小麦逆境应答基因TaSnRK2.8的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上主要的粮食作物之一,干旱、盐和极端气候等逆境因子是限制小麦产量和品质提高的重要因素。挖掘和利用小麦逆境应答基因资源是应用现代基因工程技术改良小麦抗逆性的前提和基础,对于深入了解植物抗逆机制具有重要意义。蛋白质的可逆磷酸化是在逆境条件下植物体内能量代谢和逆境信号传递的重要机制。据报道,蔗糖非发酵相关蛋白激酶家族2 (Sucrose non-fermenting1-related protein kinase 2, SnRK2)在逆境信号传递途径中具有重要作用。
     本研究通过筛选本实验室构建的小麦水分胁迫应答cDNA文库,获得小麦SnRK2.8基因的EST序列,通过电子克隆的方法获得了小麦TaSnRK2.8基因的全长cDNA序列。通过研究其表达特性、亚细胞定位、染色体定位、单核苷酸多态性和启动子序列,并结合转基因功能验证结果,初步揭示TaSnRK2.8在逆境胁迫下的表达模式、抗逆功能及可能的信号通道。主要研究结果包括:
     1.小麦TaSnRK2.8基因的cDNA序列全长为1431 bp,包含一个1101 bp的开放阅读框,编码含367个氨基酸的多肽。预测TaSnRK2.8蛋白同时存在丝氨酸/苏氨酸激酶和酪氨酸激酶催化结构域。氨基酸序列比对结果表明,TaSnRK2.8蛋白分子量约42 kDa,等电点为4.87,与玉米、水稻和拟南芥中的直系同源基因的相似性分别为94%、94.8%和76.5%。聚类分析结果表明,TaSnRK2.8基因属于SnRK2家族第三亚族成员。
     2.组织表达分析结果表明,TaSnRK2.8基因在小麦根部的表达量最高,其次为茎部,在叶片和穗中的表达量较低。TaSnRK2.8在胁迫处理下的表达分析结果表明,该基因受ABA、高盐、高渗和低温胁迫诱导表达,且在不同胁迫条件下基因的表达模式不同,其对各诱导条件的敏感度为:高渗>低温>ABA>高盐。
     3.亚细胞定位及转拟南芥检测结果均表明,TaSnRK2.8基因在细胞膜、细胞质和细胞核中均有分布。
     4.转基因功能验证结果表明,TaSnRK2.8过表达后可以促进植株根部的生长发育,增加细胞内的渗透物质,这些变化有利于根对土壤水分和养分的吸收,从而提高植物细胞膜在逆境胁迫条件下的稳定性,增强叶片的保水能力及光合能力等,进而提高植物的耐盐、抗旱和耐低温能力。此外,TaSnRK2.8过表达植物体内的可溶性糖含量显著降低,表明该基因在植物糖代谢过程中起重要作用。通过qRT-PCR研究TaSnRK2.8转基因株系中其它抗逆相关基因的表达量变化,结果表明,TaSnRK2.8转基因株系中的ABA合成相关基因(ABA1, ABA2)、ABA信号传递相关基因(ABI3, ABI4, ABI5)和逆境诱导基因(CBF1, CBF2, CBF3, RD20A, RD29B)均上调表达,其中CBF1、CBF2和CBF3为非ABA依赖型基因,RD20A和RD29B为ABA依赖型基因。
     5. TaSnRK2.8基因组序列长度长约6.1 kb,包含9个外显子、8个内含子。其在普通小麦基因组中至少存在两种基因型TaSnRK2.8-A和TaSnRK2.8-B。利用中国春小麦缺四体系将TaSnRK2.8-A定位于小麦5A染色体上。分析165份小麦材料TaSnRK2.8-A-C序列的单核苷酸多态性,共检测到3个核苷酸变异,全部为转换,无插入缺失(InDel),SNP的频率为1 SNP/250 bp。核苷酸多样性(π)为0.00068,基于分离位点数目的多样性θw值为0.00070。其中,3′端UTR区的核苷酸多样性最高,次之为内含子区,外显子区的核苷酸多态性最低。中性测验结果表明TaSnRK2.8-A-C序列符合中性进化,这些遗传变异可能是突变-遗传漂变的结果。TaSnRK2.8-A-C序列等位变异(5917 bp, A→G)与群体性状的关联分析结果表明,该基因与糖代谢相关,进而影响小麦株高、叶宽、生物量和抽穗期等生长发育相关的性状,同时也与抗旱指数相关。同时,就A/G等位变异位点而言,A基因型是一种优异的等位基因类型。
     6.分离了TaSnRK2.8基因上游1797 bp的启动子序列,该序列富含A/T碱基,如TATA-box、CAAT-box、ABRE、HSE、TC-rich repeats、LTR及C-repeat/DRE等顺式作用元件。通过对TaSnRK2.8启动子序列5′端四个连续缺失片段对GUS基因的驱动能力分析,发现只有Dp1870能够激活下游GUS的表达,且仅在转基因植株的叶柄和茎部表达,在叶片及根部均无表达。GUS荧光定量分析结果显示,在非胁迫条件下Dp1870驱动能力约为35S强启动子0.16~0.35倍。
     本文的研究结果表明,小麦蔗糖非发酵相关蛋白激酶TaSnRK2.8参与了植物体内糖代谢及抗逆信号传递途径,其过表达后可以显著增强植物的抗逆性。
Drought, salinity and extreme temperatures are major factors limiting the yield and quality of wheat (Triticum aestivum L.). To survive adverse stresses, plants have developed complex signaling networks to perceive external stimuli, and then manifest adaptive responses at molecular and physiological levels. Reversible protein phosphorylation is central to the perception of, and response to, stress conditions. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling via phosphorylation in plants.
