提高牛体细胞核移植效率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高牛体细胞核移植和生产转基因动物的效率,本研究主要从囊胚发育率,囊胚细胞数和囊胚细胞凋亡指数三个方面研究了供体细胞转染端粒酶和癌化对体细胞核移植的影响,卵母细胞胞质成熟与重构胚胎发育的关系,激活方法与重构胚发育的关系,以及核移植胚胎体外培养与胚胎发育和冷冻的关系。试验研究结果如下。
     1、本研究首先用含人端粒酶催化亚基(hTERT)基因和报告基因EGFP的表达载体转染了牛耳成纤维细胞系,通过RT-PCR,端粒酶活性分析和Western杂交证明hTERT可以整合在牛耳成纤维细胞基因组中并表达端粒酶蛋白,人的端粒酶基因与牛的端粒酶相关基因可以互相协作,表达端粒酶蛋白。hTERT在牛耳成纤维细胞中的表达延长了细胞寿命,建立了一株染色体条带正常,贴壁生长的牛耳成纤维细胞系,命名为HBC3。
     2、HBC3的生长曲线仍保持正常细胞的生物学特性,EGF和胰岛素对HBC3仍有明显的促生长作用,添加EGF和胰岛素后细胞的倍增指数分别为5.1和4.7,其中EGF的促生长作用比胰岛素促生长的作用显著(P <0.05)。HBC3细胞系仍需依赖血清维持生长。但是,端粒酶的表达明显降低了血清引起的细胞凋亡,流式细胞仪进行细胞凋亡分析,结果表明,第64代的HBC3细胞凋亡率明显低于第12代的牛耳成纤维细胞(BFC)细胞,差异极显著(P <0.01)。
     3、HBC3做供体细胞的核移植重构胚可以发育到囊胚,重构胚的囊胚发育率与对照组差异不显著。但是,HBC3的重构胚囊胚细胞数显著少于用BFC构建的核移植胚胎,HBC3的囊胚细胞凋亡数和凋亡指数也明显少于BFC的重构胚,且差异显著(P <0.05)。
     4、致癌物DMBA与促癌物TPA联合作用BFC,得到两株寿命延长的细胞系,分别命名为ABF11和ABF12。ABF11的形态为长梭形,ABF12的形态为三角形,两株细胞系均有端粒酶活性,对ABF12进行了生物学特性分析,细胞在接种后,有较长的生长潜伏期,后进入对数生长期,但没有正常细胞的生长平台期,ABF12和BFC细胞系在分别在含血清的培养液生长9天的倍增指数分别为5.3和4.3,差异显著(P <0.05),试验结果表明ABF12细胞系已经失去了细胞接触生长抑制性。传代后ABF12和BFC细胞系在无血清的培养液里生长9天的倍增指数分别为5.0和-1.2,结果表明ABF12已经失去了对血清的生长依赖性。用软琼脂培养ABF12细胞系14d, ABF12在软琼脂内生长了172个单细胞克隆,结果表明ABF12细胞已经失去了贴壁依赖性。
     5、ABFE12细胞用于体细胞核移植后,能支持胚胎发育至囊胚阶段,但囊胚发育率低于对照组,差异显著(P <0.05)。通过染色分析,ABF12重构胚的囊胚细胞数与对照组差异不显著,但囊胚细胞的凋亡指数明显高于对照组,二者分别为0.124和0.081,差异显著(P <0.05)。
     6、牛卵母细胞成熟培养液中添加EGF显著提高了牛卵母细胞成熟率,用EGF培养的卵母细胞在做为受体胞质进行体细胞核移植后,体细胞重构胚的囊胚率和囊胚细胞数均显著高于不添加EGF的对照组(P <0.05)。凋亡染色分析表明,EGF培养的卵母细胞做受体后,重构胚胎的凋亡指数为0.062,比对照组显著降低(P <0.05)。培养液中添加EGF的卵母细胞在冷冻保存和体外受精后,卵母细胞的形态正常率、受精胚胎的卵裂率和囊胚率均显著高于对照组。牛卵母细胞成熟培养液中添加VE后,牛卵母细胞成熟率和重构胚的囊胚率与对照组相比均差异不显著。凋亡染色分析表明,用VE培养的卵母细胞做受体胞质,重构胚胎的囊胚细胞凋亡指数为0.064,与对照组相比,显著降低了(P <0.05)囊胚细胞的凋亡指数。而用VE培养的卵母细胞冷冻保存后,卵母细胞的形态正常率,体外受精胚胎的卵裂率和囊胚率均与对照组差异不显著。牛卵母细胞成熟培养液中添加OCS后,牛卵母细胞成熟率显著高于添加FBS培养组(P <0.05),用OCS成熟培养的卵母细胞做胞质受体,进行体细胞核移植后,重构胚的囊胚率显著高于添加FBS的卵母细胞组(P <0.05)。囊胚细胞染色分析表明,OCS组的囊胚细胞数显著高于FBS卵母细胞组(P <0.05),凋亡染色分析表明,OCS组的囊胚细胞凋亡指数为0.072,显著低于对照FBS组。而且,培养液中添加OCS的卵母细胞在冷冻保存和体外受精后,受精胚胎的卵裂率和囊胚率均显著高于对照FBS组(P <0.05)。
     7、比较了不同浓度精子提取物胞质内注射对牛核移植重构胚胎的卵裂率和囊胚率的影响,结果发现单独注射精子提取物可以很好的支持体细胞胞重构胚发育到囊胚阶段,其中注射5mg/ml精子提取物组的重构胚卵裂率和囊胚率均显著高于其他两个注射剂量组(P <0.05)。5mg/ml精子提取物组的囊胚细胞数显著高于其他试验组(P <0.05),而5mg/ml精子提取物组的凋亡指数为0.071,显著低于其他组(P <0.05)。其次,比较了精子提取物联合其他激活方法使用与单独使用精子提取物激活对核移植胚胎的影响。结果表明,单独注射精子提取物或联合其他方法一起使用对体细胞核移植胚胎的的卵裂率,囊胚率,囊胚细胞数和囊胚细胞凋亡指数没有显著的影响。
     8、比较了传统的电激活和化学激活方法对核移植胚胎的影响,以及联合使用两种激活方法(电化学法)对核移植胚胎的卵裂率和囊胚率的影响,结果表明,电化学法激活核移植胚的卵裂率和囊胚率均显著高于单独使用电激活或化学激活方法。其次,比较了精子提取物与电化学方法对核移植胚胎的影响。这两种激活方法的卵裂率和囊胚率差异不明显,但是精子提取物激活的重构胚的囊胚细胞数明显要高于电化学法(P <0.05),精子提取物法的囊胚凋亡指数也明显(P <0.05)低于后者。
     9、在牛体细胞核移植胚胎培养液中添加20ng/ml EGF,重构胚的囊胚发育率为34%,显著高于不添加EGF的对照组(P﹤0.05)。添加EGF的胚胎的囊胚细胞凋亡指数为0.062,显著低于对照组的细胞凋亡指数。对EGF组和对照组的胚胎进行冷冻保存并解冻培养,EGF组胚胎在解冻24h后的存活率显著高于对照组(P﹤0.05),在解冻48h后的存活率也显著高于对照组(P﹤0.05)。在牛体细胞核移植胚胎培养液中分别添加0.1μg/ml和1μg/ml孕酮后均显著提高了重构胚的囊胚发育率均显著高于对照组21%的囊胚率。添加0.1μg/ml和1μg/ml孕酮组的细胞凋亡指数分别为0.090和0.085,两组之间的胚胎细胞凋亡数和凋亡指数均差异不显著,与对照组相比差异也不显著。不同孕酮组胚胎在解冻24h后的存活率与对照组差异不显著。在解冻48h后的存活率与对照组差异不显著。在牛体细胞核移植胚胎培养液中添加100μg/ml抗氧化剂VE并没有对核移植胚胎的卵裂率产生不利影响。添加VE显著提高了重构胚胎的发育率,降低了囊胚的凋亡指数,对照组的细胞凋亡指数为0.090,VE组为0.037,差异极显著(P﹤0.01)。
     10、首先,分别在核移植胚胎的冷冻保存液中添加海藻糖和蔗糖,用海藻糖冷冻的胚胎解冻后24h和48h的存活率显著(P﹤0.05)高于添加蔗糖的试验组。其次,分别对不同发育时期的核移植重构胚胎进行冷冻保存。解冻后桑胚的24h和48h的胚胎存活率显著(P﹤0.05)低于早期囊胚组和晚期囊胚组。
The aim of this study was to improve the efficiency of cloning transgene animals. We evaluated the development of reconstructed embryos by three aspects: the blastocyst rate, the blastomere number and the apoptotic index of blastomere. The relationship among telomerase activity of donor cells, maturation of oocytes, activation methods and efficiency of reconstructed embryos were studied in this paper. The results of this paper were as following.
