绿色荧光蛋白基因的重组构建及在金鱼体内的整合与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色荧光蛋白(Green fluorescent protein,GFP)是来源于多管水母(Aequorea Victoria)等海洋无脊椎动物的一种蛋白质,该蛋白质在体外经适当波长的光激发便发出绿色荧光,并且这种荧光的发射不需要任何底物和辅助因子的诱导。绿色荧光蛋白这种独特的生物学特性,使其作为报道基因在现代生命科学研究领域中,如细胞内基因产物的动态过程,蛋白质在细胞内的定位,药物的筛选,以及转基因个体的初步鉴定等等有着广泛的应用。本研究利用绿色荧光蛋白的这种独特生物学特性,作为转基因个体筛选的标志,来提高转基因个体检测效率,并为进一步研究外源基因在高等动物内整合与表达调控机理提供参考。
     实验通过分子重组技术,采用定向克隆法将绿色荧光蛋白基因亚克隆到pUC118A上鲤鱼β-肌动蛋白基因启动子下游,构建成能在真核生物体内表达的表达载体pAGFP,经双酶酶切法序列鉴定后,回收带启动子和目的基因片段。采用显微注射法将这种重组基因转化1细胞期的金鱼受精卵,实验结果如下:
     (1)显微注射后,根据胚胎发育分期,胚胎在显微注射后36小时开始能在紫外灯下观察到荧光,原肠期发荧光的胚胎比例为25%,后期发育荧光率逐渐下降,肌肉效应期后又相对稳定。
     (2)分别以10~5、10~6、10~7和10~8拷贝数转化金鱼受精卵,结果显示在这四个不同级别当中以10~7转化率最高,说明导入的拷贝数与表达率之间不存在简单的线性相关关系。
     (3)随机提取12尾转化个体肌肉总DNA进行PCR和Southern杂交检测。PCR检测结果显示,有5尾转化个体的总DNA能扩增出一条478bp的特异性分子带,说明转化个体整合有GFP基因,整合率为42%。Southern杂交进一步证实,其中有2尾GFP基因完全整合在转化个体的基因组上,另外3尾可能是GFP基因未完全整合到宿主基因组上。对于基因组上整合有GFP基因的2尾转化个体,GFP基因在基因组上的整合位点和拷贝数并不相同,说明GFP基因作为外源基因在转基因个体上的整合位点和拷贝数是非确定性的。
Green fluorescent protein (GFP) was extracted from jellyfish (Aequerea Victoria) of ocean invertebrate. GFP can emit green fluorescent when it is illuminated by light of suitable wavelength. The emissions of fluorescence need not any additional factors, such as substrate, supplementary factor. Green fluorescent protein is widely applied in researches of modern life science, such as gene product moved-process in vivo, protein localization, drug screening and preliminary selection of transgenic individual as a molecular marker. In this study, the distinctive character of green fluorescent protein was using as a screening method to improve determination efficiency of transgenic individuals, and simultaneously to provide reference concerning foreign gene integration and regulation.
    In the research of transgenic fish, green fluorescent protein gene was sub-cloned to downstream of carp P -actin gene promoter that was cloned in pUCUSA by molecular recombination technology. Thus pAGFP plasmid was constructed successfully. The recombination was determined by digestion of restriction enzyme and sequencing. Recombination gene was cut-down and introduced into the nuclei of oocytes or the cytoplasm of goldfish at one-cell stage via microinjection. The results as follows:
    (1) Fluorescence was observed from embryo under suitable UV light after microinjection 36 hours. The fluorescent ratio of Gastrula embryo period was up to 25%. During developing backward, fluorescent ratio was gradually descending. It was relatively stable after muscle effect period.
    (2) Goldfish zygote were transformed by different copies 10\ 10\ 10 and 10" respectively, results showed that foreign copies was not existed simple linear relativity.