     To discover and utilize the genetic resources involved in abiotic stress tolerance, we constructed the cDNA library responsed to water defict from wheat seedlings using suppressive subtractive hybridization. In the study, one EST of SnRK2.8 was screened from the cDNA library. Based on the EST sequence, we isolated TaSnRK2.8 from wheat and characterized the functions in abiotic stress responses. The results were as follows:
     1. The full length cDNA of TaSnRK2.8 was cloned from wheat by in silico cloning. The TaSnRK2.8 cDNA was 1431 bp in length, which contained an ORF of 1101 bp and encoded a protein of 367 amino acids. The putative protein had a calculated molecular mass of 42 kDa and isoelectric point of 4.87. Moreover, TaSnRK2.8 might have both activities of serine/threonine and tyrosine kinases. Amino acid sequences alignment analysis showed that TaSnRK2.8 showed homology with counterpart SnRK2 family members from other plant species, viz. Oriza sativa, Zea mays and Arabidopsis thaliana. TaSnRK2.8 has 94.8% identity to OsSAPK8, 94% to ZmSAPK8, and 76.5% to AtSnRK2.2, respectively. Phylogenetic analysis indicated that TaSnRK2.8 belonged to subclass III subfamily of SnRK2.
     2. Quantitative real-time PCR were used to analyze the expression patterns of TaSnRK2.8 in wheat. TaSnRK2.8 was constitutively expressed in wheat, strongly in roots, weakly in stems, and marginally in leaves and spikes. Abiotic stress responses analyses revealed that TaSnRK2.8 was involved in response to PEG, NaCl and cold stresses, and possibly participates in ABA-dependent signal transduction pathways. The sensitivity degrees of TaSnRK2.8 responsing to abiotic stresses was in the order of hyperosmolality > low temperature > ABA > high salinity.
     3. To investigate the role under various abiotic stresses, TaSnRK2.8 was transferred to Arabidopsis under control of the CaMV-35S promoter. Overexpression of TaSnRK2.8 resulted in enhanced tolerance to drought, salt and cold stresses, further confirmed by stronger roots and various physiological characteristics, including lower osmotic potential, higher relative water content, strengthened cell membrane stability, increased chlorophyll content and enhanced PSII activity. Meanwhile, significantly decreased total soluble sugar was detected in TaSnRK2.8 overexpressing plants, suggesting that TaSnRK2.8 might be involved in carbohydrate metabolism. Moreover, the expression levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI3, ABI4, ABI5), stress-responsive genes, including two ABA-dependent genes (RD20A, RD29B) and three ABA-independent genes (CBF1, CBF2, CBF3), were generally higher in TaSnRK2.8 plants than in WT/GFP control plants.
     4. To address the subcellular localization of TaSnRK2.8 in living cells, a construct containing TaSnRK2.8 fused in-frame with GFP driven by the CaMV 35S promoter was expressed in living onion epidermal cells and Arabidodsis. Both results showed the presence of TaSnRK2.8 in the cell membrane, cytoplasm and nucleus.
     5. TaSnRK2.8 in genome was about 6.1 kb, which contained 9 extrons and 8 introns. Sequencing results showed that two types of sequences were detected from common wheat, named TaSnRK2.8-A and TaSnRK2.7-B. TaSnRK2.8-A were mapped on chromosome 5A with nullisomic lines of Chinese Spring. One hundred and sixty five common wheat accessions were used to detect SNP of TaSnRK2.8-A-C in genomic sequence through sequencing. Three SNPs were detected in 165 TaSnRK2.8-A-C sequences. All the SNPs belong to transitons, and the frequency of SNP was 1 SNP/250 bp. There was no insertion/deletion. The nucleotide diversity (π), i.e., the average pairwise sequence differences between two random sequences in a sample, was 0.00068 per site. The average estimate ofθw, which is based on the observed number of polymorphic sites in a sample, was 0.00070 per site. The nucleotide diversity value in the 3′UTR was highest, lower in intron, the lowest in extron. Neutrality test indicated that there was no selection in TaSnRK2.8-A-C region. Association analysis of traits between A and G genotype (5917 bp, A→G) indicated that TaSnRK2.8 was involved in water-soluble carbohydrate, plant height, flag leaf width, seedling biomass, heading stage and drought resistance index. The A-allele was a preponderant allele in the 165 wheat varieties.