     1. A vector including hTERT gene and EGFP gene was transfered into the bovine ear fibroblast cells, the hTERT expression were detected by RT-PCR and Western blotting assay. The telomerase activity assay showed hTERT was compatible with bovine telomerase-related factors required for functional telomerase activity in these cells. A prolonged life span cell line, HBC3, was established with nomal karyotype and the cell line exhibited normal anchorage-dependent growth.
     2. The growth curve of HBC3 was same as the normal bovine fibroblast cells (BFC) and still responsible to growth factors such as EGF and insulin. The doubling index of HBC3 was 5.1 or 4.7 when added EGF or insulin respectively. Addition of serum was necessary for maintaining the growth of HBC3 and the apoptosis assay indicated that the apoptosis of HBC3 was significantly(p<0.01)lower then the 12th BFC(bovine ear fibroblast cell).
     3. Reconstructed embryos used HBC3 as the donor cells can develop to blastocyst, and there was no significantly difference in blastocyst rate between HBC3 and the control group. However, the blastomere number and apoptosis index of blastocyst was significantly lower than the control group(p<0.05).
     4. ABF11 and ABF12 cell lines were obtained when BFC was treated with DMBA and TPA, the morphology of ABF11 was fibroblast-like, and the ABF12 was triangle-like. Telomerase activity in these cell lines was tested by telomerase activity assay. And the growth curve of cells cultured with serum indicated that the ABF12 cell line had a longer logarithmic growth phase and had lost the contact inhibition. The doubling index of ABF12 and BFC cell lines with serum were 5.3 and 4.3 respectively. The doubling index of ABF12 and BFC cultured without serum was 5.0 and -1.2 respectively. Compared with the control group, the ABF12 cell line has lost the serum dependency. The ABF12 were cultured in soft sugar for 14d, and the cell formed 172 clones in soft sugar, which indicated that the ABF12 cell line had lost the contact inhibition.
     5. Then ABF12 cell line was used as donor cells to reconstruct bovine embryos and blastocyst was obtained, the cleavage rate and blastocyst rate was significantly lower than the BFC group. The flurescence staining indicated that the blastomere number of ABF12 and BFC was not significantly different. However, the apoptosis index of blastocyst was significantly(p<0.05) higher than the control, and the index of ABF12 and BFC was 0.124 and 0. 81 respectively.
     6. The maturation culture medium of oocytes was added with EGF, and the addition of EGF significantly improved the maturation rate of bovine oocytes and the subsequent development of reconstructed embryos. The subsequent blastocyst rate of oocytes cultured with EGF was significantly higher than the control. And the blastomere number of EGF group was higher than the control. Compared with the control, the apoptosis index of EGF group (0.062) was significantly lower. The oocytes cultured with EGF were cyropreserved, and the rate of normal morphology oocyte, the cleavage rate and blastocyst rate of the IVF embryos were significantly improved. The addition of VE did not significantly improve the maturation rate of bovine oocytes and the subsequent development of reconstructed embryos. And the VE in oocyte maturation had no significantly effect on the blastomere number. The normal morphology of cryopreserved oocytes, the cleavage rate and blastocyst rate of the IVF embryos were no difference between VE group and the control group. The addition of OCS in oocytes maturation medium had same effects as EGF.
     7. The effect of different concentration of bovine sperm extracts (BSE) on the reconstructed embryos were compared and the results indicated that BSE was able to active the SCNT embryos and supported the reconstructed embryos develop to blastocyst, the recommended concentration of BSE was 5mg/ml, the cleavage rate and blastcyst rate were significantly higher than the two others group. And the blastomere number of the 5mg/mL group was significantly(p<0.05) higher than the control, and the blastomere apoptosis index was 0.071, which was significantly lower than the control(p<0.05). The cleavage rate, the blastocyst rate, the blastomere number and the apoptosis index of the reconstructed embryos showed no significantly difference when BSE was combined with other activation methods.
     8. Effects of fusion activation methods and chemical activation methods were compared, and the cleavage rate and the blastocyst rate were significantly higher when the two activation methods were used together. The cleavage rate and blastocyst rate of injecting BSE were not significantly different with the chemical combined with fusion activation method. But the blastomere number of blastocyst activated by BSE was significantly higher(p<0.05) than the control, and the apoptotic index was significantly(p<0.05) lower than the control.
     9. 20ng/ml EGF was added into the SCNT embryos culture medium, the blastocyst rate of the reconstructed embryos was significantly higher(p<0.05)than the control. And the blastomere number of the control group and the EGF group were different significantly(p﹤0.05).The apoptotic index of the EGF group was 0.062, which was significantly lower than the control. The cryopreserved embryos survival rate after 24h and 48h in EGF group were significantly higher than the control. Addition of 0.1μg/ml and 1μg/ml progesterone in SCNT embryos culture medium significantly improved the blaststocys rate, there was no significantly difference with the control group in blastomere number and blastomere apoptotic index. Compared with the control group, addition of 100μg/ml VE in embryo culture medium showed no difference in SCNT embryo cleavage rate, but significantly(p<0.05)improved the blastocyst rate and the blastomere number. Moreover, the addition of VE significantly(p<0.01)reduced the apoptotic blastomere number and apoptotic index.
     10. 0.1 mol/L trelecose and fucose were added into the cryopreservation medium respectively, the survival rate after 24h and 48h of the cryopreserved SCNT embryos were significantly higher than the control. Different development stage of SCNT embryos were cryopreserved respectively, and the survival rate after 24h and 48h of morula were significantly lower than the blastocyst groups..
引文
[1] Carrell, A. On the permanent life of tissues outside the organism[J]. J. Exp. Med.,1912,15:516-528.
    [2] Hayflick L. Mortality and immortality at the cellular level. A review[A]. Biochemistry (Mosc),1997, 62(11):1180-1190.
    [3] Hayflick L,and Moorhead, PS. The serial cultivation of human diploid cell strains[J]. Exp. Cell Res.,1961,25:585?621.
    [4] 兰兰. 建立温控性永生化星形胶质细胞系的研究[D]. 首都医科大学,2003.
    [5] Blackburn EH.Structure and function of telomeres[J].Nature,1991,350(18):569-574.
    [6] Shore D.Telomeric chromatin:replicating and wrapping up chromosome ends[J].Curr Opin Genet Dev.,2001,11(2):189-198.
    [7] Kim J H,Kim W T.Characterization and developmental expression of single stranded telomeric DNA-banding proteins from mung bean(Hgna radiata)[J].Plant Mol Biol,2000,42(4):547-557.
    [8] Blackburn EH.Telomere states and cell fates[J].Nature,2000,408(6808):53-56.
