低碳建筑技术体系与碳排放测算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑业是以消耗大量的自然资源以及造成沉重的环境负面影响为代价的,我国建筑能耗占全社会总能耗约30.2%。据统计:建筑活动使用了人类所使用的自然资源总量的40%,能源总量的40%,而造成的建筑垃圾也占人类活动产生的垃圾总量的40%。建筑建造、使用和拆除过程中对能源的消耗及固体废弃物的处理将带来巨大的温室气体排放量,预计2030年建筑业产生的温室气体将占全社会排放量的25%。因此,加大力度建设低碳建筑迫在眉睫。
     本文对英国、美国、德国、日本以及我国低碳建筑的建设情况进行了分析和对比,在借鉴国内外相关研究的基础上,提出构建我国低碳建筑管理模式,应包含低碳目标规划、低碳组织保障、低碳技术保障、低碳节能效果测评等内容。
     低碳建筑必须在建筑物的外部条件、技术设备和建筑主体三者相互作用下共同实现建筑物的节能减碳目标。本文分析了低碳建筑的运行机理,构建了低碳技术集成模型,并总结现有低碳技术,将其分为10大系统,140余项技术,建立低碳建筑技术体系,便于建筑物进行低碳技术的选取。在此基础上,深入探讨了低碳建筑技术规划方案的比选方法和优化模型,以实现低碳技术规划方案中设备结构和能源使用结构的最优化。此外,提出对建筑物规划设计方案进行能耗分析的工具、方法和主要内容,使用相关低碳节能分析软件对低碳建筑的规划设计方案进行整体能耗分析不仅是对所选方案低碳性能的验证,还为低碳建筑全寿命周期中使用维护阶段的碳排放测算提供了数据基础。
     建筑物碳排放量,是建筑物低碳目标实现与否的首要指标。本文从全寿命周期的角度进行建筑物碳排放测评方法的研究,分别对设计阶段、安全施工阶段、使用维护阶段、拆除清理阶段的碳排放来源进行了盘查,构建低碳建筑碳排放测算模型,明确了各阶段碳排放测算的方法和测算清单,建立了一套完整的低碳建筑物碳排放测算指南,并采用BIM技术在施工阶段建立了基于施工方案的动态碳排放测算模型,可实现实时的建筑物碳排放监控。
     针对以上研究内容,以武汉国际博览中心项目为案例,从低碳技术规划方案的比选和优化,低碳规划方案的能耗分析以及全寿命周期碳排放测算的角度分别进行了实证分析和研究。
     本文构建了全面的低碳建筑技术体系和全寿命周期碳排放测算模型,实现了低碳建筑碳排放的定量化、可视化和智能化。不仅为武汉国际博览中心项目全寿命周期的低碳建设提供了技术保障,也将为我国其他低碳建筑的健康、迅速发展提供强大的理论依据和实践指导。
The construction industry is developing at the cost of large consumption of natural resources and negative environmental impacts. In china, building energy consumption accounts for about 30.2% of total energy consumption of the whole society. According to statistics, construction activities have consumed 40% of total human natural resources and 40% of the total human energy. In the meantime, the amount of construction wastes has reached to 40% of the total human activities wastes. Energy consumption and solid wastes treatment will cause tremendous greenhouse gas emissions in construction, use and demolition process. It is estimated that the greenhouse gases generated by construction industry will be 25% of the total social emissions. Therefore, it is extremely urgent to construct low carbon buildings.
     The study was based on correlational researches home and abroad, especially the researches in UK、USA、Germany and Japan. In this dissertation, a low-carbon construction management mode was proposed, which includes low-carbon construction object program, low-carbon organization guarantee, low-carbon technology guarantee and low-carbon energy-saving effect evaluation.
     The carbon reduction goal of a building should be met based on the interaction among external conditions of the building, technical equipment and the building itself. This dissertation analyzed the operation mechanism of low-carbon construction, built an integrated model of low-carbon energy-saving technologies. Besides, it summarized the existing low-carbon energy-saving technologies, and divided more than 140 technologies into 10 systems, all of which will benefit the efficiency of selecting low-carbon technologies. On this basis, the low-carbon technologies selection methods and the optimization model were deeply studied so as to achieve the optimization of device structure and energy use structure in the low-carbon technologies program.