    (3) Genomic DNA was extracted from 12 preliminary screening fish. The
    
    
    transgenic goldfish were detected and screened by PCR, Southern blot. The results showed that PCR amplify a 478bp specific molecular band in 5 individuals, Southern blot results showed a strong signal in transgenic fish. It is concluded that ' green fluorescent protein gene has been integrated and expressed in at least 2 transgenic fish, it is also showed that foreign gene integrating positions and copy numbers are differ in different individuals.
引文
1. Palmiter R D, Brinster R L, Hammer R E.,et al. Dramatic growth of mice that develop from egga microinjected with meta Hothionein-growth hormone fusion genes. Nature, 1982,300:611-615
    2. Collas P.,etal. Nuclear localization signals enhance gerinline transmission of a transgene in zebrafish. Transgenic Res., 1998, Jul,7(4):387-389
    3.谢岳峰,刘东,邹钧等.泥鳅受精卵的电脉冲基因转移,水生生物学报,1989,13(4):387-389
    4.谢岳峰,朱作言.鱼类受精卵基因转移中的剂量效应。中国鱼类协会第三届会员代表大会学术讨论会论文摘要汇编,1989,33-34
    5. Williams. D. W. et al. High transgene activity in the yolk syncytial layer affects quantitative transient expression assay in zebrafish embryos. Transgenic Res., 1996, Nov, 5(6):433-442
    6. Duncker B P, Davies L and Vk Walken. Transgenic Drosophila melanogaster. Transgenic Res., 1998,7:1-6
    7. Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan. Aequorea, J. cell. comp. physiol, 1962,59:223-227
    8.贺竹梅,李华平,李宝健.绿色荧光蛋白在生命科学研究中的应用,遗传,1998,(5):43-46
    9. Hekmer G, Casadabam M, Bevan M.,et al.A new thimeric gene as a marker for plant transformation: the expression of Escherichia coil-galactosidase in sunflower and tobacco cells. Bio. Bioltechnology, 1984,2:520-527
    10. Seed B, Sheen J Y.A simple phase extraction assay for chloramphenical acetyltransferase activity. Gene, 1988,67:271-277
    11. Jefferson R A, Kavanagh T A, Buvan M W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBOJ, 1987, 6: 3901-3907
    12. Millar A J, Short S R, Hirotsuka K., et al. Firefly luciferase as a reporter
    
    of regulated gene expression in high plants. Plant MolBiol Res, 1992, 10:324-337
    13. OW DW, Wood K V, Deluca M. , et al. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants.Science, 1986, 234:856-859
    14. 刘建忠,李宁,熊运著等.绿色荧光蛋白及其在转基因动物研究中的应用.生物工程进展 , 1998, 18 (6) : 41-44
    15. cody, C. W., Prasher, D. C., Westler, W. M. , Prendergast, F. G. , Ward, W. W. Chemical structure of the hexapeptide chromophore of the Aquorea green fluorescent protein. Bio chemistry, 32:1212-1218
    16. Youvan D. C., Michel-Beyerle E. Structure and fluorescent mechanism of GFP. Nature Biotechnology, 1996, 14:1219-1220
    17. Yang. F, Moss L. G., Phillips. Jr. GN. The molecular structure of green fluorescent protein. Nature Biotechnology, 1996,14:1246-1251
    18. Inouye S, Tsuji F I. Evidence for redox froms of the Aequorea green fluorescent protein. FEBS letters., 1994,351:211-214
    19. Bokman S. H., Ward W. W. Renaturation of Aquorea fluorescent protein. Biochem Biophys. Res. Cemmu. 1981,101:1372-1380
    20. Morin J G.Hastings J W. Energy transfer in a bioluminescent system. Journal of cellular physiology,1971,77:313-318