    [9] Rhyu MS.Telomeres,telomerase,and immortality[J].J Natl Cancer Inst.,1995, 87(12):884-894.
    [10] Cooper JP.Telomere transitions in yeast:the end of the chromosome as we know it[J].Curr Opin Genet Dev,2000,(10):169-177.
    [11] 高劲松,沈铿,郎景和.端粒,端粒酶与肿瘤[J].中华妇产科杂志,1999,34(1):53-56.
    [12] Feng JL,Funk WD,Wang SS,et a1.The RNA component of human telomerase[J].Science,1995,269(5228):l234-l236.
    [13] 黄雁西,赵学军.端粒酶启动子的结构及其调控[J].癌症,2001,20(6):667-668.
    [14] Blasco MA.Telomeres and human disease;ageing,cancer and beyond[J].Nat Rev Genet. ,2005,6(8):61l-622.
    [15] Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase[J], Carcinogenesis.,2005,26(5) :867-874.
    [16] Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells[J]. Science.,1998,279(5349):349-352.
    [17] Dickson MA, Hahn WC, Ino Y, et al. Human keratinocytes that express hTERT and also evade a p16INK4a-enforced lifespan limit become immortal while retaining normal growth and differentiation characteristics[J]. Mol. Cell. Biol.,2000,20(4):1436-1447.
    [18] Kiyono T, Foster S A, Koop J I, et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells[J]. Nature,1998,396(6706):84-88.
    [19] Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span[J]. Curr. Biol.,1998, 8(5):279-282.
    [20] Yang J, Chang E, Cherry AM, et al. Human endothelial cell life extension by telomerase expression[J]. J. Biol. Chem.,1999, 274(37):26141-26148.
    [21] Lundberg AS, Randell SH, Stewart SA, et al. Immortalization and transformation of primary human airway epithelial cells by gene transfer[J]. Oncogene ,2002,21(29):4577-4586.
    [22] Romanov SR, Kozakiewicz BK, Holst CR., et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes[J]. Nature.,2001,409(6820): 633-637.
    [23] Yeager TR,Reddel RR.Constructing immortalized human cell lines[J].Curr opin Biotechnol.,1999,10(5):465-469.
    [24] Tamrakar S,Rubin E,Ludlow JW.Role of RB dephosphorylation in cell cycle regulation[J].Front Biosci.,2000,5:121—137.
    [25] Sachs Z,Sharpless NE,DePinho RA. et a1. pl6(Ink4a) interferes with Abelson virus transformation by enhancing apoptosis[J].J Virol.,2004,78(7) :3304-3311.
    [26] Duan J M,Zhang ZY,TongT J.Senescence delay of human diploid fibroblast induced by anti-sense P16INK4a expression[J].J Biol Chem.,2001,276(51):48325—48331
    [27] Wang W,Wu JF,Zhang ZY,et al.Characterization of regulatory elements on the promoter region of p16INK4a that contribute to overexpression of P16 in senescent fibroblasts[J].J Biol Chem.,2001,276(52):48655-48661.
    [28] Foster SA., Wong DJ, Barrett MT, et al. Inactivation of p16 in human mammary epithelial cells by CpG island methylation[J]. Mol. Cell. Biol.,1998,18(4):1793-1801.
    [29] Tsutsui T, Kumakura S, Yamamoto A, et al. Association of p16(INK4a) and pRb inactivation with immortalization of human cells[J].Carcinogenesis,2002,23(12):2111-2117.
    [30] Hemmati PG ,Gillissen B,yon Haefen C.et a1.Adenovirus-mediated overexpression of p14(ARF) induces p53 and Bax-independent apoptosis[J].Oncogene,2002,21(20):3149—3161.
    [31] Lowe SW,Sherr CJ. Tumor suppression by Ink4a-Arf:progress and puzzles[J].Curr Opin Genet Dev.,2000,13(1):77—83.
    [32] Christman SA, Kong BW, Landry MM,et al. Contributions of differential p53 expression in the spontaneous immortalization of a chicken embryo fibroblast cell line[J]. BMC Cell Biol.,2006,doi:10.1186/1471-2121-7-27.
    [33] Stevens C,La Thangue NB. E2F and cell cycle control:a double-edged sword[J].Arch Biochem Biophys.,2003,412(2):157—169.
    [34] Zhang Y,Xiong Y ,Yarbrough WG.ARF promotes MDM2 degradation and stabilizes p53:ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways[J].Cell,1998,92(6):725—734.
    [35] Sherr CJ.The INK4a/ARF network in tumour suppression[J].Nat Rev Mol Cell Biol.,2001,2(10):731—737.
    [36] Satyanarayana A, Rudolph KL. p16 and ARF: activation of teenage proteins in old age[J]. J. Clin Invest.,2004,114(9):1237-1240.
    [37] Kool J, Zaane WV, Alex J. van der Eb, et al. Down-Regulation of T-STAR, a growth inhibitory protein, after SV40-mediated immortalization[J]. Cell Growth Differ.,2001,12(11):535–541.
    [38] Kim RH, Oo ZM, Kim SG, et al. Immortalization of human oral keratinocytes by Bmi-1 and HPV type 16 E6 requires telomerase activation domain of E6[A]. AACR Meeting Abstracts, 2006: 408.
    [39] Kim EJ, Lee EJ, Kang MR. Insulin-like growth factor-binding protein 3 expression increases during immortalization of human oral epithelial cells by ectopic hTERT expression[A]. AACR Meeting Abstracts. 2006: 1174.
    [40] Tsutsui T, Ohno M and Barrett JC. Possible involvement of loss of imprinting in immortalization of human cells[A]. AACR Meeting Abstracts, 2006: 559.
    [41] Hahn WC. Immortalization and Transformation of Human Cells[J]., Mol. Cells.,2002,13(3):351-361.
    [42] Katakura Y,Alam S,Shirahata S.Immortalization by gene transfection [J].Methods Cell Biol.,1998,57:69-91.
    [43] Ray SS, Swanson HI. Dioxin-induced Immortalization of Normal Human Keratinocytes and Silencing of p53 and p16INK4a[J]. J Biol Chem., 2004,279(26):27187–27193.
    [44] Giordano M, Takashima H, Herranz A, et al. Immortalized GABAergic cell lines derived from rat striatum using a temperature-sensitive allele of the SV40 large T antigen[J]. Exp.Neurol.,1993,124(2):395-400
    [45] May TT, Hanser H, et al. Transcriptional control of SV40T-antigen expression allows a complete reversion of immortalization[J]. Nucleic Acids Reserch. 2004.32(18):5529-5538.
    [46] Tevethia MJ, Ozer HL. SV40-mediated immortalization.Methods Mol.Biol.,2001,165(2):185-199.
    [47] Whitemore SR , Neary JT, Kleitman N,et al. Isolation and characterization of conditionally immortalized astrocyte cell lines derived from adult human spinal cord[J]. Glia.,1994,10(3):211-226.
    [48] James MA, Lee JH, Klingelhutz AJ, Human Papillomavirus Type 16 E6 Activates NF-κB, Induces cIAP-2 Expression, and Protects against Apoptosis in a PDZ Binding Motif-Dependent Manner[J], J. Virol.,2006,80(11):5301–5307.
    [49] Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16[J]. Nature.,1996,380(6569):79–82.
    [50] Quinlan MP, Douglas JL, Immortalization of Primary Epithelial Cells Requires first- and second-Exon Functions of Adenovirus Type 5 12S[J], J. Virol.,1992,66(4):2020-2030.
    [51] Gopalakrishnan S, Douglas JL, Quinlan MP. Immortalization of Primary Epithelial Cells by EIA 12S Requires Late, Second Exon-encoded Functions in Addition to Complex Formation with pRB and p300[J], Cell Growth Differ.,1997,8(5):541-551.
