid. Clinical otolaryngology and allied sciences. Jun 1992;17(3):275-279.
    29. Snik AF, Bosman AJ, Mylanus EA, Cremers CW. Candidacy for the bone-anchored hearing aid. Audiology & neuro-otology. Jul-Aug 2004; 9 (4):190-196.
    30. Lustig LR, Arts HA, Brackmann DE, et al. Hearing rehabilitation using the BAHA bone-anchored hearing aid:results in 40 patients. Otology & neurotology. May 2001;22(3):328-334.
    31. McDermott AL, Williams J, Kuo M, Reid A, Proops D. Quality of life in children fitted with a bone-anchored hearing aid. Otology & neurotology. Apr 2009;30(3):344-349.
    32. Shonka DC, Jr., Livingston WJ,3rd, Kesser BW. The Jahrsdoerfer grading scale in surgery to repair congenital aural atresia. Archives of otolaryngology--head & neck surgery. Aug 2008; 134(8):873-877.
    33. Yeakley JW, Jahrsdoerfer RA. CT evaluation of congenital aural atresia: what the radiologist and surgeon need to know. Journal of computer assisted tomography. Sep-Oct 1996;20(5):724-731.
    34. Lloyd S, Almeyda J, Sirimanna KS, Albert DM, Bailey CM. Updated surgical experience with bone-anchored hearing aids in children. The Journal of laryngology and otology. Sep 2007;121(9):826-831.
    35. Chang SO, Choi BY, Hur DG. Analysis of the long-term hearing results after the surgical repair of aural atresia. The Laryngoscope. Oct 2006:116(10):1835-1841.
    36. Digoy GP, Cueva RA. Congenital aural atresia:review of short-and long-term surgical results. Otology & neurotology. Jan 2007:28(1):54-60.
    37. Ricci G, Della Volpe A, Faralli M, et al. Results and complications of the Baha system (bone-anchored hearing aid). European archives of oto-rhino-laryngology. Oct 2010;267(10):1539-1545.
    38. Lambert PR. Congenital aural atresia:stability of surgical results. The Laryngoscope. Dec 1998; 108 (12):1801-1805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700