     6. In order to analyze transcriptional regulative mechanism of TaSnRK2.8 gene, the TaSnRK2.8 promoter (1797 bp) was isolated from wheat. The sequence is abundant in A/T base and predicted to contain a lot of putative cis-elements, such as TATA-box, CAAT-box, ABRE, HSE, TC-rich repeats, LTR and C-repeat/DRE. To identify the key promoter regulative region controlling gene expression, TaSnRK2.8 promoter was truncated according to those putative cis-elements, and inserted into the site upstream of GUS reporter gene. Then, vectors containing different length TaSnRK2.8 promoters were transferred into Arabidopsis. Histochemistry staining analysis showed that only the longest promoter fragment (Dp1870) could activate the expression of GUS gene under normal conditions. Meanwhile, GUS was only expressed in petioles and stems, while not observable in leaves and roots. GUS fluorescence intensity analysis indicated that GUS activity under control of the Dp1870 promoter was lower (0.16~0.35 times) than that under control of the CaMV-35S promoter.
     In summary, TaSnRK2.8 is a multifunctional regulatory factor, which could participate in sugar metabolic and stress signaling in wheat. It may be possible to utilize TaSnRK2.8 in the improvement of abiotic-stress tolerance in crop species.
引文
黄芝英, 2008.嗜酸氧化亚铁硫杆菌启动子探针载体的构建及pet II启动子的分离鉴定. [硕士学位论文].湖南:中南大学.
    文自翔,赵团结,郑永战,刘顺湖,于春娥,王芳,盖钧镒. 2008.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析I.群体结构及关联标记.作物学报34: 1169-1178.
    王正航. 2010.小麦茎秆、颖壳可溶性糖含量及抗旱相关性状的分子遗传研究. [博士学位论文].山西:山西农业大学.
    王关林,方宏筠. 2002.植物基因工程(第二版).北京:科学出版社.
    庄巧生. 2000.中国小麦品种改良及系谱分析.北京:中国农业出版社.
    周光宇. 1979.远缘杂交的分子基础-DNA片段杂交假设的一个论证.遗传学报4: 405-413. 宗成文,章镇,房经贵,陶建敏,赵密珍. 2007.葡萄LEAFY启动子的克隆与序列分析.南京农业大学学报30: 22-25.
    金善宝. 1983.中国小麦品种及系谱.北京:中国农业出版社.
    兰巨生,胡福顺. 1990.作物抗旱指数的概念和统计方法.华北农学报5: 20-25.
    庞晓斌,毛新国,景蕊莲,施俊凤,高婷,昌小平,李彦舫. 2007.小麦幼苗水分胁迫应答基因表达谱分析.作物学报33: 333-336.
    张清海,王志和,张桂兰. 2000.黄淮南片小麦审定推广品种及其选育.北京:中国农业科技出版社.
    张嘉楠. 2010.小麦资源材料抗旱相关性状关联分析. [硕士学位论文].山西:河北农业大学.
    谢祝捷,姜东,戴廷波,曹卫星. 2002.植物的糖信号及其对碳氮代谢基因的调控.植物生理学通讯38: 399-404.
    Abe H, Urao T, Ito T, Seki M, Shinnozaki K, Yamaguchi-Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78.
    Albrecht V, Ritz O, Linder S, Harter K, Kudla J. 2001. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+ regulated kinases. EMBO J 20: 1051-1063.
    Alderson A, Sabelli P A, Dickinson J R, Cole D, Richardson M, Kreis M, Shewry P R, Halford N G. 1991.
    Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc Natl Acad Sci USA 88: 8602-8605.
    Anderberg R J, Walker-Simmons M K. 1992. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA 89: 10183-10183.
    Angelo C D, Weinl S, Batistic O, Pandey G K, Cheong Y H, Schultke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J. 2006. Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48: 857-872.
    Bao J S, Corke H, Sun M. 2002. Microsatellites in starch-synthesizing genes in relation to starch physicochemical peoperties in waxy rice (Oryza sativa L.). Theor Appl Genet 105: 898-905.
    Bernardo AN, Bradbury PJ, Ma H, Hu S, Bowden RL, Buckler E, Bai G. 2009. Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays. BMC Genomics 10: 251.
    Blumwald E. 2000. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12: 431-434.
