硫酸盐对Rhodococcus sp. LY822脱硫代谢影响的研究及脱硫基因的克隆表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以脱硫菌Rhodococcus sp.LY822为出发菌株,开展了硫酸盐对LY822菌脱硫代谢的影响、脱硫基因克隆表达及重组菌脱硫活性的研究,初步阐明了脱硫代谢机理,验证了脱硫酶生成的“硫饥饿”诱导机制。
     1.研究了不同浓度的Na_2SO_4对Rhodococcus sp.LY822细胞生长和脱硫的影响。Na_2SO_4在0-0.4 mmol/L浓度范围内对LY822菌的生长没有影响,但对其生长细胞脱硫活性具有抑制作用;在有DBT和0.03 mmol/L以上的Na_2SO_4存在时,LY822菌生长细胞的粗酶液在脱硫反应48 h内没有2-HBP生成,而Na_2SO_4在0.01 mmol/L以下时,其脱硫反应能生成2-HBP;Na_2SO_4对含有脱硫酶的无细胞粗提液的脱硫活性无抑制作用。研究表明,0.03 mmol/L以上浓度的Na_2SO_4能阻遏脱硫酶的生成,而0.01 mmol/L以下浓度能诱导脱硫酶生成,从而验证了脱硫微生物脱硫酶生成的“硫饥饿”诱导机制。
     2.克隆了LY822菌脱硫基因的启动子,构建了dsz启动子-gfp报告基因表达载体pBSG,并转化原始菌(LY822),激光共聚焦显微镜和荧光分光光度计检测结果显示,无Na_2SO_4时菌体的荧光强度为存在0.1 mmol/L Na_2SO_4时的3倍,证实了脱硫基因的表达受硫酸盐的阻遏;Western Blotting结果显示,0.2 mmol/L DBT存在时下培养的LY822菌的全细胞蛋白有与DszA,DszB和DszC杂交的特异性条带生成,而0.2 mmol/L Na_2SO_4存在时则无特异性条带产生,进一步证明了脱硫酶的生成受到硫酸盐的阻遏;以LY822菌的总RNA为模板进行RT-PCR,0.2 mmol/L DBT存在时培养的LY822菌,可扩增得到与脱硫基因dszA,dszB和dszC大小相对应的cDNA片段;而0.2 mmol/L Na_2SO_4存在时培养的LY822菌,未扩增到特异性条带,表明硫酸盐对LY822菌脱硫基因表达的调控作用发生在转录水平上。
     3.克隆了LY822菌的脱硫基因dszA,dszB和dszC,并在大肠杆菌BL21(DE3)中得到高效表达,与Rhodococcus erythropolis IGTS8相关基因的相似性分别为99.9%、100%和99.5%,证实了红球菌脱硫基因的高度保守性;3种重组大肠杆菌的无细胞粗酶液脱硫反应的代谢产物与已报道的“4S途径”中的相应代谢产物一致,证明LY822菌对DBT的降解符合专一性脱硫的“4S途径”;重组大肠杆菌无细胞粗提液表现出比原始菌(LY822)更高的脱硫活性。
     4.构建了dszC基因的表达载体pBSC,转化至消除质粒的原始菌(LY822-0)和不具备脱硫特性的紫红红球菌(ACCC NO.10494)中,所获重组菌均具有脱硫反应活性,并不受硫酸盐影响。研究结果为构建不受硫酸盐阻遏的高效脱硫基因工程菌奠定了基础。
In this thesis, the effects of sulfate on desulfurization characteristics of Rhodococcus sp. LY822, and the cloning and expression of its dsz genes were investigated. The results preliminary clarified the biodesulfurization metabolism and verified the sulfur-starvation-induced mechanism of desulfurization enzyme formation in Rhodococcus sp. LY822.
     1. Effects of sulfate on Rhodococcus sp. LY822 growth and desulfurization were studied. Though Na_2SO_4 ranged from 0 to 0.4 mmol/L did not affect the growth of LY822, the desulfurization activity of LY822 was repressed. LY822 did not convert dibenzothiophene (DBT) into 2-hydroxybiphenyl (2-HBP) in the presence of 0.03 mmol/L Na_2SO_4 in 48 hours. However, DBT was converted into 2-HBP when the concentration of Na_2SO_4 was below 0.01 mmol/L. Na_2SO_4 did not affect the desulfurization activity of LY822 cell-free extracts with desulfurization enzyme. The results indicated that the synthesis of desulfurization enzyme was repressed by sodium sulfate above 0.03 mmol/L, and was induced by sodium sulfate below 0.01 mmol/L. These data verified sulfur-starvation-induced mechanism of desulfurization enzyme.