    [52] Andreas M,Naeem K,Mark C,et a1.B cells immortalized by a mini-Epstein-Banrr virus encoding a foreign antigen efficiently reactivate specifie cytotoxic T cells[J].Blood,2002,100(5):1755—1764.
    [53] Kaye KM,lzumi KM,Kief E.Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation[J]. Proc Natl Acad Sci U S A .,1993,90(19):9l50-9l54.
    [54] Mosialos G, Birkenbach M, Yalamanchili R,et a1.The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family[J].Cell ,1995,80(3):389-399.
    [55] Lzumi KM .Kief ED.The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kB[J].Proc Nat Acad Sci USA.,l997,94(23):l2592-12597.
    [56] Sugimoto M, Tahara H, Ide T, et al. Steps Involved in Immortalization and Tumorigenesis in Human B-Lymphoblastoid Cell Lines Transformed by Epstein-Barr Virus[J], Cancer Res.,2004,64(10):3361–3364.
    [57] Wang L, Dittmer DP, Tomlinson CC, et al. Immortalization of Primary Endothelial Cells by the K1 Protein of Kaposi’s Sarcoma–Associated Herpesvirus[J], Cancer Res., 2006, 66(7):3658-3666.
    [58] Robek MD,Ratner L,Immortalization of CD4(+) and CD8(+) T Lymphocytes by Human T-Cell Leukemia Virus Type 1 Tax Mutants Expressed in a Functional Molecular Clone[J],J. Virol.,1999,73(6):4856–4865.
    [59] Robek MD,Ratner L. Immortalization of T Lymphocytes by Human T-Cell Leukemia Virus Type 1 Is Independent of the Tax-CBP/p300 Interaction[J], J. Virol.,2000,74(24):11988–11992.
    [60] Yasukawa M, Inoue Y, Kimura N, et al. Immortalization of Human T Cells Expressing T-Cell Receptor γδ by Herpesvirus Saimiri[J], J. Virol.,1995,69(12):8114–8117.
    [61] Biesinger B, Müller-Fleckenstein I, Simmer B, et al.. Stable growth transformation of human T lymphocytes by herpesvirus saimiri[J]. Proc. Natl. Acad. Sci. USA.,1992,89(7):3116–3119.
    [62] Pessac B, Girard A, Romey G,et al. A neuronal clone derived from a Rous sarcoma virus-transformed quail embryo neuroretina established culture[J]. Nature,1983,302 (5909):616-618.
    [63] Bartlett PF, Reid HH, Beiley KA, et al. Immortalization of mouse neural precursor cells by the c-myc oncogene[J]. Proc. Natl. Acad.Sci. USA.,1989,86(3):3255-3259.
    [64] Kelekar A, Cole MD. Immortalization by c-myc, H-ras, and Ela Oncogenes Induces Differential Cellular Gene Expression and Growth Factor Responses[J] . Mol. Cell. Biol,1987,7(11):3899-3907.
    [65] Middleman EJ, Choi J, Venteicher AS, et al. Regulation of Cellular Immortalization and Steady-State Levels of the Telomerase Reverse Transcriptase through Its Carboxy-Terminal Domain[J], Mol. Cell. Biol.,2006,26(6):2146–2159.
    [66] Ramirez RD, Sheridan S, Girard L, et al. Immortalization of Human Bronchial Epithelial Cells in the Absence of Viral Oncoproteins[J], Cancer Res.,2004,64(24): 9027–9034.
    [67] Yang G, Rosen DG, Mercado-Uribe I, et al. Knockdown of p53 combined with expression of the catalytic subunit of telomerase is sufficient to immortalize primary human ovarian surface epithelial cells[J]. Carcinogenesis,2007,28(1):174-182.
    [68] Kuruvilla L, Tr S, Kartha CC. Immortalization and characterization of porcine ventricular endocardial endothelial cells[J]. Endothelium,2007,14(1):35-43.
    [69] Veitonm?ki N, Fuxe J, Hultdin M, et al. Immortalization of bovine capillary endothelial cells by hTERT alone involves inactivation of endogenous p16INK4A/pRb [J]. FASEB J., 2003,17(6):764-766.
    [70] Opitz OG, Suliman Y, Hahn WC, et al. Cyclin D1 overexpression and p53 inactivation immortalize primary oral keratinocytes by a telomerase-independent mechanism[J]. J. Clin. Invest,2001,108(5):725–732 .
    [71] Alani RM, Hasskarl J, Grace M, et al. Immortalization of primary human keratinocytes by the helix–loop–helix protein, Id-1[J].Proc. Natl. Acad. Sci USA,1999,96(17):9637–9641.
    [72] Mikula M ,Fuchs E,et a1.Immortalized pl9ARF null hepatocytes restore liver injury and generate hepatic progenitors after transplantation[J].Hepatology,2004,39(3):628-634。
    [73] Reddel RR. The role of senescence and immortalization in carcinogenesis[J]. Carcinogenesis,2000,21(3):477-484.
    [74] Schlegel R, Phelps WC, Zhang YL, et al. Quantitative keratinocyte assay detects two biological activities of human papilloma virus DNA identifies viral types associated with cervical carcinoma[J]. EMBO J,1988,7(10):3181-3187.
    [75] Pecoraro G, Morgan D, Defendi V. Differential effects of human papillomavirus type 6,16 and 18 DNAs on immortalization and transformation of human cervical epithelial cells[J]. Proc. Natl. Acad. Sci. USA,1989,86(2): 563-567.
    [76] Woodworth CD, Doniger J, Dipaolo JA. Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma[J]. J. Virol,1989,63(1):159-164.
    [77] Masters, JR. Human cancer cell lines: fact and fantasy[J]. Nat. Rev. Mol. Cell. Biol., 2000,1(3):233-236.
    [78] Rhim JS. Neoplastic transformation of human cells in vitro[J]. Crit. Rev. Oncog.,1993,4(3):313-335.
    [79] O'Brien W, Stenman G, Sager R. suppression of tumor growth by senescence in virally transformed human fibroblasts[J]. Proc. Natl. Acad. Sci. USA,1986,83(22):8659-8663.
    [80] Lin AW, Barradas M, Stone JC, et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling[J]. Genes Dev,1998,12(19): 3008-3019.
    [81] Daniel CW, Aidells BD, Medina D, et al. Unlimited division potential of precancerous mouse mammary cells after spontaneous or carcinogen-induced transformation[J],1975,34(1):64-67.
    [82] Kim NW, Piatyszek MA, Prowse KP, et al. Specific association of human telomerase activity with immortal cells and cancer[J]. Science,1994,266(5193):2011-2015.
    [83] 李锦军,顾健人. 癌干细胞研究进展[J].生命科学,2006,18(4):333-339.
    [84] Li P, Maines-Bandiera S L, Collins C,et al. Immortalization of human ovarian epithelial cells (OSE) by overexpression of the ZNF217 gene[A]. AACR Meeting Abstracts, 2004:414.
    [85] Sarponmaah S, Smith L, Searleman A. Inhibition of the epidermal growth factor receptor prevents immortalization of cervical epithelial cells by human papillomavirus Type 16 E6 and E7 proteins[A]. AACR Meeting Abstracts,2006: 888 - 889.
    [86] Chen KM,Wolman SR,Worsham MJ. Expression of transcription factor BP1 is an early event in the immortalization continuum to breast cancer [A]. AACR Meeting Abstracts,2004: 646.
    [87] 方泽强,王常勇,李慧增等. 基于永生化软骨细胞和骨髓基质软骨形成的实验研究[J]. 中国矫形外科杂志, 2003, 11(2):101-103.
    [88] 胡日红. 应用人类腺病毒基因 E1A 转染构建永生化人近曲小管上皮细胞株[D]. 浙江大学,2006.