    21. Morise H, Shimomura O, Johnson E H, Winant J. Intermolecular energy transfer in the bioluminescent system of Aequerea. Biochemistry, 1974, 13:2656-2662
    22. Ward, W W. and Cormier, M. J. An energy transfer protein in coelenterate bioluminescence characterization of the Rerilla green-fluorescent protiein.J. Biol. Chem. 1979, 254:781-788
    23. Prasher. D.C., Mccan. R.O.and Cornier. M. J. J.bioch. Bioph. Res. Commu. 1985,3:1259-1268
    24. Heim, R., Prasher, DC, and Tsien, RY. Wavelength mutations and posttranslational utoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA, 1994,91:12501-12504
    25. Prasher D C.,et al. Primary structure of the Aequerea Victoria green fluorescent protein. Gene, 1992, 111:229-233
    26. Heim R, Cubitt A, Tsier. R Y. Improved green fluorescence .Nature, 1995, 373: 663-664
    
    
    27. Guohon Z, Vanessa G, Steven R K. Biochem Biophys Res Commun.1996, 227: 707-711
    28. Delagrave S, Hawtin R E, Silve C M, Yang M and Youvan D D. Red-shifted excitation mutants of the green fluorescent protein. Biotechnology, 1995, (3) : 151-154
    29. Cubin A N, et al. Long-term stable expression of green fluorescent protein in mammalian cells. Biochem Biophys Res Commun, 1997, 236: 347-350
    30. Derek A P, James A A, Esther R A, et al. Retroviral-mediatwd transfer of the green fluorescent protein gene into murine hematopietic cella facilitates scoring and selection of transduces progentors in vitro and indentification of genetically , modified cells in vivo.Blood, 1997, 90 (5) : 1777-1786
    31. John PL, Rebecca R M, Sergei Z, et al. Retroviral transfer and expression of a humanizwd, red-shifted green fluorescent protein gene into human tumor cells.Nature Biotechn, 1996, 14 (5) : 610-614
    32. Takada T, et al. Selective production of transgenic nice using green fluorescent protein as a marker.Nat Biotechnol, 1997, 15: 458-461
    33. Holt J R, Johns D C, Wang S, et al. Funcational expression of exogenous protein in mammalian sensoryhair cells infected eith adeno-viral vectors. J Neurophysiol, 1999, 81 (4) : 1881-1888
    34. Stewart C N, Richards H A, Halfhill M D. Transgenic plants and biosafty; Science, misconceptions and public perceptions. Biotechniques, 2000, 29 (4) : 838-843
    35. Weingart C L, Broitman-Maduro G, et al. Fluorescent labels influence phagocytodsis of Bordeella Pettussis by human nuetophils. Infectimmun, 1999, 67 (8) : 4264-4267
    36. Liu H S, Jan M S, Chou C K, et al.Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun, 1999, 260(3) : 712-717
    37. Dreyer E B, Vorwerk C K, Zurakowski D, et al. Infection with adeno-associated virus may protect exitotoxicity.Neuroreport, 1999, 10 (14) : 2887-2890
    38. Seethala R , Menxel R. A fluorescence polarization competition immunoassay for tyrosine kinase.J Annal Biochem, 1998, 255-257
    39. Bronstein I, Martin C S, FortinJJ, et al. Chemliuminescience: sensitive
    
    detection technology for receptor geneassays. Clin Chem, 1996, 42(9): 1542
    40. Xu W, et al. Structural oranization of the human visicular monoamine transporter type-2 gene and promoter analysis using the jellyfish green fluorescent protein as a reporter. Brain. Res. Mol, 1997, 45: 41-49