     Carbon emission of a building is the primary indicator of low-carbon construction. This dissertation studied the assessment methods for carbon emissions from the perspective of the whole life cycle of a building. Specifically, the carbon sources were firstly classified from the design stage、construction stage、maintenance stage to the removal and clean-up stage; And then, carbon emission calculation methods and calculation list at various stages were defined; Based on these steps, a carbon emission calculation model was built and a complete set of carbon emission calculation guide for low-carbon buildings was created. Besides, BIM technology was also used to establish a dynamic carbon emission calculation model at the operation stage of a building on the basis of the construction scheme so as to realize real-time monitoring over carbon emissions of the building.
     Taking the Wuhan International Expo Center project as an example, this dissertation conducted empirical analysis and research, including the selection and optimization of different low-carbon technology programs, the calculation of carbon emissions during a building's whole life cycle and the analysis of energy consumption for the low-carbon planning scheme.
     In this dissertation, a comprehensive technology system for low-carbon buildings and a whole life-cycle carbon emissions calculation model were established to achieve the objective of quantitative, visual and intelligent low-carbon construction. This model provides technical support for life-cycle low carbon construction in the project of Wuhan International Expo Center. In addition, it also offers a strong theoretical basis and practical guidance for healthy and quick development of low-carbon construction in China.
引文
[1]Petersen S R. Retrofitting Existing Housing for Energy Construction:An economic analysis. National Bureau of Standards, Building Science Series,1974(10):71-84
    [2]Petersen S R. Economic optimization in the energy construction design of single-family housing. ASHRAE Transactions,1976,82:446-460
    [3]Buffington D E. Ecomomics of energy construction in cooling/heating residential buildings. American Society of Agricultural Engineers,1977(8):48-62
    [4]Ahmed S F. Energy economics of design options-A residential energy and economic optimization microcomputer program. Columbus USA,1984(6):25-30
    [5]Giffin T M. Life-cycle costing application for building energy code compliance. Chicago, IL, USA,1985(3):603-608
    [6]Amstalden R W, Kost M, Nathani C, et al. Economic potential of energy-efficient retrofitting in the Swiss residential building sector:The effects of policy instruments and energy price expectations. Energy Policy,2007,35(3):1819-1829
    [7]刘玲.价值工程(VE)与建筑节能.工业建筑,2006(8):24-26
    [8]刘玉明,刘长滨.基于全寿命周期成本理论的既有建筑节能经济效益评价.建筑经济,2009(3):58-61
    [9]赵忠超,Simanic Branko,程林.既有建筑采用可再生能源节能改造技术分析.建筑经济,2009(2):96-99
    [10]王志勇,刘泽华.基于建筑环境的空调系统节能分析.节能,2004(2):15-18
    [11]范影,黄翔,狄育慧.利用太阳能的被动蒸发冷却技术.中国建设动态,阳光能源,2004(4):46-50
    [12]刘珠雄.建筑外窗遮阳技术的研究与应用.福建建设科技,2006(6):63-64