    [89] Kitagawa M, Ueda H, Iizuka S, et al. Immortalization and characterization of human dental pulp cells with odontoblastic differentiation[J]. Arch Oral Biol. 2007 [in print].
    [90] Huang Q, Chen M, Liang S, et al. Improving cell therapy-experiments using transplanted telomerase-immortalized cells in immunodeficient mice[J]. Mech Ageing Dev,2007,128(1):25–30.
    [91] WeiTler A,Duvar S,Muthing J,et a1.Cultivation and characterization of a new immortalized human hepatacyte cell line, HepZ, for use in an artificial liver support system.Ann N. Y.Acad Sci,1999,875:364-368.
    [92] Wemer A,Duvar S,Muthing J,et a1.Cultivation of immortalized humanl hepatocytes HepZ on macroporous CultiSpher G microcarriers[J].Biotechnol Bioeng,2000,68(1):59-70.
    [93] Fukaya K,Asahi S,Nagamori S,et a1.Establishment of a human hepatocyte line(OUMS-29) having CYP 1A1 and 1A2 activities from fetal liver tissue by transfection of SV40 LT[J].In Vitro Cell DevBiol Anjm,2001,37(5):266-269.
    [94] Snmlley M,Leiper K,Tootle R,et a1.Immortalization of human hepatocytes by temperature-sensitive SV40 large-T antigen[J].In Vitro Cell Dev Biol Anim., 2001,37(3):166-168.
    [95] Allain JE, Dagher I, Dominique MC, et al. Immortalization of a primate bipotent epithelial liver stem cell[J]. Proc. Natl. Acad. Sci. USA,2002,99(6):3639-3644.
    [96] Du Y, Jenkins NA, Copeland NG, Insertional Mutagenesis Identifies Genes That Promote the Immortalization/Self-Renewal of Primary Bone Marrow Progenitor Cells[A]. Blood(ASH Annual Meeting Abstracts).2005. 106:193.
    [97] Akiyama I,Tomiyama K.et al.Expression of CYP3A4 by an immortalized human hepatocyte line in a three-dimensional culture using a radial-flow bioreactor[J].Int.J.Mol-Med. 2004.14(4):663-668.
    [98] Brophy B, Smolenski G, Wheeler T, et al. Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein[J]. Nat Biotechnol ,2003,21(2):157-162.
    [99] Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development[J]. Science ,2001,293(5532):1089-1093.
    [100] Rideout WM, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome[J]. Science ,2001,293(5532):1093-1098.
    [101] Schnieke AE, Kind AJ, Ritchie WA, et al. Human fator Ⅸ transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts[J]. Science,1997,278(5346):2130-2133.
    [102] Kato Y, Tani T, Sotomaru Y, et al. Eight calves cloned from somatic cells of a single adult[J]. Science,1998,282(5396):2095-2098.
    [103] Shay JW, Wright WE. Hayflick, his limit, and cellular ageing[J]. Nat Rev Mol Cell Biol,2000,1(1):72-76.
    [104] Huppertz B, Frank HG, Kaufmann P. The apoptosis cascade—morphological and immunohistochemical methods for its visualization[J]. Anat Embryol Berl ,1999;200:1–18.
    [105] Levy R. Genetic regulation of preimplantation embryo survival[J]. Int Rev Cytol ,2001;210:1–37.
    [106] Handyside AH, Hunter S. Cell division and death in the mouse blastocyst before implantation[J]. Roux’s Arch Dev Biol ,1986;195:519–526.
    [107] Fabian D, Il’kova′ G, Reha′k P, et al.. Inhibitory effect of IGF-I on induced apoptosis in mouse preimplantation embryos cultured in vitro[J]. Theriogenology ,2004;61:745–55.
    [108] Byrne AT, Southgate J, Brison DR, et al. Effects of insulin-like growth factors I and II on tumor-necrosis-factor-a-induced apoptosis in early murine embryos[J]. Reprod Fertil Dev ,2002;14:79–83.
    [109] Byrne AT, Southgate J, Brison DR, et al. Regulation of apoptosis in the bovine blastocyst by insulin and the insulin-like growth factor (IGF) superfamily[J]. Mol Reprod Dev ,2002;62:489–495.
    [110] Makarevich AV, Markkula M. Apoptosis and cell proliferation potential of bovine embryos stimulated with insulin-like growth factor I during in vitro maturation and culture[J]. Biol Reprod ,2002;66:386–92.
    [111] Yang HW, Hwang KJ, Kwon HC, et al. Detection of reactive oxygen species and apoptosis in human fragmented embryos[J]. Hum Reprod ,1998;13:998–1002.
    [112] Herrler A, Krusche CA, Beier HM. Insulin and insulin-like growth factor I promote rabbit blastocystdevelopment and prevent apoptosis[J]. Biol Reprod ,1998;59:1302–10.
    [113] Paula-Lopes FF, Hansen PJ. Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon[J]. Biol Reprod ,2002;66:1169–77.
    [114] O’Neil C. Autocrine mediators are required to act on the embryo by the 2-cell stage to promote normal development and survival of mouse preimplantation embryos in vitro[J]. Biol Reprod ,1998;58:1303–1309.
    [115] Flach G, Johnson MH, Braude PR, et al. The transition from maternal to embryonic control in the 2-cell mouse embryo[J]. EMBO J 1982;1:681–686.
    [116] Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development[J]. Nature ,1988;332:459–461.
    [117] Telford NA, Watson AJ, Schultz GA. Transition from maternal to embryonic control in early mammalian development: a comparison of several species[J]. Mol Reprod Dev ,1990;26:90–100.
    [118] Matwee C, Betts DH, King WA. Apoptosis in the early bovine embryo[J]. Zygote ,2000;8:57–68.
    [119] Kamjoo M, Brison DR, Kimber SJ. Apoptosis in the preimplantation mouse embryo: effect of strain difference and in vitro culture[J]. Mol Reprod Dev ,2002;61:67–77.
    [120] Hao Y, Lai L, Mao J, et al. Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer[J]. Biol Reprod ,2003;69:501–507.
    [121] Gjorret JO, Knijn HM, Dieleman SJ, et al. Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol Reprod 2003;69:1193–200.
    [122] Shu L, Li Y, Man J, et al. Apoptosis in rabbit embryos produced by fertilization or nuclear transfer with fibroblasts and cumulus cells[J].Repro.,2005;130:359-366
    [123] Fahrudin M, Otoi T, Karja NWK, et al. Analysis of DNA fragmentation in bovine somatic nuclear transfer embryos using TUNEL[J]. Reprod ,2002 ;124: 813–819.
    [124] Kato Y, Yabuuchi A, Motosugi N, et al. Developmental potential of mouse follicular epithelial cells and cumulus cells after nuclear transfer[J]. Biol Reprod.,1999 ;61:1110–1114.
    [125] Matsuyama S, Reed JC. Mitochondria-dependent apoptosis and cellular pH regulation[J]. Cell Death Differ. ,2000; 7:1155–1165.
    [126] Jurisicova A, Latham KE, Casper RF, et al. Expression and regulation of genes associated with cell death during murine preimplantation embryo development[J]. Mol Reprod Dev. ,1998 ;51: 243–253.
    [127] Exley GE, Tang C, McElhinny AS, et al. Expression of caspase and BCL-2 apoptotic family members in mouse preimplantation embryos[J]. Biol Reprod. ,1999 ;61:231–239.
    [128] Metcalfe AD, Hunter HR, Bloor DJ, et al. Expression of 11 members of the BCL-2 family of apoptosis regulatory molecules during human preimplantation embryo development and fragmentation[J]. Molecular Reprod Dev.,2004; 68:35–50.
    [129] Guerin P, Mouatassim SE, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings[J]. Hum Reprod Update ,2001;7:175–189.