     2. dsz promoter was cloned, herein dsz promoter-gfp report gene expression plasmid pBSG was constructed and transformed into the original bacteria (LY822). The results of laser scanning confocal microscopy and fluorescence spectrophotometer test showed that the fluorescence intensity of cell-free extracts without Na_2SO_4 from recombinant strains was three times of that with 0.1 mmol/L Na_2SO_4, veryfying the expression of dsz genes were repressed by sulfate. Western Blotting results showed that three specific bands of hybridization were generated in the medium with 0.2 mmol/L DBT and no specific band was obtained in the medium with Na_2SO_4, giving a further evidence of the repression of sulfate to desulfurization enzyme formation. Then taking total RNA of LY822 as templates for RT-PCR, cDNA fragments corresponding to dszA, dszB and dszC fragments were obtained in the medium with DBT, and no specific band was generated in the medium with Na_2SO_4. In conclusion, the regulation of repression to desulfurization enzyme expression occurred at the level of transcription.
     3. Desulfurization related genes of LY822 named dszA, dszB and dszC were separately cloned by PCR. Three expression plasmids, pETA, pETB and pETC, were constructed and transformed into E.coli BL21 strain. After the IPTG induction with them, dszA, dszB and dszC were expressed effectively in the recombinant E.coli BL21 strains. Sequences of the desulfurization genes were highly conservative. Desulfurization activity analysis showed that cell-free extracts of three recombinant strains could convert corresponding substrates, which proved that LY822 could specially break the C-S bond of DBT and convert it into 2-HBP by "4S" biodesulfurization pathway.
     4. DBT monooxygenase gene (dszC) was cloned from LY822 by PCR. The gene dszC expressed effectively after being inserted into plasmid pBSC and transformed into LY822-0 strain and Rhodococcus rhodochrous(ACCC NO. 10494). The recombinant strains could convert DBT into DBTO_2, and discharge the repression of sulfate.
引文
1.缑仲轩,罗明芳,李信,邢建民,刘会洲.红平红球菌LSSE8-1脱硫代谢及其相关脱硫基因的比较.科学通报,2003,48(22):2343-2349.
    2.缑仲轩.专一性脱硫微生物的菌种筛选、代谢调控及相关基因研究.[博士学位论文].北京:中国科学院过程工程研究所,2004.
    3.姜成英,刘会洲,邢建民等.德氏假单孢杆菌菌株及其在脱除含硫有机化合物中的应用.中国专利,ZL01115921.9,2001-05-28.
    4.姜成英,刘会洲,邢建民等.短芽孢杆菌菌株及其在脱除含硫有机化合物中的应用.中国专利,ZL01115920.0,2001-05-28.
    5.姜成英,王蓉,刘会洲等.石油和煤微生物脱硫技术的研究进展.过程工程学报,2001,1(1):80-85.
    6.姜成英,邢建民,罗明芳等.小球诺卡氏菌菌株及其在脱除化石燃料中有机硫的应用.中国专利,ZL02155682,2002-12.
    7.姜声华.专一性脱硫菌LY822的分离筛选及脱硫基因工程菌的构建.[硕士论文].北京:中国农业科学院研究生院,2006.
    8.刘一倩.专一性脱硫微生物(Gordonia nitida LSSEJ-1)的分离鉴定和dszB基因的克隆及其发酵条件的优化.[硕士论文].北京:中国农业科学院研究生院,2002.
    9.罗明芳.细胞固定化生物脱硫工艺过程研究.[博士学位论文].北京:中国科学院过程工程研究所,2003.
    10.马翠卿,许平,俞坚.微生物脱有机硫的研究进展,生物工程进展,2000,20(3):55-59.
    11.马立新,史巧娟,周俊初等.以绿荧光蛋白基因为报告基因的广宿主启动子探针载体的构建和应用微生物学报,1999,39(5):408-415.