    [13]Loxsom F, Vivar Orum N. Window heat transfer in conventional new England residences. SOLAR ENERGY DIVISION,2006(6):64-73
    [14]李金平,王磊磊,王立璞等.传统采暖房内热环境的三维数值模拟.兰州理工大学学报,2008(1):45-49
    [15]陈飞.高层建筑风环境研究.建筑学报,2008(2):72-77
    [16]蔡裕盛.公共建筑节能设计敏感性因素分析.福建建设科技,2008(2):56-58
    [17]易雁.高层建筑供水方式及节能探讨.山西建筑,2008(14):178-179
    [18]宋晶光.基于粗糙集的住宅能耗影响因素分析.中国河南洛阳,2008
    [19]李铁庄,杜国莉.建筑设备节能技术与措施.中国勘察设计.2008(4):60-62
    [20]祝百茹,张宏利.高层建筑节能采暖系统设计方案研究.节能,2009(5):35-37
    [21]王剑平.关于建筑节能检测方法的探讨.湖南工业大学学报,2009(2):14-16
    [22]李向辉.建筑外围护墙体的节能研究.山西建筑,2009(21):232-233
    [23]Cai Wei, Gu Wei, Wen Xiaodong. Design strategy and transformation technology in building energy conservation of urban residence. Wuhan, China,2010:4510-4513
    [24]吴金应.高层建筑给排水节能节水的实现.价值工程,2010(23):77
    [25]李林,王亚刚,闫金银.基于ZigBee技术的楼宇光照节能系统设计.科技通报,2010(5):676-680
    [26]崔子丰,王伟.建筑门窗节能技术综述.工程质量,2010(S1):113-114
    [27]Berry J, Emerson R, Harrison J W, et al. CONSERVATION OF ENERGY IN HOUSING. Building Services Engineer,1977,45(2):288-298
    [28]周正,付祥钊.大同市建筑节能的技术策略.制冷与空调(四川),2007(4):94-97
    [29]丛娜,吴成东,丁君德.建筑节能综合评价指标体系.智能建筑,2007(9):47-50
    [30]马明珠,张旭.基于LCA研究建筑保温的节能减排效益.环境工程,2008(1):88-89
    [31]肖忠钰.北方寒冷地区村镇住宅节能技术适宜度评价研究[硕士学位论文].天津:天津城市建设学院,2008
    [32]刘琨.节能技术与建筑集成的经济评价方法研究[硕士学位论].武汉:武汉理工大学,2008
    [33]黄茜.建筑节能技术集成优化与评价研究[硕士学位论].武汉:武汉理工大学,2009
    [34]王靖,王增欣.单体建筑节能优化研究.河南科学,2009(9):1137-1140
    [35]崔艳琦.住宅建筑能耗计算与节能分析.工业建筑,2009(7):20-22
    [36]Qela B, Mouftah H. Simulation of a house heating system-An energy conservation perspective. Calgary, AB, Canada,2010
    [37]吴成东,丛娜,孙常春.基于混沌神经网络的建筑节能综合评价.沈阳建筑大学学报(自然科学版),2010(1):188-191
    [38]马伟斌.南方建筑节能技术集成系统示范.中国科学院广州能源研究所,2002
    [39]熊永强,马继红.集成一体化节能技术在建筑工程中的应用.现代涂料与涂装,2006(8):26-29
    [40]卞鹏.济南廉租房项目节能设计.建设科技,2009(5):42-43
    [41]徐峰,张国强,解明镜.绿色建筑集成设计软件系统开发的基本流程与框架.建筑热能通风空调,2009(2):54-57
    [42]张冰,杨靖.保障性住房的节能省地技术集成.住宅科技,2009(11):3-6
    [43]李进.基于技术集成理论的建筑节能技术路线研究.中国经贸导刊,2010(19):84-85
    [44]刘念雄,汪静,李嵘.中国城市住区C02排放量计算方法.清华大学学报(自然科学版),2009,49(9):1433-1436
    [45]汪洪,林晗.中国低碳建筑的初期探索与实践.第六届国际绿色建筑与建筑节能大会论文集,2010:415-421
    [46]蔡向荣,王敏权,傅柏权.住宅建筑的碳排放量分析与节能减排措施.防灾减灾工程学报,2010,30(增刊):428-431
    [47]李启明,欧晓星.低碳建筑概念及其发展启示.建筑经济,2010(2):41-43
    [48]何福春,付祥钊.关于建筑碳排放量化的思考与建议.资源节约与环保,2010(6):20-22
    [49]龚志起,张智慧.生命周期评价和管理与建筑业可持续发展.青海大学学报:自然科学版,2004(2):26
    [50]张智慧,尚春静,钱坤.建筑生命周期碳排放评价.建筑经济,2010(2):44-46
    [51]张春霞,章蓓蓓,黄有亮等.建筑物能源碳排放因子选择方法研究.建筑经济,2010(10):106-109
    [52]陈飞,诸大建.上海发展低碳建筑的现状问题及目标策略研究.城市观察, 2010(5):144-155
    [53]于萍,陈效逑,马禄义.住宅建筑生命周期碳排放研究综述.建筑科学,2011,27(4):9-12
    [54]Leif Gustavsson, Anna Joelsson, Roger Sathre. Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building. Energy and Buildings,2010,42(2):230-242
    [55]Cole RJ. Energy and greenhouse gas emissions associated with the construction of alternative structural systems. Building and Environment,1999,34(3):335-348
    [56]Gerilla GP, Teknomo K, Hokao K. An environmental assessment of wood and steel reinforced concrete housing construction. Building and Environment,2007,42(7): 2778-2784
    [57]Bribian, Uson, Scarpellini. Life cycle assessment in buildings:State-of-the-art and simplified LCA methodology as a complement for building certification.Building and Environment,2009,44(12):2510-2520