    [130] Trimarchi JR, Liu L, Porterfield DM, et al. Oxidative phosphorylation-dependent and independent oxygen consumption by individual preimplantation mouse embryos[J]. Biol Reprod ,2000;62:1866–74.
    [131] Kowaltowski AJ, Vercesi AE. Mitochondrial damage induced by conditions of oxidative stress[J]. Free Radicals Biol Med ,1999;26:463–471.
    [132] Yang HW, Hwang KJ, Kwon HC, et al. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos[J]. Hum Reprod ,1998;13:998–1002.
    [133] Kowaltowski AJ, Vercesi AE. Mitochondrial damage induced by conditions of oxidative stress[J]. Free Radicals Biol Med 1999;26:463–471.
    [134] Gardiner CS, Reed DJ. Synthesis of glutathione in the preimplantation mouse embryo[J]. Arch Biochim Biophys ,1995;318:30–36.
    [135] Lapointe S, Sullivan R, Sirard MA. Binding of a bovine oviductal fluid catalase to mammalian spermatozoa[J]. Biol Reprod ,1998;58:747–753.
    [136] Xia W, Tommaso F, Marjan A. Vitamin C and Vitamin E supplementation reduce oxidative stress–induced embryo toxicity and improve the blastocyst development rate[J]. ferti sterili.,2002;6:1272-1277.
    [137] Charles L, Bormann E, Moige O, et al.The effect of vitamins during maturation of caprine oocytes on subsequent developmental potential in vitro[J]. Therio.,2003; 9: 1373-1380.
    [138] Attaran M, Pasqualotto E, Falcone T, et al. The effect of follicular fluid reactive oxygen species on outcome of in vitro fertilization[J]. Int J Fertil ,2000;45:314–320.
    [139] Olson SE, Seidel GE, Jr. Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients[J]. Biol Reprod ,2000;62:248–252.
    [140] Donnelly ET, McLure N, Lewis SE. The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide–induced DNA damage in human spermatozoa[J]. Mutagenesis ,1999;14:505–512.
    [141] Gardner DK, Lane M, Spitzer A, et al. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins and culturing embryos in groups stimulate development[J]. Biol Reprod ,1994;50:390-400.
    [142] Olson SE, Seidel Jr GE. Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients[J]. Biol Reprod ,2000;62:248-52.
    [143] Lane M, Gardner DK. Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts[J]. Hum Reprod. ,1998;13:991-7.
    [144] Krisher RL, Bavister BD. Enhanced glycolosis after maturation of bovine oocytes in vitro is associated with increased developmental competence[J]. Mol Reprod Dev ,1999;53:19-26.
    [145] Baust JM, Van Buskirk R, Baust JG. Cell viability improves following inhibition of cryopreservation-induced apoptosis[J]. In Vitro Cell Dev Biol Anim ,2000;262–70.
    [146] Men H, Monson RL, Parrish JJ, et al. Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture[J]. Cryobiology ,2003;47:73–81.
    [147] Paasch U, Sharma RK, Gupta AK, et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa[J]. Biol Reprod ,2004;71:1828–1837.
    [148] Zhivotovsky B, Burgess DH, Vanagas DM, et al. Involvement of cellular proteolytic machinery in apoptosis[J]. Biochem Biophys Res Commun ,1997;230:481–488.
    [149] Stroh C, Cassens U, Samraj AK, et al. The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells[J]. Fed Am Soc ExpBiol ,2002;16:1651–1653.
    [150] Yagi T, Hardin JA, Valenzuela YM, et al. Caspase inhibition reduces apoptotic death of cryopreserved porcine hepatocytes[J]. Hepatology ,2001;33:1432–1440. 151[48] Byrne AT, Southgate J, Brison DR, et al. Analysis of apoptosis in the preimplantation bovine embryo using TUNEL[J]. J Reprod Fertil ,1999;117:97–105.
    [152] Hardy K. Cell death in the mammalian blastocyst[J]. Mol Hum Reprod ,1997;3:919–925.
    [153] Hardy K, Handyside AH, Winston RM. The human blastocyst: cell number, death, and allocation during late preimplantation development in vitro[J]. Development ,1989;107:597–604.
    [154] Cibelli JB, Stice SL, Golueke PJ, et al. Cloned transgenic calves produced from nonquiescent fetal broblasts[J]. Science ,1998;280:1256–1258.
    [155] Aladjem MI, Spike BT, Rodewald LW, et al. ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage[J]. Curr Biol ,1998;8:145–55.
    [156] De Sousa PA, Winger Q, Hill JR, et al. Reprogramming of ?broblast nuclei after transfer into bovine oocytes[J]. Cloning ,1999;1:63–69.
    [157] Kuhholzer B, Baguisi A, Overstrom EW. Long-term culture and characterization of goat primordial germ cells[J]. Theriogenology 2000;53:1071–1079.
    [158] Schmidt-Kastner PK, Jardine K, Cormier M, et al. Absence of p53-dependent cell cycle regulation in pluripotent mouse cell lines[J]. Oncogene ,1998;16:3003–11.
    [159] Walker SK, Hartwich KM, Seamark RF. The production of unusually large offspring following embryo manipulation: concepts and challenges[J]. Theriogenology ,1996;45:111–20.
    [160] Zakhartchenko V, Alberio R, Stojkovic M, et al. Adult cloning in cattle: potential of nuclei from a permanent cell line and from primary cultures[J]. Mol Reprod Dev ,1999;54:264–72.
    [161] Roh S, Shim H, Hwang WS, et al. In vitro development of green fluorescent protein (GFP) transgenic bovine embryos after nuclear transfer using different cell cycles and passages of fetal fibroblasts[J]. Reprod Fertil Dev 2000;12:1–6.
    [162] Wakayama T, Perry AC, Zuccotti M, et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei[J]. Nature ,1998;394:369–374.
    [163] Baguisi A, Behboodi E, Melican DT, et al. Production of goats by somatic cell nuclear transfer[J]. Nat Biotechnol ,1999;17:456–641.
    [164] Onishi A, Iwamoto M, Akita T, et al. Pig cloning by microinjection of fetal fibroblast nuclei[J]. Science ,2000;289:1188–1190.
    [165] Polejaeva IA, Chen SH, Vaught TD, et al. Cloned pigs produced by nuclear transfer from adult somatic cells[J]. Nature ,2000;407:86–90.
    [166]Kubota C, Yamakuchi H, Todoroki J, et al. Six cloned calves produced from adult fibroblast cells after long-term culture[J]. Proc Natl Acad Sci USA ,2000;97:990–995.
    [167] Enright B P,Taneja M, Schreiber D, t al. Reproductive characteristics of cloned heifers from adult somatic cells[J].BiolReprod,2002,66(2):291-296.
    [168] Sutovsky P, Moreno RD, Ramalho-Santos J, et al. Ubiquitin tag for sperm mitochondria[J]. Nature,1999,47:1365-137.
    [169] Rideout WM, Eggan K, Jaenisch R, et al. Nuclear clonging and epigenetic reprogramming of the genome[J].Science, 2001,293:1093-1098.
    [170] Ferguson Smith AC, Surani MA. Imprinting and the epigenetic symmetry between parental genomes[J].Science, 2001,293:1086-1089.
    [171] Khatir H, Lonergan P, Carolan C, et al. Prepubertal bovine oocyte: a negative model for studying oocyte developmental competence[J]. Mol Reprod Dev. 1996;45(2):231-239.
    [172] Oh B, Hampl A, Eppig JJ, et al. SPIN, a substrate in the MAP kinase pathway in mouse oocytes[J]. Mol Reprod Dev, 1998,50(2): 40 – 249.
    [173] Machaty Z, Funahashi H, Mayes MA, et al. Effects of injecting calcium chloride into in vitro matured porcine oocytes[J]. Biol Reprod, 1996,54:316-322.