    12.佟明友,方向晨,马挺等.基因工程技术在石油生物脱硫中的应用.生物工程学报,2001,17(6):617-620.
    13.邢建民,刘一倩,缑仲轩等.戈登氏菌及其在脱除含硫化合物中硫的应用.中国专利:ZL021162212.3,2002-05.
    14.熊小超,李望良,李信等.专一性脱硫菌脱硫活性比较与基因保守性研究.微生物学报,2005,5(45):733—737.
    15. Alice L., Laborde, David T. G. Metabolism of dibenzothiophene by a Beijerinckia specis. Appl. Environ. Microbiol., 1977, 34(6):783-790.
    16. Anon.. Microbes successfully remove impurities from synthetic heavy crude oil. Chem. Eng. (New York), 1987, 94:17-26.
    17. Ayata M., Tinacoco R., Hernandez V., et al.. Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Process. Technol., 1998, 57:101-111.
    18. Borole A. P., Kaufman E. N., Grossman M. J. et al.. Comparison of the Emulsion Characteristics of Rhodococcus erythropolis and Ecsherichia SOXC-5 Cells Expressing Biodesulfurization Genes.Biotechnol.Prog.,2002,18:88-93.
    19. Bressler D.C.,Fedorak.P.M..Purification,stability,and mineralization of 3-hydroxy-2-formyl benzothiophene,a metabolite of dibenzothiophene.Purification,stability,and mineralizeation of 3-hydroxy-2-formy~1 benzothiophene,a metabolite of dibenzothiophene.Appl.Environ.Microbiol.,2001,67(2) :821-826.
    20. Chang J.H.,Chang Y.K.,Cho K.S.et al.Desulfurization of model and diesel oils by resting cells of Gordona sp.Biotechnol.Lett.,2000,22:193-196.
    21. Chang J.H.,Chang Y.K.,Ryu H.W.et al.Desulfurization of light gas oil in immobilized-cell systems of Gordona sp.CYKS1 and Nocardia sp.CYKS2. FEMS Microbiol.Lett.,2000,182(2) :309-312.
    22. Chang J.H.,Kim Y.J.,Lee B.H.et al.Production of a desulfurization biocatalyst by two-stage fermentation and its application for the treatment of model and diesel oils.Biotechnol.Prog.,2001,17:876-880.
    23. Chang J.H.,Rhee S.K.,Chang Y.K.et al.Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp.Strain,CYKS2. Biotechnol.Prog.,1998,14:851-855.
    24. David S Reichmuth et al..Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxi2 doreductase gene.Biotechnology and Bioengineering,2000,67(1) :72-79.
    25. Denis L.,Labbe D.,Bergeron H..Conservation of plasinid-encoded debenzothiophene desulfurization genes in several Rhodococci.Appl.Environ.Microbiol.,1997,63:2915-2917.
    26. Denome S.A.,Oldfield C,Nash L.J.et al.Characterization of the desulfurization genes from Rhodococcus sp.strain IGTS8. J.Bacteriol,1994,176,6707-6716.
    27. Denome S.A.,Olson,E.S.,Young,K.D.,Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp.strain IGTS8. Appl.Environ.Microbiol.,1993,59(9) :2837-2843.
    28. Denome S.A.,Young K.D..Idetification and activity of two insertion sequence elements in Rhodococcus sp.Strain.Gene.,1995,161:33-38.
    29. Duarte G E,Rosado A.S.,Seldin L.et al.Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization(dsz)genes,Appl.Environ.Microbiol.,2001,67(3) :1052-1062.
    30. Fatima W.,Setti L.,Lanzarini G.,Pifferi P.G..Dibenzothiophene biodegradation by a Pseudomonas sp.in poorly degradable organic solvents.Process Biochem.,1996,31(7) :711-717.
    31. Folsom B.R.,Schieche D.R.,Digrazia P.M.et al.Microbial desulfurization of alkylated dibenzothiophenes from a hydridesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl.Environ.Microbiol.,1999,65(11) :4967-4972.
    32. Furuya T.,Kirimura K.,Kino K.et al.Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1. FEMS Microbiol.Lett.,2001,204(1) :129-133.
    33. Gallagher J.R.,Olson E.S.,Stanley D.C..Microbial desulfurization of dibenzothiophene:a sulfur specific pathway.FEMS Microbiol.Lett.,1993,107:31-36.