    Bogre L, Meskiene I, Heberle-Bors E, Hirt H. 2000. Stressing the role of the MAP kinases in mitogenicstimulation. Plant Mol Biol 43: 705-718.
    Boudsocq M, Barbier-Brygoo H, Lauriere C. 2004. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. Biological Chemistry 279: 41758-41766.
    Boudsocq M, Droillard M J, Barbier-Brygoo H, Lauriere C. 2007. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63: 491-503.
    Bray E A. 1993. Molecular responses to water deficit Plant Physiol 103: 1035-1040.
    Bray E A. 1997. Plant responses to water deficit. Trends Plant Sci 2: 48-54. Brookes A J. 1999. The essence of SNPs. Gene 234: 177-186.
    Buckler E S, Thornsberry J M. 2002. Plant molecular diversity and applications to genomics. Current Opinion in Plant Biology 5: 107 -111.
    Buetow K H, Edmonson M N, Cassidy A B. 1999. Reliable identification of large number of candidat SNPs f rom public EST data. Nat Genet 21: 323-325.
    Cha R S, Zarbl H, Keohavong P, Thilly W G. 1992. Mismatch amplification mutation assay (MAMA): application to the c-H-ras Gene. PCR Methods Appl 2: 14-20.
    Chaves M, Pereira J, Maroco J. 2003. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30: 239-264.
    Chinnusamy V, Schumaker K, Zhu J K. 2004. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55: 225-236.
    Cho R J, Mindrinos M, Richards D R, Sapolsky R J, Anderson M, Drenkard E, Dewdney J, Reuber T L, Stammers M, Federspiel N, Theilogis A, Yang W H, Hubbell E, Au M, Chung E Y, Lashkari D, Lemieux B, Dean C, Lipshutz R J, Ausubel F M, Davis R W, Oefner P J. 1999. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nature Genet 23: 203-207.
    Christou P, Ford T, Kofron M. 1991. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio Technology 9: 957-962. Cullen P J, Sprague G F. 2000. Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci USA 97: 13619-13624.
    Dale S, Arte M, Becerra B, Morrice N G, Boronat A, Hardie D G, Ferrer A. l995. Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase (isoform HMGRl) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase. Eur J Biochem 233: 506-513.
    de Mesa M C, Santiago-Domenech N, Pliego-Alfaro F, Quesada M A, Mercado J A. 2004. The CaMV 35S promoter is highly active on floral organs and pollen of transgenic strawberry plants. Plant Cell Reports 23: 32-38.
    Denver D R, Dolan P C, Wilhelm L J, Sung W, Lucas-Lledo J, Howe D K, Lewis S C, Okamoto K, Thomas W, Lynch M, Baer C F. 2009. A genome-wide view of Caenorhabditis elegans base-substitution mutation processes. Proc Natl Acad Sci USA 106: 16310-16314.
    Diedhiou C J, Popova O V, Dietz K J, Golldack D. 2008. The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8: 49.Drenkard E, Richter B G, Rozen S, Stutius L M, Angell N A, Mindrinors M, Cho R J, Oefner P J, Davis R W, Ausubel F M. 2000. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124: 1483-1492.
    Dubacq C, Chevalier A, Mann C. 2004. The protein kinase Snfl is required for tolerance to the ribonucleotide reductase inhibitor hydroxyurea. Mol Cell Biol 24: 2560-2572.
    Dutheil J, Boussau B. 2008. Non-homogeneous models of sequence evolution in the Bio++ suite of libraries and programs. BMC Evolutionary Biology 8: 255.
    Finkelstein R R, Lynch T J. 2000. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12: 599-609.
    Finkelstein R R, Wang M L, Lynch T J, Rao S, Goodman H M. 1998. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10: 1043-1054.
    Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S Y, Cutler S R, Sheen J, Rodriguez P L, Zhu J K. 2009. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462: 660-664.
    Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L P, Yamaguchi-Shinozaki K, Shinozaki K. 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39: 863-876.
    Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. 2006.
    Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREBI. Proc Natl Acad Sci USA 103: 1988-1993.
    Gancedo J M. 1998. Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62: 334-361.
    Gao S C, Gu Y Q, Wu J J, Coleman-Derr D, Huo N, Crossman C, Jia J, Zuo Q, Ren Z, Anderson O D. 2007.
    Rapid evolution and complex structural organization in genomic regions harboring multiple prolamin genes in the polyploid wheat genome. Plant Mol. Biol. 65: 189-203.
    Gehring M, Reik W, Henikoff S. 2009. DNA demethylation by DNA repair. Trends in Genetics 25: 82-90.
    Gill RW, Sanseau P. 2000. Rapid in silico cloning of genes using expressed sequence tags (ESTs). Biotech Ann Rev 5: 25-44.