    [58]Neil May. Low carbon buildings and the problem of human behavior. Natural Building Technologies,2004, (6):65-78
    [59]P. Paumgartten. The business case for high performance green buildings: sustainability and it financial impacts. Journal of Facilities Management,2003,2(1): 26-34
    [60]Deepak Sivaraman. An integrated life cycle assessment model:Energy and greenhouse gas performance of residential heritage buildings, and the influence of retrofit strategies in the state of Victoria in Australia. Energy and Buildings, In Press, Corrected Proof, Available online,2011, (5):29-35
    [61]B. Randolph, D. Holloway, S. Pullen, P. Troy. The Environmental Impacts of Residential Development:Case Studies of 12 Estates in Sydney. Australian Research Council (ARC) Linkage Project:LP 0348770,2007
    [62]G.Q. Chen, H. Chen, Z.M. Chen, et al. Low-carbon building assessment and multi-scale input-output analysis. Communications in Nonlinear Science and Numerical Simulation,2011,2(1):583-595
    [63]Gian Andrea Blengini, Tiziana Di Carlo. The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy and Buildings, 2010,6(2):869-880
    [64]Tove Malmqvist, Mauritz Glaumann, Sabina Scarpellini, et al. Life cycle assessment in buildings:The ENSLIC simplified method and guidelines. Energy,2011,36(4): 1900-1907
    [65]Aashish Sharma, Abhishek Saxena, Muneesh Sethi, et al. Life cycle assessment of buildings:A review Renewable and Sustainable. Energy Reviews,2011,15(1): 871-875
    [66]ISO, ISO 14040. Environmental management-life cycle assessment principles and framework. International Organisation for Standardization,1997
    [67]N. Huberman, D. Pearlmutter. A life-cycle energy analysis of building materials in the Negev desert. Energy and Buildings,2008,40(5):837-848
    [68]P.C.F. Bekker. A life cycle approach in building. Building and Environment,1982, 17(1):55-61
    [69]Joshua Kneifel. Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. Energy and Buildings,2010,42(3):333-340
    [70]ISO 14040.2006 Environmental Management:Life Cycle Assessment Principles and Framework. Internation Standards Organisation, Paris,2006
    [71]J. Monahan, J.C. Powell. An embodied carbon and energy analysis of modern methods of construction in housing:A case study using a lifecycle assessment framework. Energy and Buildings,2011,42(1):179-188
    [72]I. Sartori, A.G. Hestnes. Energy use in the life cycle of conventional and low energy buildings:a review article. Energy and Buildings,2007,39 (3):249-257
    [73]李志强,刘春梅.碳足迹及其影响因素分析——基于中部六省的实证.第六届中国科技政策与管理学术年会论文集,中国北京,2010:147-159
    [74]The Ove Partnership. Building design for energy economic. by the Pitman Great Britain,1980:101-105
    [75]Oktay Ural. Energy resources and conservation related to build environment. Miami beach, Florida,1980, (1):365-369
    [76]CHEN Zhen, LI Heng, WONG C T C. Environmental Management of Urban Construction Projects in China. Journal of Construction Engineering and Management,2000,126 (4):320-324.