    34. Gallardo M.E.,et al.Designing recombinant Pseudomonas Strains toenhance biodesulfurization.Journal of Bacteriology,1997,179(22) :7156-7160.
    35. Goodfellow M..The taxonomic status of Rhodococcus equi.Vet.Microbiol,1987,14:205-209.
    36. Gray K.A.,Pogrebinsky O.S.,Mrachko G.T.et al.Molecular mechanisms of biocatalytic desulfurization of fossil Fuels.Nature Biotechnol.,1996,14:1705-1709.
    37. Grossman M.J.,Lee M.K.,Prince R.C.et al.Microbial desulfurization of a crude oil middle-distillate fraction:analysis of the extent of sulfur removal and the effect of removal on remaining sulfur.Appl.Environ.Microbiol.,1999,65(1) :181-188.
    38. Grossman M.J.,Lee M.K.,Prince R.C.,et al..Deep desulfurization of extensively hyd-rodesulfurized middle distillate oil by Rhodococcus sp.strain ECRD-1. Appl.Environ.Microbiol.,2001,67(4) :1949-1952.
    39. Guobin S.,Huaiying Z.,Weiquan C.et al.Improvement of biodesulfurization rate by assembling nanosorbents on the surfaces of microbial cells.Biophys.J.,2005,89(6) :58-60.
    40. Ishii Y.,Konishi J.,Okada H.et al.Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp.A11-2. Biochem.Biophy.Res.Commun.,2000,270:81-88.
    41. Ishii Y.,Konishi J.,Suzuki M.et al.Cloning and expression of the gene encoding the thermophillic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp.A11-2 J.Biosci Bioeng,2000,90:591-599.
    42. Izumi Y.,Ohshiro T.,Ogino H.et al.Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1. Appl.Environ.Microbiol.,1994,60(1) :223-226.
    43. John R.G,Edwin S.O,Daniel C.S.Microbial desulfurization of dibenzothiophene:A.sulfurspecific pathway,FMS Microbiology Letters 1993,107:31-36.
    44. Kabe T.,Ishihara A.,Tajima H..Hydrodesulfurization of Sulfur containing polyaromatic compounds in light oil.Ind.Eng.Chem.Res.,1992,31:1577.
    45. Kahli M.Weir,Tara D.,et al..A single monooxygenase is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp.Appl.Environ.Microbiol.,2006,5:3524-3530.
    46. Kaufman E.N.,Borole A.P.,Shong R.,et al..Short Communication:sulfur specificity in the bench-scale biological desulfurization of crude oil by Rhodococcus rhodochrous IGTS8. J.Chem.Technol.Biotechnol.,1999,74:1000-1004.
    47. Kaufman E.N.,Harkins J.B.,Borole A.P..Comparison of batch-stirred and electrospray reactors for biodesulfurization of dibenzothiophene in crude oil and hydrocarbon feedstock. Appl. Biochem. Biotechnol., 1998, 73:127-144.
    48. Kayser K. J., Cleveland L., Park H. S.et al.. Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization. Appl. Microbiol. Biotechnol., 2002, 59:737-746.
    49. Kazuaki H, Yoshitaka I., Morio K. et al, Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engneering. Biosci. Biotechnol. Biochem., 2001, 65(2): 239-246.
    50. Ken I. N., Kimiko W., Kenji M.. Isolation of the pseudomonas aeruginosa gene affecting uptake of dibenzothiophene in n-tetradecane. J. Biosci. Bioeng,, 2003, 95(5):504-511.
    51. Kevin G. K., Jan T. A., Phillip M. E. Bacterial transformation of 1, 2, 3, 4-tetrahydro dibenzothiophene and dibenzothiophene. Appl. Environ. Micrbiol., 1997, 63(8):3032-3042.
    52. Kevin G. K., Jose A. G, Jan T. A et al.. Microbially mediated formation of benzonaphthothiophenes from dibenzothiophenes. Appl. Envion. Microbiol., 1994, 60(10): 3624-3631.
    53. Kilbane J. J., Bielaga B. A.. Genetic study of biodesulfurization. In:Yunker and Rhee K eds, 1990, International symposium on the biological processing of coal. California:Electric Power Research Institute. Inc., Palo Alto., 1990, 2:15-32.