    Giraudat J, Hauge B M, Valon C, Smalle J, Parcy F, Goodman H M. 1992. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4: 1251-1261.
    Goldstein D B. 2001. Islands of linkage disequilibrium. Nature Genetics 29: 109-111.
    Gong D, Guo Y, Jagendorf A T, Zhu J K. 2002. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol 130:256-264.
    Gordon-Kamm W J, Spencer T M, Mangano M L, Adams T R, Daines R J, Start W G, O'Brien J V,
    Chambers S A, Adams Jr W R, Willetts N G, Rice T B, Mackey C J, Krueger R W, Kausch A P, Lemaux P G.
    1990. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603-6182. Granier C, Tardieu F. 1999. Water deficit and spatial pattern of leaf development. Variability In responses can Be simulated using a simple model of leaf development. Plant Physiol 119: 609-620.
    Hadrys H, Balick M, Schierwater B. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecology 1: 55-63.
    Halford N G, Hardie D G. 1998. SNF1-related protein kinases: global regulators of carbon metabolism in plants. Plant Mol Biol 37: 735-748.
    Halford N G, Hey S J. 2009. Snf1-related protein kinases (SnRKs) act within an intricate network that linksmetabolic and stress signalling in plants. Biochem J 419: 247-259.
    Han M H, Kawasaki A, Wei J Y, Barnstable C J. 2001. Miniature postsynaptic currents depend on Ca2+ released from internal stores via PLC/IP3 pathway. Neuroreport 12: 2203-2207.
    Hannah M A, Wiese D, Freund S, Fiehn O, Heyer A G, Hincha D K. 2006. Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142: 98-112.
    Hao L, Wang H, Sunter G, Bisaro D M. 2003. Geminivirus AL2 and L2 proteins interact with and inactivate SNFl kinase. Plant Cell 15: 1034-1048.
    Hardie D G. 1999. PLANT PROTEIN SERINE/THREONINE KINASES: classification and function. Annu Rev Plant Physiol Plant Mol Biol 50: 97-131.
    Hardie D G, Carling D, Carlson M. 1998. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67: 821-855.
    Harmon A C, Yoo B C, McCaffery C. 1994. Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33: 7278-7287.
    Harthill J E, Meek S E, Morrice N, Peggie M W, Borch J, Wong B H, MacKintosh C. 2006.
    Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J 47: 211-223.
    He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. 2007. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet 115: 47-58.
    Herrera-Estrella L, Van den Broeck G, Maenhaut R, van Montagu M, Schell J. 1984. Light-inducible and chloroplast-associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature 310: 115-120.
    Hiei Y, Ohta S, Komari T, Kumashiro T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271-282.
    Hill W G, Robertson A. 1968. Linkage disequilibrium in finite populations. Theor Appl Genet 38: 226-231. Hirano H Y, Eiguchi M, Sano Y. 1998. A single base change altered the regulation of the uaxy gene at the post-transcriptional level during evolution of rice. Mol Biol Evol 15: 978-987.
    Ho S L, Chao Y C, Tong W F, Yu S M. 2001. Sugar coordinately and differentially regulates growth-and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol 125: 877.
    Holappa L D, Walker-Simmons M K. 1995. The Wheat Abscisic Acid-Responsive Protein Kinase mRNA PKABA1, Is Up-Regulated by Dehydration, Cold Temperature, and Osmotic Stress. Plant Physiol 108: 1203-1210. Holliday R, Grigg G W. 1993. DNA methylation and mutation. Mutation Research 285: 61-67.
    Honigberg S M, Lee R H. l998. Snfl kinase connects nutritional pathways conlrolling meiosis in Saccharomyces cerevisioe. Mol Cell Biol 18: 4548-4555.
    Horsch R B, Fry J E, Hofimann N L. 1985. A simple and general method for transferring genes into plants. Science 227: 1229-1231.
    Hrabak E M, Chan C W, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132: 666-680.
    Hu C A, Delauney A J, Verma D P. 1992. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89: 9354-9358.
    Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G. 2008. Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Reports 27: 1861-1868.
    Huang J F, Teyton L, Harper J F. 1996. Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain. Biochemistry 35: 13222-13230.
    Ishitani M, Liu J, Halfter U, Kim C S, Shi W, Zhu J K. 2000. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12: 1667-1678.
    Jonsson J, WeIssman S M. 1995. From mutation mapping to phenotype cloning. Proc Natl Acad Sci USA 92: 83-85.
    Kagaya Y, Hobo T, Murata M, Ban A, Hattori T. 2002. Abscisic acid·induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRABI. Plant Cell 14: 3177-3189.
    Kelner A, Pekala L, Kaczanowski S, Muszynska G, Hardie D G, Dobrowolska G. 2004. Biochemical characterization of the tobacco 42-KD protein kinase activated by osmotic stress. Plant Physiol 136: 3255-3265.