    41. Muldoon R R, et al. Tacking and quantitation of retroviral-mediated trnsfer using a completely humanized red-shifted green fluorescent protein gene. Biotechniques, 1997, 2:162-167
    42.王家旺,齐义鹏.杆状病毒早期基因的结构与功能.病毒学报,1995,11(3):283-288
    43.马立新,史巧娟,周俊初,陈华葵.以绿色荧光蛋白基因为报告基因的广宿主启动子探针载体的构建和应用.微生物学报,1999,39(5):408-415
    44. Casper S J, et al. Expression of the green fluorescent protein encoding gene from a tobacco mosaic virs-based vector. Gene, 1996, 173: 69-73
    45. Sawin K E, Nurse P. Identification of fission yeast nuclear markers using random polypeptide fusions with green fluorescent protein. Natl Acad Sci USA, 1996, 94: 15146-15151
    46. Lee M S, Henry M, Silver P A.A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes and Dev, 1996, 10: 1233-1246
    47. Haseloff J, et al. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA, 1997,4:2122-2127
    48. Grebenok R J, et al. Green fluorescent protein fusions for efficient characterization of nuclear targeting. Plant J, 1997, 11: 573-586
    49. Kohler R H, et al. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J, 1997,11:613-621
    50. Kohler R H, et al. Exchange of protein moleculars through connections between higher plant plastids. Science, 1997, 276:2039-2042
    51. Srinivasa S P, et al. Plasma membrane localization is required for RGS4 function in Saccharomvces Cerevisiae. Pro. Natl. Acad. Sci. USA, 1998, 95:5584-5589
    52. Imreh G, et al. Noninvasive monitoring of apoptosis versus necrosis in a neuroblastoma cell line expressing a nuclear pore protein tagged with the green fluorescent protein. Exp. cell. Res, 1998,238: 371-376
    
    
    53. Liu J, et al. The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells:a green fluorescent protein study. J. cell Biol.,1997,137:1525-1535
    54.何诚,架平,朱运松.nm-23-Hl-GFP融合蛋白在肺癌细胞株中的表达及其对肿瘤细胞体外侵袭能力的影响.中国生物化学与分子生物学报,2000,16(1):51-56
    55. Chalfie M, Tu Y, Euskirchen G, Ward W W,Prasher D C,et al. Green fluorescent proteins as a marker for gene expression. Science, 1994, 263:802-805
    56. Davis I, Gindham C H, Otarred P H, et al. A nuclear GFP that marks nuclei in living Drosophila embryos: material supply overcomes a delayin the appearance of zygotic fluorescence. Der. Biol.,1995,170,726-729
    57.张阳德,廖元军。绿色荧光蛋白及其在细胞生物学中的应用.中国现代医学杂志,2001,11(5):34-37
    58. Wang S, Hazelrigg T. Implications for bcd mRNA localization from special distribution of exuprotein in Drosophila Oogeuesis. Nature, 1994,369: 400-403
    59. Yeh E.,et al. Green fluorescent protein as a vital marker and gene expression in Drosophila. Proc. Natl. Acad. Sci. USA, 1995,92:7036-7040
    60. Zhu Z Y, Li G, He L.,et al. Novel gene transferred into the fertilized eggs of goldfish (carassius auratusL. 1758).J Applied Ichthyology, 1985, 1:31-34
    61.朱作言,许克圣,谢岳峰等.转基因鱼模型的建立.中国科学,B辑,1989,(2):147-155
    62. Amsterdam A, Lin S, Hopkins M. The Aequorea Victoria Green fluorescent protein can be used as a reporter in live zebrafish embryos. Dvelopmental Biology, 1995,171:123-129
    63. Moss J B, Price A L, Raz E, Driever W and Rosenthal N. Green fluorescent protein marks skeletal muscle in murine cell lines and zebrafish. Gene, 1996,173:89-98