    54. Kilbane J. J., Bielaga B. A.. Toward sulfur-free fuels. Chemtech., 1990, 747-751.
    55. Kilbane J. J., Bielagajones B. A., Killbane J. J.. Utilization of organosulfur compounds by axenic and mixed culture of R. rhodochrous IGTS8. J. Gen. Microbiol., 1993, 139:3123-3129.
    56. Kilbane J. J., Jackowski K.. biodesulfurization of water-soluble coal-derived material. biotechnol. Bioeng., 1992, 40:1107-1114.
    57. Kilbane J. J.. Desulfurization of coal:the microbial solution. Trends in Biotechnol., 1989,7: 97-101.
    58. Kilbane J. J.. Sulfur-specific microbial metabolism of organic compounds. Res. Conser. Recycl., 1990, 3:69-79.
    59. Kim B. H, Kim H. Y, Kim T. S., et al.. Selectivity of desulfurization activity of Desulfovibrio desulfuricans M6 on different petroleum products. Fuel Pro. Tech., 1995, 43:87-94.
    60. Kim H. Y., Kim T. S., Kim B. H.. Degradation of organic sulfur compounds and the reduction of dibenzothiophene to bipheny~1 and hydrogen sulfide. Biotechnol. Lett., 1990, 12(10): 761-764.
    61. Kim T. S., Kim H. Y., Kim B. H.. Petroleum desulfurization by Desulfovibrio desulfuricans M6 using electrochemically supplied reduction equivalent. Biotechnol. Lett., 1990, 12(10): 757-760.
    62. Kirimura K., Furuya T., Nishii Y.et al.. Usami S. Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B. J. Biosci. Bioeng., 2001, 91(3):262-266.
    63. Kirimura K., Harada K., Iwasawa H.. Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilicbacteria. Appl. Microbiol.Biotechnol.,2004,65:703-713.
    64. Klein J.,Van A.M..Microbial desulfurization of coal and oil.fuel process.Technol.,1994,40:297-310.
    65. Kobayashi M.,Onaka T.,Ishii Y.,et al..Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain.FEMS Microbiol.Lett.,2000,187:123-126.
    66. Kodama K.,Nakatani S.,Umehara K.,et al..Microbial conversion of petro-sulfur compounds,part iii:isolation and identification of products from dibenzothiophene.Agr.Biol.Chem.,1970,34(9) :1320-1324.
    67. Kodama K.,Umehara K.,Shimizu K.,et al..Identification of microbial products from dibenzothiophene and its proposed oxidation pathway.Agr.Biol.Chem.,1973,37(1) :45-50.
    68. Konishi J.,Ishii Y,Onaka T.et al.Purification and characterization of dibenzothiophene monooxygenase and FMN-dependent NADH oxidoreductase from the thermophilic bacterium Paenibacillus sp.Strain All-2. J.Biosci.Bioeng.,2000,90(6) :607-613.
    69. Konishi J.,Onaka T.,Ishii Y,et al.Demonstration of the carbon-sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp.strain a11-2 capable of desulfurizing dibenzothiophene.FEMS Microbiol.Lett.,2000,187:151-154.
    70. Konishi,J.;Maruhashi K..Residue of dibenzothiophene(DBT)sulfone monooxygenase is involved in C-S bond cleavage specificity of alkylated DBT sulfones.Biotechnol.Lett.,2003,25(14) :1199-1202.
    71. Krawiec S..Bacterial desulfurization of thiophenes:screening techniques and some speculations regarding the biochemical and genetic bases.Ind.Microbiol.,1990,31:103-114.
    72. Kropp,K.G.,Fedorak,P.M..A review of the occurrence,toxicity,and biodegradation of condensed thiophenes found in petroleum.Can.J.Microbiol.,1998,44(7) :605-622.
    73. Lei B.F.,Tu S.C.Gene over expression,purification,and identifyication of a desulfurization enzyme from Rhodococcus sp.Strain IGTS8 as a sulfide/sulfoxide monooxygenase.J.Bacteriol.,1996,19(178) :5699-5705.