    [77]左现广,唐鸣放.国内外建筑能耗调查与统计研究.重庆建筑,2003:16-18
    [78]涂逢祥.建筑节能经济技术政策研.北京:中国建筑工业出版社,1991
    [79]魏积义中国建筑能耗现状及节能潜力.沈阳建筑工程学院学报,1994:184-197
    [80]郭骏.嵩山小区的综合节能规划和设计运行.暖通空调,1995,25
    [81]龙惟定.上海公共建筑能耗现状及节能潜力分析.暖通空调,1998,28:13-16
    [82]李世朋.北京市旅馆类建筑的现状调查与分析(一).暖通空调新技术,2000(2):105-108
    [83]武海斌.北京市城市居民家用空调器耗电量的调查研究.暖通空调新技术,2000(2):52-56
    [84]翟超勤.全国家用电器年耗电量的估算.暖通空调新技术,2002(2):52-56
    [85]王婧.基于LCA的建材生产能耗及污染物排放清单分析.环境科学研究,2007(6):149-153
    [86]刘念雄,汪静,李嵘.中国城市住区C02排放量计算方法.清华大学学报(自然科学版),2009,49(9):1433-1436
    [87]Chen GQ, Chen H, Chen ZM, et al. Low-carbon building assessment and multi-scale input-output analysis. Communications in Nonlinear Science and Numerical Simulation,2011,16(1):583-595
    [88]张智慧,尚春静,钱坤.建筑生命周期碳排放评价.建筑经济,2010(2):44-46
    [89]Bribian, Uson, Scarpellini. Life cycle assessment in buildings:State-of-the-art and simplified LCA methodology as a complement for building certification. Building and Environment,2009,44(12):2510-2520
    [90]张德英,张丽霞.碳源排碳量估算办法研究进展.内蒙古林业科技,2005(1):20-23
    [91]Tulaesin. A study regarding the environmental impact analysis of the building materials production process (in Turkey), building and environment,2007,42(11): 3860-3871
    [92]G.Q. Chen, H. Chen, Z.M. Chen, et al. Low-carbon building assessment and multi-scale input-output analysis. Commun Nonlinear Sci Numer Simulat,2010(6): 58-64
    [93]AdalberL k. Energy use during the life cycle of single-unit dwellings:A method. Building and Environment,1997(32):321-329
    [94]Thormark, C. A low energy building the life-cycle its embodied energy, energy need for operation and recycling potential. Building and Environment,2002,37:429-435
    [95]卜一德.绿色建筑技术指南.北京:中国建筑工业出版社,2008
    [96]鲍丹.节能减排,我们在行动:废钢利用,还需突破几道坎.北京:人民日报,2010/06/21, http://finance.people.com.cn/GB/11918780.html
    [97]王恭敏.我国再生铝产业现状.中国有色金属科技信息网,2010/6/17,http://www.cnitdc.com/htm/2010617/736.htm
    [98]郭运功,林逢春.上海市能源利用碳排放的分解研究.环境污染与防治,2009(9):68-81
    [99]赵平,同继锋,马眷荣.建筑材料环境负荷影响指标研究.中华人民共和国建设部科学技术司智能与绿色建筑文集编委会,智能与绿色建筑文集,北京:中国建筑工业出版社,2005:933-938
    [100]Lang, Si-Wei. Progress in energy-efficiency standards for residential buildings in China. Energy and Buildings,2004(3):1191-1196
    [101]彭文正.以生命周期评估技术应用于建筑耗能之研究.台湾:台湾朝阳科技大学[硕士论文],2003
    [102]Blanchard S, Reppe P. Life cycle analysis of a residential home in Michigan. http://www.urnich.edu/-css,1998
    [103]Adalberth K. Energy use during the lifetime of single-unit dwellings:a method. Building and Environment,1997,32:317-320
    [104]Sehueer C, Keoleian GR, Pepe P. Life cycle energy and environmental performance of a new university building:modeling challenges and design implications. Building and environment,2003,35:1049-1064
    [105]国家发展与改革委员会.国家节能中长期专项规划.经济日报,2004,12
    [106]国家计委宏观经济研究院课题组.中国中长期能源战略.北京:北京中国计划 出版社,1999
    [107]张智慧,吴星,肖厚忠.北京市住宅建筑的环境影响实证研究.环境保护,2004,9:39-42
    [108]龚志起.建筑材料生命周期中物化环境状况的定量评价研究[硕士论文].北京:清华大学,2004
    [109]Barbara Lippiatt. Building for environmental and economic sustainability software. http://www.bfrl.nist.gov/oae/software/bees/bees.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700