    Kemp B E, Stapleton D, Campbell D J, Chen Z P, Murthy S, Walter M, Gupta A, Adams J J, Katsis F, van Denderen B, Jennings I G, Iseli T, Michell B J, Witters L A. 2003. AMP-actiivated protein kinase, super metabolic regulator. Biochemical Society Transactions 31: 162-168.
    Knight A, Mindell D P. 1993. Substitution bias, weighting of DNA sequence evolution, and the phylogenetic position of Fea's viper. Systematic Biology 42: 18-31.
    Knight H. 2000. Calcium signaling during abiotic stress in plants. International Review of Cytology 195: 269-325.
    Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. 2004. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16: 1163-1177.
    Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. 2005.
    Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44: 939-949.
    Koch K E. 1996. Carbonhydrate-modulated gene expression in plants. Annu Rev Plant Sci 47: 509-540.
    Koch K E, Ying Z, Wu Y, Avigne W T. 2000. Mutiple paths of sugar-sensing and sugar/oxygen overlap genes of sucrose and ethanol metabolism. J Exp Bot 51: 417-427.
    Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. 2004. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and Rice CBL-CIPK signaling networks. Plant Physiol 134: 43-58.
    Kozak M. 1987. Ananalysis of 5'-noncoding sequences from 699 verte-brate messenger RNAs. Nucl Acid Res 15: 8125-8148.
    Krause GH, Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313-349.
    Kuchin S, Treich I, Carlson M. 2000. A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci USA 97: 7916-7920.
    Lee S T, Park S K. 1995. Anon-radioactive method for simultaneous detection of single-strand conformation polymorphisms (SSCPs) and heterroduplexes. Mol Cells 5: 668-672.
    Leung J, Merlot S, Giraudat J. 1997. The Arabidopsis abscisic acid-insensitive 2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9: 759-771.
    Leung J, Bouvier-Durand M, Morris P C, Guerrier D, Chefdor F, Giraudat J. 1994. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264: 1448-1452.
    Li J, Wang X Q, Watson M B, Assmann S M. 2000. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287: 300-303.
    Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452.
    Liu J, Zhu J K. 1998. A calcium sensor homolog required for plant salt tolerance. Science 280: 1943-1945.
    Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25: 402-408.
    Lovas A, Bimbo A, Szabo L, Banfalvi Z. 2003. Antisense repression of StubGAL83 affects root and tuber developmerit in potato. Plant J 33: 139-147.
    Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444: 139-158.
    Mao X G, Zhang H Y, Tian S J, Chang X P, Jing R L. 2010. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61: 683-696.
    Marcotte R, Russell S H. 1989. Osmotic gene expression is posttranscriptionally regulated. Plant Cell 1: 967-969.
    Marth G T, Korf I, Yandell M D, Yeh R T, Gu Z, Zakeri H, Stitziel N O, Hillier L D, Kwok P Y, Gish W R. 1999. A general approach to single - nucleotide polymorphism discovery. Nat Genet 23: 452-456.
    Marton L, Wullems G, Molendijk L, Schilperoort R A. 1979. In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277: 129-131.
    Mazars G R, Moyret C, Jeanteur P, Theillet C G. 1991. Direct sequencing by thermal asymmetric PCR. Nucl Acids Res 19: 4783.
    McCarty D, Hattori T, Carson C B, Vasil V, Lazar M, Vasil I K. 1991. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66: 895-905. McKersie B D, Bowley S, Harjanto E, Leprince O. 1996. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111: 1177-1181.
    Gancedo J M. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev, 62: 334-361.
    Morin P A, Luikart G, Wayne R K l. 2004. SNPs in ecology, evolution and conservation. Trends in Ecology and Evolution 19: 208-216.
    Mudgett M B, Clarke S. 1994. Hormonal and environmental responsiveness of a developmentally regulated protein repair Lisoaspartyl methyltransferase in wheat. J Biol Chem 269: 25605-25612.
    Muranaka T, Banno H, Machida Y. 1994. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol Cell Biol 14: 2958-2965.
    Myers S, Bottolo L, Freeman C, McVean G I L, Donnelly P. 2005. A fine-scale map of recombination rates and hotspots across the human genome. Science 310: 321-324.
    Nakashima K, Yamaguchi-Shinozaki K. 2006. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiologia Plantarum 126: 62-71.
    Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshiida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. 2009. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3 involved in ABA-signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50: 1345-1363.
    Narusaka Y, Nakashima K, Shinwari Z, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. 2003. Interaction between two cis-acting elements, ABRE and DRE. ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34: 137-148.
    Nei M. 1987. Molecular evolutionary genetics. New York: Columbia University Press.