    [174] Shiina Y, Kaneda M, Matsuyama K, et al. Role of the extracellular Ca2+ on the intracellular Ca2+ changes in fertilized and activated mouse oocytes [J]. J Reprod Fertil, 1993,97:143-150.
    [175] Miyazaki S, Shirakawa H, Nakada K, et al. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs[J]. Dev Biol, 1993,158:62-78.
    [176] Kline D, Kline JT. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg[J]. Dev Biol, 1992,149:80-89.
    [177] Schultz RM, Kopf GS. Molecular basis of mammalian egg activation. In Cuurent Topics in Development Biology [M]. Ed by Pedersen RA and Schatten GP. Academic Press. New York. 1995.
    [178] Vitullo AD, Ozil JP. Repetitive calcium stimuli drive meiotic resumption and pronuclear development during mouse oocyte activation [J]. Dev Biol, 1992, 151:128-136.
    [179] Verma PJ, Du ZT, Grupen CG, et al. Effect of 6-DMAP on the parthenogenetic development of electrically activated porcine oocytes [J]. Theriogenology, 2000,53:444.
    [180] Mitalipov SM, White KL, Farrar VR, et al. Development of nuclear transfer and parthenogenetic rabbit embryos activated with inositol 1,4,5-trisphosphate[J]. Biol Reprod 1999,60:821-827.
    [181] Jones KT, Matsuda M, Parrington J, et al. Different Ca2+ releasing abilities of sperm extracts compared with tissue extracts and phospholipase C isoforms in sea urchin egg homogenate and mouse eggs[J]. Biochemical Journal, 2000, 346:743-754.
    [182] Swann K, Larman MC, Saunders CM, et al. The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLC [J]. Reproduction, 2004, 127: 431-439.
    [183] Dale B, Defelice LJ, Ehrenstein G. Injection of a soluble sperm fraction into sea urchin eggs triggers the cortical reaction [J]. Experientia, 1985, 41: 1068-1070.
    [184] Stice SL, Robl JM. Activation of mammalian oocytes by a factor obtained from rabbit sperm [J]. Mol Reprod Dev, 1990, 25: 272-280.
    [185] Chatot CL., Ziomek CA, Bavister BD, et al. An improved culture medium supports development of random-bred one-cell mouse embryos in vitro[J]. J. Reprod. Fertil. ,1989,86, 679–688.
    [186] Heindryckx B, Rybouchkin A, Van Der Elst J, et al. Effect of culture media on in vitro development of cloned mouse embryos[J]. Cloning Stem Cells ,2001,3, 41–50.
    [187] Chung YG, Mann MR, Bartolomei MS, et al. Nuclear-cytoplasmic ‘tug-of war’ during cloning: effects of somatic cell nuclei on culture medium preferences in the pre-implantation cloned mouse embryo[J]. Biol. Reprod. ,2002,66, 1178–1184.
    [188] Gao S, Czirr E, Chung YG, et al. Genetic variation in oocyte phenotype revealed throughparthenogenesis and cloning: correlation with differences in pronuclear epigenetic modification[J]. Biol. Reprod. ,2004,70, 1162–1170.
    [189] Wakayama T, Perry ACF, Zuccotti M, et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei[J]. Nature (London) ,1998,394, 369–374.
    [190] Gao S, McGarry M, Latham KE, et al. Cloning of mice by nuclear transfer. Cloning Stem Cells ,2003,5, 287–294.
    [191] Brown JJ, Whittingham DG. The roles of pyruvate, lactate and glucose during pre-implantation development of embryos from F1 hybrid mice in vitro[J]. Development ,1991,112, 99–105.
    [192] Biggers JD, McGinnis LK. Evidence that glucose is not always an inhibitor of mouse pre-implantation development in vitro[J]. Hum. Reprod. ,2001,16, 153–163
    [193] Johnson MH, Nasr-Esfahani MH. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of pre-implantation mammalian embryos in vitro?[J]. Bioessays ,1994,16, 31–38
    [194] Ho Y, Wigglesworth K, Eppig JJ. et al. Pre-implantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression[J]. Mol. Reprod. Dev. ,1995,41, 232–238.
    [195] Gao S, Chung YG., Williams JW, et al. Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei[J]. Biol. Reprod. ,2003,69, 48–56.
    [196] Wen DC, Yang CX., Cheng Y , et al. (2003) Comparison of developmental capacity for intra- and interspecies cloned cat (Felis catus) embryos[J]. Mol. Reprod. Dev. 66, 38–45.
    [197] Fuller BJ, Hunter JE, Bernard AG, et al. The permeability of unfertilized oocytes to 1,2-propanediol: a comparison of mouse and human cells[J]. Cryo lett,1992, 13:287-292.
    [198] 付永伦,严敬明.人类卵母细胞的冷冻保存.生殖与避孕[J],1996,16(3):163-166.
    [199] Kasai M. Vitrification: refined strategy for the cryopreservation of mammalian embryos[J]. J Mamm Ova Res.1997;14:17–28.
    [200] Abe H, Yamashita S, Satoh T, et al. Accumulation of cytoplasm lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free and serum-containing media[J]. Mol Reprod Dev 2002;61:57–66.
    [201] Sturmey RJ, Leese HJ. Energy metabolism in pig oocytes and early embryos[J]. Reproduction 2003;126:197–204.
    [202] Wang WH, Abeydeera LR, Han YM, et al. Morphological evaluation and actin filament distribution in porcine embryos produced in vitro and in vivo[J]. Biol Reprod 1999;60:1020–1028.
    [203] Hongsheng M, Yuksel A, Lela K, et al. Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Therio. 2006;66:2008–2016.
    [204] Nagashima H, Kuwayama M, Grupen CG, et al. Vitrification of porcine early cleavage stage embryos and oocytes after removal of cytoplasmic lipid droplets [J]. Theriogenotogy, 1996, 45: 180(Abstr).
    [205] Diez C, Le Bourhis D, Heyman Y, et al. Effects of partial lipid removal from in vitro produced lovine zygotes on further development in vitro and on the freezing tolerance of blastocysts[J]. Theriogenology, 1996, 45: 166(Abstr).
    [206] Otoi T, Fujii M, Tanaka M, et al. Effect of serum on the in vitro maturation of canine oocytes [J].Reprod Fertil Dev,1999, 11(7-8):387-390.
    [207] Martino A, Songsasen N, Leibo SP. Development into blastocysts of bovine oocytes cryopreserved by ultrarapid cooling[J]. Biol Reprod 1996;54:1059–69.
    [208] Vajta G, Holm P, Kuwayama M, et al. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos[J]. Mol Reprod Dev 1998;51:53–58.
    [209] Lane M, Bavister BD, Lyons EA, et al. Containerless vitrification of mammalian oocytes and embryos[J]. Nat Biotechnol 1999;17:1234–1236.
    [210] Kuwayama M, Kato O. All-round vitrification method for human oocytes and embryos[J]. J Assist Reprod Genet 2000;17:477 (abstract).
    [211] Kelly JM, Kleemann DO, Kuwayama M, et al. Vitrification of in vitro-produced bovine and ovine embryos using the minimum volume cooling cryotop method[J]. Reprod Fertil Dev 2004;16:172–173.
    [212] Hochi S, Terao T, Kamei M, et al. Successful vitrification of pronuclear-stage rabbit zygotes by minimum volume cooling procedure[J]. Theriogenology 2004;61:267–275.
    [213] Iwayama H, Hochi S, Kato M, et al. Effects of cryodevice type and donors’ sexual maturity on vitrification of minke whale (Balaenoptera bonaerensis) oocytes at germinal vesicle-stage[J]. Zygote 2004;12:333–338.