    74. Li F.L.,Xu P.,Ma C.Q.,Luo L.L.,et al..Deep desulfurization of hydrodesulfurizationtreated diesel oil by a facultative thermophilic bacterium Mycobacterium sp.X7B.FEMS Microbiol.Lett,2003,223(2) :301-307.
    75. Li L.,Li Q.G,Li F.L.,et al..Degradation of carbazole and its derivatives by a Pseudomonas sp.Appl.Microbiol.Biotechnol.,2006 73:941-948.
    76. Ma T.,Li G Q.,Li J.,et al..Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes.Biotechnol.Lett.,2006,28:1095-1100.
    77. Malik K.A..Microbial removal of organic sulphur from crude oil and the environment:some new perspectives.Process biochem.1978,35:10-12.
    78. Mamie Z.,Li,Charles H.,et al,Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8,Journal of Bacteriology,1996, 22(178) :409-6418.
    79. Manfredo Q.,Peter J.,Paola D.H.,et al..Proteome mapping,mass spectrometric sequencing and reversetranscription-PCR for characterization of the sulfate starvation-inducedresponse in Pseudomonas aeruginosa PAO1. Eur.J.Biochem.,1999,266:986-996.
    80. Maria Esther Gallardo,Abel Ferrández,Víctor De Lorenzo et al..Designing recombinent Pseudomonas strain to enhance biodesulfurization,Journal of bacteriology,1997,179(22) :7156-7160.
    81. Matsubara T.,Ohshiro T.,Nishina Y.,et al..Purification,characterization,and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl.Environ.Microbiol.,2001,67(3) :1179-1184.
    82. McKinley,S.G.,Angelici,R.J..Deep desulfurization by selective adsorption of dibenzothiophenes on Ag~+/SBA-15 and Ag~+/SiO_2. Chem.Comrnun.(Camb.),2003,20:2620-2621
    83. Michael A.,Pacheco E.A.L.,Philip T.P.,et al.,Recent advances in biodesulfurization of diesel fuel,NPRA annual meeting,1999.
    84. Michele B.,Gérald D.,Stéphanie P.,et al..Deep desulfurization:reactions,catalysts and technological challemges.Catalysis Today,2003,84:129-138.
    85. Monticello D.J..Riding the fossil fuel biodesulfurization wave.Chemtech.,1998,7:38-45.
    86. Morio Kobayashi,Keizo Horiuchi,Osamu Yoshikawa,et al..Kinetic analysis of microbial desulfurization of model and light gas oil colntaining multiple alky~1 dibenzothiophene,Biosci.Biotechnol.Biochem.,2001,65(2) :298-304.
    87. Naito M.,Kawamoto T.,Fujino K.,et al.Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells.Appl.Microbiol.Biotechnol.,2001,55:374-378.
    88. Nakatani S.,Akasaki T.,Kodama K.,et al..Microbial conversion of petro-sulfur compounds,part ii:culture conditions of dibenzothiophene-utilizing bacteria.Agr.Biol.Chem.,1968,32:1205-1211.
    89. Nekodzuka S.,Toshiaki N.,Nakajima K.T.,et al..Specific desulfurization of dibenzothiophene by Mycobacterium strain G3. Biocatal.Biotrans.,1996,15:21-27.
    90. Noda K.,Watanabe K.,Maruhashi K..Isolation of a recombinant desulfurizing 4,6-diproply dibenzothiophene in n-tetradecane.J.Biosci.Bioeng.,2003;95(4) :354-60.
    91. Ochman M.,Klubek B.,Boydstun J.,et al..Mineralization of S from dibenzothiophene,dibenzothiophene sulphone,and benzene sulphonic acid by soil isolates.Microbios,1990,63(255) :79-91.
    92. Ohshiro T,Hirata T,Izumi Y..Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon.Appl.Microbiol.Biotechnol.,1995,44:249-252.
    93. Ohshiro T.,Hine Y,Izumi Y..Enzyme Desulfurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS Microbiol.Lett.,1994,118:341-344.
    94. Ohshiro T.,Hirata T.,Hashimoto I.et al..Characterization of dibenzothiophene desulfurization reaction by whole cells of Rhodococcus erythropolis H-2 in the presence of hydrocarbon.J.Ferment.Bioeng.,1996,82(6) :610-612.
    95. Ohshiro T.,Hirata T.,Izumi Y.Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon.Appl.Microbiol.Biotechnol.,1995,44:249-252.