    Neve R L, West R W, Rodriguez R L. 1979. Eukaryotic DNA fragments which act as promoters for a plasmid gene. Nature 277: 324-325.
    Nickerson D A, Taylor S L, Weiss K M, Clark A G, Hutchinson R G, Stengard J, Salomma V, Vatiainen E, Boerwinkle E, Sing C F. 1998. DNA sequence diversity in a 9.7 kb region of the human lipoprotein lipase gene. Nature Genet 19: 233-240. Oliver M J, Wood A J. 1997. Desiccation tolerance of mosses. In Stress-Inducible Processes in Higher
    Eukaryotic Cells (ed. T.Koval), Plenum Publishing Corp, New York. 1-26.
    Olsen K M, Purugganan M D. 2002. Molecular evidence on the origin and evolution of glutinous rice. Genetics 162: 941-950.
    Orita M, Suzuki Y, Sekiya T, Hayashi K. 1989. Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics 5: 874-879.
    Osakabe Y, Mizuno S, Tanaka H, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K,
    Yamaguchi-Shinozaki K. 2010. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J Biol Chem 285: 9190-9201. Ozkan H, Levy AA, Feldman M. 2001. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13: 1735-1747.
    Pandey G K, Cheong Y H, Kim K N, Grant J J, Li L, Hung W, D'Angelo C, Weinl S, Kudla J, Luan S. 2004.
    The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16: 1912-1924.
    Podell S, Gribskov M. 2004. Predicting N-terminal myristoylation sites in plant proteins. BMC Genomics 5: 37.
    Polgel C, Thomas M. 2007. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? TRENDS in Plant Science 12: 20-28.
    Ponomarenko J V, Merkulova T I, Vasiliev G V, Levashova Z B, Orlova G V, Lavryushev S V, Fokin O N,
    Ponomarenko M P, Frolov A S, Sarai A. 2001. rSNP_Guild, a database system for analysis of transcription factor binding to target sequences: application to SNPs and site-direction mutations. Nucleotide Acids Research 29: 312-316.
    Portillo F, Mulet J M, Serrano R. 2005. A role for the non-phosphorylated form of yeast Snfl: tolerance totoxic cations and activation of potassium transport. FEBS Lett 579: 512-516.
    Pritchard J K, Przeworski M. 2001. Linkage disequilibrium in humans, models and data. American Journal of Human Genetics 69: 1-14.
    Qiu Q S, Barkla B J, Vera-Estrella R, Zhu J K, Schumaker K S. 2003. Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol 132: 1041-1052.
    Rinehart J A, Petersen M W, John M E. 1996. Tissue-specific and developmental regulation of cotton gene FbL2A. Plant Physiol 112: 1331-1341.
    Risch N, Merikangas K. 1996. The future of genetic studies of complex human diseases. Science 273: 1516-1517.
    Rook F, Corke F, Card R. 2001. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26: 4210-4233.
    Rune A, Osier M E, Fritz T, Zierath J R. 2009. Regulation of skeletal muscle sucrose, non-fermenting-1/AMP-activated protein kinase-related kinase (SNARK) by metabolic stress and diabetes. Diabetoiogia 52: 2182-2189.
    Schmutz J, Cannon S B, Schlueter J, Ma J X, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463: 178-183.
    Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, Pasternak S, Liang C, Zhang J, Fulton L. Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112.
    Seger R, Krebs E. 1995. The MAPK signaling cascade. The FASEB Journal 9: 726.
    Sheard L, Zheng N. 2009. Plant biology: Signal advance for abscisic acid. Nature 462: 575-576.
    Shi J, Kim K N, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J. 1999. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11: 2393-2405.
    Shinozaki K, Yamaguchi-Shinozaki K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol 115: 327-334.
    Shinozaki K, Yamaguchi-Shinozaki K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology 3: 217-223.
    Shukla V, Mattoo A K. 2008. Sucrose non-fermenting 1 related protein kinasc 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling. Physiol Mol Biol Plants 14: 91-100.
    Siebert P D, Chenchik A, Kellogg D E, Lukyanov K A, Lukyanov S A. 1995. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23: 1087-1088.
    Smeekens S. 2000. Sugar-induced signal transduction in plants. Plant Biol 51: 49-81.
    Smeekens S, Rook F. 1997. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol 115: 7-13.
    Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist 125: 27-58.
    Somers D J, Kirkpatrick R, Moniwa M, Walsh A. 2003. Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46: 431-437.
    Somerville C, Briscoe J. 2001. Genetic engineering and water. Science 292: 2217.
    Song W Y. 1995. A receptor Kinase-like protein encode by the rice disease resistance gene Xa21. Science 270: 1804-1906.
    Spinardi L, Mazars R, Theillet C. 1991. Protocols for an improved detection of point mutation by SSCP. Nucleic Acids Res 19: 4009.