    [214] Ushijima H, Yoshioka H, Esaki R, et al. Improved survival of vitrified in vivo-derived porcine embryos[J]. J Reprod Dev 2004;50:481–486.
    [215] Esaki R, Ueda H, Kurome M, et al. Cryopreservation of porcine embryos derived from in vitro-matured oocytes[J]. Biol Reprod 2004;71:432–437.
    [216] Hiraoka K, Hiraoka K, Kinutani M, et al. Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human day 5 and 6 expanded blastocysts[J]. Hum Reprod 2004;19:2884–2888.
    [217] Katayama KP, Stehlik J, Kuwayama M, et al. High survival rate of vitrified human oocytes results in clinical pregnancy[J]. Fertil Steril 2003;80:223–224.
    [218] Parnpai R, Laowtammathron C, Terao T, et al. Development into blastocysts of swamp buffalo oocytes after vitrification and nuclear transfer[J]. Reprod Fertil Dev 2004;16:180–181 (abstract).
    [219] Chuti L, Chanchao L, Mariena K. Factors affecting cryosurvival of nuclear-transferred bovine and swamp buffalo blastocysts: effects of hatching stage, linoleic acid–albumin in IVC medium and Ficoll supplementation to vitrification solution[J]. Therio. 2005; 64: 1185–1196.
    [220] Duran DH, Pedro PB, Venturina HV, et al. Post-warming hatching and birth of live calves following transfer of in vitro-derived vitrified water buffalo (Bubalus bubalis) embryos[J]. Therio 2004;61:1429–1439.
    [221] Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts[J]. Nature,1990,345(6274):458-460.
    [222] Hackett JA, Feldser DM, Greider CW. 2001. Telomere dysfunction increases mutation rate and genomic instability[J]. Cell,2001,106(3):275-286.
    [223]Wei C, Diana W, Samena A, et al. 2003. Telomerase-immortalized sheep fibroblasts can be reprogrammed by nuclear transfer to undergo early development[J]. Biol Reprod.,2003,69(1):15-21.
    [224] Bi CM, Zhang SQ, Zhang Y, et al. Immortalization of bovine germ line stem cells by c-myc and hTERT[J]. Anim. Reprod. Sci.,2007,(in press)
    [225] Ayesha BA, David AF, Mazin BQ, et al. 2004. Telomerase prolongs the lifespan of normal human ovarian surface epithelial cells without inducing neoplastic phenotype[J]. J Soc Gynecol Investig,2004,11(8):553-561.
    [226] Thomas M, Yang L, Hornsby PJ. Formation of functional tissue from transplanted adrenocortical cells expressing telomerase reverse transcriptase[J]. Nat. Biotechnol.,2000,18(1):39-42.
    [227]De Geest K, Bergman CA, Turyk ME, et al. Differential response of cervical intraepithelial and cervical carcinoma cell lines to transforming growth factor-beta 1. Gynecol Oncol.,1994,55(3Pt1):376-385.
    [228] 李昱. 大熊猫成纤维细胞的体外培养与异质克隆胚的构建[D].西北农林科技大学博士学位论文,2001.
    [229] Maeda H,Kameyama Y, Nakane S, et al. Epithelial dysplasia produced by carcinogen pretreatment and subsequent wounding[J]. Oral Surg Oral Med Oral Pathol, 1989,68(1):50-56.
    [230] Hochedlinger K, Blelloch R, Brennan C, et al. Reprogramming of a melanoma genome by nuclear transplantation[J]. Genes & Dev. 2004 18(15): 1875-1885.
    [231] Illera MJ, Lorenzo PL, Illera JC, et al. Developmental competence of immature pig oocytes under the influence of EGF, IGF-I,follicular fluid, and gonadotropins during IVM-IVF processes[J]. Int J Dev Biol 1998; 42:1169–1172.
    [232] Abeydeera LR, Wang WH, Cantley TC, et al. Development and viability of pig oocytes matured in a protein-free medium containing epidermal growth factor[J]. Therio. 2000; 54:787–797.
    [233] Miyoshi K, Rzucidlo SJ, Pratt SL, et al. Utility of rapidly matured oocytes as recipients for production of cloned embryos from somatic cells in the pig[J]. Biol Reprod 2002; 67:540–545.
    [234] Miyoshi K, Rzucidlo SJ, Pratt SL, et al. Improvements in cloning efficiencies may be possible by increasing uniformity in recipient oocytes and donor cells[J]. Biol Reprod 2003; 68:1079–1086.
    [235] Kobayashi K, Yamashita S, Hoshi H. Influence of epiderma growth factor and transforming growth factor-alpha on in vitro maturation of cumulus cell-enclosed bovine oocytes in a define medium[J]. J Reprod Fertil., 1994,100 :439–446.
    [236] Lonergan P, Carolan C, Van Langendockt A, et al. Role of epidermal growth factor in bovine oocyte maturation and preimplantation embryo development in vitro[J]. Biol Reprod,1996,54:1420–1429.
    [237] Rieger D, Luciano AM, Modina S, et al. The effects of epidermal growth factor and insulin-like growth factor I on the metabolic activity, nuclear maturation and subsequent development of cattle oocytes in vitro[J]. J Reprod Fertil ,1998,112:123–130.
    [238] Gall L, Chene N, Dahirel M, et al. Expression of epidermal growth factor receptor in the goat cumulus-oocyte complex[J]. Mol Reprod Dev ,2004,67:439–445.
    [239] Garnett K, Wang J, Roy SK. Spatiotemporal expression of epidermal growth factor receptor messenger RNA and protein in the hamster ovary: follicle stage-specific differential modulation by follicle-stimulating hormone, luteinizing hormone, estradiol, and progesterone[J]. Biol Reprod ,2002,67 1593–1604.
    [240] Choi YH, Love CC, Chung YG, et al. Production of nuclear transfer horse embryos by Piezo-driven injection of somatic cell nuclei and activation with stallion sperm cytosolic extract[J]. Biol Reprod2002; 67:561–567.
    [241] Choi YH, Chung YG, Walker SC, et al. In vitro development of equine nuclear transfer embryos: effects of oocyte maturation media and amino acid composition during embryo culture[J]. Zygote 2003; 11:77–86.
    [242] Gordo AC, Wua H, Hea CL, et. al. Injection of Sperm Cytosolic Factor Into Mouse Metaphase II Oocytes Induces Different Developmental Fates According to the Frequency of [Ca2+] ioscillations and Oocyte Age[J]. Biol Reprod, 2000, 62:1370~1379.
    [243] Machaty Z, Prather R S. Strategies for activation nuclear transfer oocytes[J]. Reprod Fertil Dev, 1998, 10: 599~613.
    [244] Morgan AJ, Jacob R. Ionomycin enhances Ca2+ influx by stimulating stor regulated Cation entry and not by a direct action at the plasma membrane[J]. Biochem J,1994, 300: 665~672.
    [245] Prather RS, Eichen PA, Nicks DK, et al. Artificial activation of porcine oocytes matured in vitro. Mol Reprod Dev. [J].1991, 28: 405~409.
    [246] Danielson AJ,Maihle NJ. The EGF/ErbB receptor family and apoptosis[J]. Growth Factors,2002,20: 1–15.
    [247] Quirk SM, Harman RM, Cowan RG. Regulation of Fas antigen (Fas, CD95)-mediated apoptosis of bovine granulosa cells by serum and growth factors[J]. Biol Reprod. ,2000, 63:1278–1284.
    [248] Barnes DW. Epidermal growth factor inhibits growth of A431 human epidermoid carcinoma in serum-free cell culture[J]. J Cell Biol,1982, 93: 1–4.
    [249] Armstrong DK, Kauffmann SH, Ottaviano YL, et L. Epidermal growth factor-mediated apoptosis of MDA-MB-468 human breast cancer cells[J]. Cancer Res.,1994,54:5280–5283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700