    96. Ohshiro T.,Hirata T.,Izumi Y.Desulfurization of dibenzothiophene derivatives by whole cells of Rhodococcus erythropolis H-2. FEMS Microbiol.Lett.,1996,142:65-70.
    97. Ohshiro T.,Izumi Y..Microbial desulfurization of organic sulfur compounds in petroleum.Biosci.Biotechnol.Biochem,1999,63:1-9.
    98. Ohshiro T.,Kanbayashi Y,Hine Y,et al..Involvement of flavin coenzyme in dibenzothiophene degrading enzyme system from Rhodococcus erythrodopolis D-1. Biosci.Biotechnol.Biochem.,1995,59(7) :1349-1351.
    99. Ohshiro T.,Kojima T.,Torii K.,et al..Dibenzothiophene degrading enzyme responsible for the first step of dibenzothiophene desulfurization by Rhodococcus erythropolis D-1:purification and charaterization.J.Ferment.Bioeng.,1997,83(3) :233-237.
    100. Ohshiro T.,Suzuki K.,Izumi Y..Regulation of dibenzothiophene degrading enzyme activity of Rhodococcus erythropolis D-1. J.Ferment.Bioeng.,1996,81(2) :121-124.
    101. Ohshiro T.;Izumi Y..Microbial desulfurization of organic sulfur compounds in petroleum.Biosci.Biotechnol.Biochem.,1999,63(1) :1-9.
    102. Okada H.,Nomura N.,Nakahara T.,et al..Cultivation of a desulfurizing bacterium,Mycobacterium strain G3. Biotechnol.Lett.,2001,23:2047-2050.
    103. Oldfield C,Pogrebinsky O.,Simmonds J.,et al..Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp.Strain IGTS8(ATCC 53968) .Microbiology,1997,143:2961-2973.
    104. Olson E.S.,Stanley D.C,Gallagher J.R..Characterization of Intermediates in the desulfurization of dibenzothiophene.engergy fuels,1993,7:159-164.
    105. Omori T.,Monna L.,Saiki Y.et al..Desulfurization of dibenzothiophene by Corynebacterium sp.strain SY1. Appl.Environ.Microbiol.,1992,58(3) :911-915.
    106. Omori T.,Monna L.,Saiki Y,et al..Desulfurization of alkyl and aromtic sulfides and sulfonates by dibenzothiophene-desulfurizing Rhodococcus sp.strain SY1. Biosci.Biotechnol.Biochem.,1995,59(7) :1195-1198.
    107. Onaka T.,Konishi J.,Ishii Y,et al..Desulfurization characteristics of thermophilic Paenibacil sp.strain A11-2 against Asymmetrically Alkylated Dibenzothiophenes.J.Biosci.Bioeng.,2001,92(2) :193-196.
    108. Ozbas T.,Durusoy T.,Tanyolae A.,et al..The factors affecting the growth kinetics of sulfolo-bus solfataricus,a sulfur removing bacterium.Fuel Process.Technol.,1993,33:61-75.
    109. Piddington C.S.,Kovavevich B.R.,Rambosek J..Sequence and molecular characterizeation of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. J.Bacteriol.,1996,178,6409-6418.
    110. Piddington,et al..Sequence and mlecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp.Strain IGTS8. Appl Environ Microbial,1995,61(2) :468-475.
    111. Premuzic E.T..Economic feasibility of biochemical process for the upgrading of crudes. in:US.department of energy Biodesulfurization Coordination Meeting.1997.
    112. Rhee S.K.,Chang J.H.,Chang Y.K.et al..Desulfurization of dbenzothiophene and diesel oils by a newly isolated Gordona strain,CYKS1. Appl.Environ.Microbiol.,1998,64(6) :2327-2331.
    113. Santos S.C.C,Alviano D.S.,Alviano C.S.,et al..Characterization of Gordonia sp.strain F.5. 25. 8 capable of dibenzothiophene desulfurization and carbazole utilization.Appl.Microbiol.Biotechnol.,2006,71:355-362.
    114. Setti L.,Farinelli P.,Martino S.D.,et al..Developments in destructive and non-destructive pathways for selective desulfurizations in oil-biorefining processes.Appl.Microbiol.Biotechnol.,1999,52:111-117.