    Strasser R J, Srivastava A, Tsimilli-Michael M. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: P. Mohanty, U. Yunus and M. Pathre, (Eds.), Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis, London. 443-480.
    Sugden C, Donaghy P G, Halford N G, Hardie D G. 1999. Two SNFl-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate in vitro. Plant Physiol 120: 257-274.
    Ting I P. 1985. Crassulacea acid metabolism (Mahajan and Tuteja). Annu Rev Plant Physiol 36: 595-622. Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. 2004. SRK2C, a
    SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101: 17306-17311.
    Vasil V, Castillo A M, Fromm M E, Vasil I K. 1992. Herbicide resistantfertile transgenic wheat plant obtained by microprojectile bom2bardment of regenerable embryogenic calus. Bio Thechnology 10: 667-674.
    Vincent O, Townley R, Kuchin S, Carlson M. 2001. Subcellular localization of the Snf1 kinase is regulated by specificβsubunits and a novel glucose signaling mechanism. Genes & Development 15: 1104-1114.
    Vinocur B, Altman A. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16: 123-132.
    Wallace R B, Johnson M J, Hirose T, Miyake T, Kawashima E H, Itakura K. 1981. The use of synthetic oligonucleotides as hybridization probes. II. Hybridization of oligonucleotides of mixed sequence to rabbit β-globin DNA. Nucleic Acids Res 9: 879-894.
    Wang C R, Yang A F, Yue G D, Gao Q, Yin H Y, Zhang J R. 2008. Enhanced expression of phospholipase C1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227: 1127-1140.
    Wang D G, Fan J B, Siao C J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris M S, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson T J, Lipshutz R, Chee M, Lander E S. 1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280: 1077-1082.
    Wang Z Q, Yuan Y Z, Ou J Q, Lin Q H, Zhang C F. 2007. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. Plant Physiol 164: 695-701.
    Wartell R M, Hosseini S H, Moran C P. 1990. Detecting base pair substitutions in DNA fragments by temperature-gradient gel electrophoresis. Nucleic Acids Res 18: 2699-2705.
    Watterson G A. 1975. On the number of segregation sites. Theor Popul Biol 7: 256-276.
    Wei B, Jing R L, Wang C S, Chen J B, Mao X G, Chang X P, Jia J Z. 2009. Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Mol Breeding 23: 13-22.
    Wen J Q, Oono K, Imai R. 2002. Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129: 1880-1891.
    Wolford J K, Blunt D, Ballecer C, Prochazka M. 2000. High-throughput SNP detection by using DNA pooling and denaturing high performance liquid chromatography (DHPLC). Hum Genet 107: 483-487.
    Xiong L, Zhu J K. 2003. Regulation of abscisic acid biosynthesis. Plant Physiol 133.
    Xiong L, Schumaker K S, Zhu J K. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14: 165-183.
    Xu W, Rosenow D T, Nguyen H T. 2000. Stay green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breed 119: 365-367.
    Yamaguchi-Shinozaki K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stress. Annu Rev Plant Biol 57: 781-803.
    Yamaguchi-Shinozaki K, Mundy JC, Huan H. 1989. Four tightly linked rab genes are differentially expressed in rice. Plant Mol Biol 14: 29-39.
    Yamaguchi-Shinozaki T, Urao T, Shinozaki K. 1995. Regulation of genes that are induced by drought stress in Arabidopis thaliana. Plant Res 108: 127-136.
    Yamanaka S, Nakamura I, Watanabe K N, Sato Y I. 2004. Identification of SNPs in the waxy gene among glutinous rice cultlvars and their evolutionary significance during the domestication process of rice. Theor Appl Genet 108: 1200-1204.
    Yamauchi D, Zentella R, Ho T H. 2002. Molecular analysis of the barley (Hordeum vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers. Planta 215: 319-326. Yemm E W, Willis A J. 1954. The estimation of carbohydrates in plant extracts by anthrone. Journal of Biochemistry 57: 508-514.
    Yu J, Hu S N, Wang J, Wong G K S, Li S G, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X B, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L. Liu J, Qi Q, Liu J, Li L, Li L, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H. 2002. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica) Science 296: 79-92.
    Yu S M. 1999. Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121: 687-693.
    Yu S M, Lee Y C, Fang S C, Chan M T, Hwa S F, Liu L F. 1996. Sugars act as signal molecules and osmotica to regulate the expression of amylase genes and metabolic activities in germinating cereal grains. Plant Molecular Biology 30: 1277-1289.
    Zeevaart J A D, Creelman R A. 1988. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39: 439-473.
    Zhu J K. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141: 1633-1639.
    Zhu J K. 2001. Plant salt tolerance. Trends Plant Sci 6: 66-71.
    Zhu J K. 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700