    64. Ikawa M.,et al. Green fluorescent protein as a marker in transgenic mice. Develop. Growth Differ, 1995,37:455-459
    
    
    65. Ikawa M.,et al.A rapid and non-invasive selection of transgenic embryos before implantation using green fluorescent protein. FEBS Letters, 1995,375:125-128
    66. Sheen J, Hang S, Niwa Y.,et al. Green fluorescent protein as a new vital marker in plant cells. The plant Journal, 1995,8:777-784
    67. Hu W, Cheng C L, Expression of Aequroea green fluorescent protein in plant cells. FEBS Letters, 1995,369:331-334
    68. Niedz E P, Sussman M R. Satterlee J S. Green fluorescent protein:an in vivo reporter of plant gene expression. Plant cell Reports, 1995,14:403-406
    69.许新萍,黄粤,卫剑文等.绿色荧光蛋白基因在水稻细胞中的高效表达.植物学报,1998,40(1):91-94
    70.王泽宙,邱全胜.绿色荧光蛋白基因mgfp4在水稻愈伤组织中的瞬时表达.北京师范大学学报(自然科学版),2000,36(3):385-389
    71.黄国存,张寒霜,高鹏等.GFP基因在棉花转化中的应用.遗传,2001,23(2):131-134
    72. Lee A H.,et al. Generation of the replication-competent human immunodeficiency virus typel which expresses a jellyfish green fluorescent protein. Biochem Biophys. Res. Commun, 1997,233:288-292
    73. Collins L A.,et al. Green fluorescent protein reporter microplate assay for high-throughout screening of compounds against mycobacterium tuberculosis. Antimicrob Agents Chemother, 1998,42:344-347
    74. Chishima T.,et al. Visualization of the metastatic process by green fluorescent protein expression. Anticancer Rev.,1997,17:2377-2384
    75. Park S H, and Raines R T. Green fluorescent protein as a signal for protein-protein interactions protein. Science, 1997,6:2344-2349
    76.萨姆布鲁克 J,弗立奇 E F,曼尼阿蒂斯 T,分子克隆实验指南.金冬燕,黎孟枫等译.第二版.北京:科学出版社,1998
    77. Frederick M A, Roger B, Robert E K.,et al. Current protocols in molecular biology. 1999, Canada, John Wiley & Sons, Inc.
    78.史瀛仙,张玉廉,沈玉,于建康.人生长激素基因导入金鱼受精卵内的整合表达和促生长效应研究.生物化学杂志,1995,11(2):180-183
    79.邹钧,谢岳峰,刘东等.外源基因在鲫鱼胚胎发育过程中的表达.水生生物学报,1991,12(4):372-374
    
    
    80.杨隽,杨东亚,郭志光,孙秀英.全鱼基因在鲤鱼提内整合行为的研究.黑龙江八一农垦大学学报,1997,9(1):57-59
    81. Inoue K, Akita N, Shiba T.,et al. Netal-inducible activities of metallothionein promoters in fish cells and fly. Biochem. Biophys. Res. Cmm, 1992,185: 1108-1114
    82. Dunham R A, Eash J, Askins J and Townes T M. Transfer of the metallothionein-human growth hormone fusion gene into channel catfish. Trans. Am. Fish Soc, 1987,116:87-91
    83. Guyomard R, Chourrout D and Houdebine L M. Gene transfer by microinjection into fertilized trout eggs:efficient integration and germ line transmission. Abstr. 3rd, International Symposium of Genetics in Aquaculture, 1988,20. Norway.
    84.杨桦,戴建新,戴旭明,傅继梁.绿色荧光蛋白基因在小鼠胚胎干细胞中表达效率的影响因素分析.第二军医大学学报,2001,22(4):319-321
    85. Liu Z J, Moav B, Faras A J.,et al. Functional analysis of elements affecting expression of the beta-actin gene of carp. Mol Cell Biol,1990,10(7):3432-3440
    86.岳莉莉,齐义鹏,胡建红等.截短和融合的绿色荧光蛋白的表达及其荧光特性.中国科学(C辑),1998,28(1):15-21
    87.周盛梅,孟凡国,黄大年等.绿色荧光蛋白及其应用.生物工程进展,1998,19(2):56-59
    88.罗忠训,刘琳.绿色荧光蛋白在分子细胞生物学研究中的应用.湖北大学学报(自然科学版),1999,21(2):164-167
    89.朱作言,何玲,谢岳峰等鲤鱼和草鱼基因文库的构建及其生长激素基因和肌动蛋白基因的筛选.水生生物学报,1990,14(2):176-178
    90.王向东,章坦君.基因打靶及其应用,生物化学与生物物理进展,1996,500-504

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700