    115. Setti L.,Lanzarini G.,Pifferi P.G..Dibenzothiophene biodegradation by a Pseudomonas sp.in model solution.Process Biochem.,1995,30(8) :1195-1198.
    116. Setti L.,Lanzarini G.,Pifferi P.G..Diffusion as a rate controlling step in heavy-oil biodesulfurization processes.Fuel Process.Technol.,1994,40:311-317.
    117. Setti L.,Rossi M.,Lanzarini G,et al..Barrier and carrier effects of n-dodecane on the anaerobic degradation of benzothiophene by desulfovibrio desulfuricans.Biotechnol.Lett.,1993,15(5) :527-530.
    118. Setti L.,Rossi M.,Lanzarini G.,et al..The effect of n-alkanes on the degradation of dibenzothiophene and of organic sulfur compounds in heavy oil by a Pseudomonas sp.Biotechnol.Lett.,1992,14(6) :515-520.
    119. Shao Z.,Dick W.A.,Benki R.M..An improved Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus sp.using electroporation.Letters in applied microbiology,1995,21:261-266.
    120. Shenman J.L..Microbial attack on sulphur-containing hydrocarbons:implications for the biodesulphurization of oils and coals.J.Chem.Tech.Biotech.,1996,57:109-123.
    121. Squires,et al.Method of desulfurization of fossil fuel with flavoprotein.US 5985650,1999.
    122. Steven C,Gilbert J.M.,Sheena B.,et al.Isolation of a unique benzothiophene-desulphurizing bacterium,Gordona sp.strain 213E(NCIMB 40816) ,and characterization of the desulphurization pathway.Microbiol.,1998,144:2545-2553.
    123. Tanaka Y.,Onaka T.,Matsui T.et al..Desulfurization of benzothiophene by the gram-negative bacterium,Sinorhizobium sp.KT55. Curr.Microbiol.,2001,43:187-191.
    124. Tanaka Y,Yoshikawa O.,Maruhashi K.,Kurane R.The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate.Arch. Microbiol.,2002,178:351-357.
    125. Torma,A.E.Use of biotechnology in mining and metallurgy.Biotechnol.Adv.,1988,6(1) :1-8.
    126. Van A.M.,Schacht S.,Klen J.,et al.Degradation of dibenzothiophene by cunninghamella elegans.Curr.Microbio.,1990,21:229-231.
    127. Van E.J.D.,Duarte G.F.,Keijzer W.A.Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis.J.Microbiol.Methods,2000,43(2) :133-151.
    128. Wang P.,Humphrey A.E.,Krawiec S.Kinetic analyses of desulfunzation of dibenzothiophene by Rhodococcus erythropolis in continuous cultures.Appl.Environ.Microbiol.,1996,62(8) :3066-3068.
    129. Wang P.,Krawiec S..Desulfunzation of dibenzothiophene to 2-hydroxybiphenyl by some newly isolated bacterial strains.Arch.Microbiol.,1994,161:266-271.
    130. Wang P.,Krawiec S..Kinetic analyses of desulfunzation of dibenzothiophene by Rhodococcus.erythropolis in batch and fed-batch cultures.Appl.Environ.Microbiol.,1996,62(5) :1670-1675.
    131. Watanabe K.,Noda K.I,Ohta Y..Desulfurization of light gas oil by a novel recombinant strain from pseudomonas aeruginosa.Biotechnol.Lett.,2002,24:897-903.
    132. Wayne M.C.,William E.,Levinson et al..DNA shuffleing method for generating highly recombined genes and evolved enzymes,nature biotechnology,2001,19(4) :354-359.
    133. Woese C.R..Bacterial evolution.Microbiol Review,1978,51:221-271.
    134. Xiong X.C.,Xing J.M.,Li X.,et al..Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin.Appl.Environ.Microbiol.,2007,73(7) :2394-2397.
    135. Yamada K.,Minoda K.,Kodama K.,et al..Microbial conversion of petro-sulfur compounds part i:isolation and identification of dibenzothiophene-utilizing bacteria.Agr.Biol.Chem.,1968,32(7) :840-845.
    136. Yu B.,Xu P.,Shi Q.,et al..Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain.Appl.Environ.Microbiol.,2006,72(1) :54-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700