含额外受体喹喔啉单元的D-A-π-A型纯有机敏化染料的设计、合成及光伏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高光电转换效率和低成本的特点,染料敏化太阳电池(DSSCs)被认为是目前有前景的一种光伏电池。在传统的DSSCs器件中,敏化染料起着吸收太阳光子、产生并传输电子的作用,是非常重要的组份。作为这样一个重要的组成部分,需要对染料分子的结构进行精心、合理的设计以达到拓宽吸收光谱、调节能带、控制吸附模式和致密表面形貌的目的。本论文创新地在传统D-π-A构型中引入强电负性的含氮杂环作为额外受体,提出以D-A-π-A模型概念,构建宽光谱、高效率、高稳定性的纯有机敏化染料的概念。论文重点放在选用可修饰性强、电负性适中的喹喔啉单元作为共轭体系中的额外受体,设计并合成了多个系列D-A-π-A型纯有机敏化染料,重点考查了额外受体的引入对染料光谱、能级、稳定性及光电性能的影响,并且着重考察了染料自身光稳定性的提高。系统研究了在D-A-π-A模型中不同的电子给体、拓宽共轭桥连、修饰喹喔啉单元的影响;并创新地将D-A-π-A模型染料与有机小分子染料进行共敏化研究,成功发展高稳定性敏化染料,显著提升敏化染料稳定性及光电转换效率。
     论文前言介绍了染料敏化纳米晶太阳能电池的结构、工作原理和评价参数。从量子和能级两个角度分析了电池中的能量损失原因,提出避免能量浪费的方法,重点综述了基于D-π-A构型的纯有机染料在提升光电流、光电压的方面的设计思路,并在此基础上提出了本论文的设计思想和研究内容。
     针对传统D-π-A构型有机敏化染料吸收光谱窄、分子带隙较宽的问题,论文设计合成了四个含额外吸电子喹喔啉基团的D-A-π-A构型纯有机敏化染料IQ1、IQ2、TQ1和TQ2。首先通过DFT和TD-DFT理论计算讨论了额外受体对UV-Vis吸收谱图中额外吸收带的贡献。研究发现,喹喔啉单元的引入,可作为电荷分离“阱”受体,新受体使HOMO与LUMO轨道能很好地重叠,明显地提高分子内电荷转移(ICT);能有效降低HOMO-LUMO能级差,还能通过次级跃迁新增吸收带拓宽吸收光谱,从而提高光捕获能力;极大提高染料氧化还原的可逆性,显著提升敏化染料稳定性,有利于电池器件寿命。喹喔啉单元是个可修饰性很强的基团,通过结构改进在喹喔啉基团上引入辛氧基链后能有效地调控电池性能。电化学阻抗谱(EIS)测试表明,与喹喔啉单元的甲氧基取代的染料IQ1相比,辛氧基取代的染料IQ2的注入电子寿命可提高2.4倍。在新模型D-A-兀-A染料中,额外受体单元上提供了一个新的改进抗聚集功能途径,如在喹喔啉单元上引入长碳链辛氧基的染料IQ2和TQ2,在不加共吸附剂的状态下仍能取得很好的电池性能,染料自身能有效地抑制电子回传,延长电子寿命,这不但减小了暗电流的损失也提高了电池的开路电压。使用液态电解质,IQ2展现了良好的光电转换效率,效率能达到8.5%,并且获得了776mV的高开路电压值。
     迄今为止,使用碘电解质的纯有机敏化染料所制作器件光电转换效率能超过9%的并不多见。针对这一瓶颈,进一步创新地在染料共振骨架引入强额外吸电子基团2,3-二苯基喹喔啉单元,构筑新型D-A-兀-A染料IQ4。采用DFT和TDDFT进行理论计算,发现额外受体的引入能起到有效地调控波长、拓宽吸收边带的目的,最终染料IQ4的最大吸收波长达到了529nm。IQ4染料在不使用共敏化剂的条件下其光电转换效率可达9.24%,其中短路电流为17.55mA cm-2、开路电压为0.74V、填充因子为0.71。基于染料IQ4的离子液体的DSSC电池的稳定性也非常优异,在60℃、一个太阳光的标准测试条件下测试1000h后,电池仍能保持良好的工作状态。研究表明,2,3-二苯基喹喔啉单元是一个非常理想的结构单元(building block),喹喔啉基团上的两个大位阻、非平面苯环不仅可以发挥很好的自身抗聚集能力,而且可明显提高染料的光、热稳定性能。
     针对IQ4染料IPCE响应较窄的问题,基于D-A-兀-A模型,采用在共轭体系中增加噻吩及其衍生物的方法来拓宽共轭链的方法来进一步拓宽有机染料的吸收光谱。在染料IQ4的基础上,通过在共轭体系不同位置引入噻吩及其衍生物构筑了新型染料IQ6、IQ7和IQ8,较高的光电转换效率。采用IQ4作为参比染料,系统研究D-A-兀-A构型染料的π桥连引入噻吩基团对染料吸收、能级和光伏性能的影响,并详细研究了电子收集效率、导带位置和电池中的电子回传阻抗等。研究表明,在靠近吸附桥连基团(anchoring group)一侧引入噻吩基团时,对吸收光谱和能级没有明显的影响;而在给体附近增加噻吩基团则能明显红移吸收波谱、抬高LUMO能级轨道。与IQ4相比,染料IQ6.IQ7和IQ8的电子收集效率明显降低,表现出不尽如人意的IPCE平台高度。另外,染料IQ6、IQ7和IQ8相对较快的回传速率限制了在开路电压方面的进一步的表现。因此,通过增加IQ4桥连噻吩的数,IQ6.IQ7和IQ8的电子扩散长度明显变短,极大地限制了IQ6-IQ8的短路电流,限制了器件光伏性能的提升。
     针对染料IQ5摩尔消光系数不高的问题,通过更换共轭基团来提升染料的吸光能力,即D-A-兀-A模型染料中引入4H-cyclopenta[2,1-6:3,4-6']dithiophene(CPDT)单元提升染料吸光能力。染料IQ5的基础上,采用CPDT单元取代IQ5染料原有的共轭噻吩基团,构筑了新型敏化染料IQ21。此外,还创新地将染料IQ21与新型有机小分子S3进行共敏化。与IQ5相比,引入CPDT单元能有效地拓宽吸收光谱30nm,并且摩尔消光系数增加两倍。DSSC电池的器件性能表明,IQ21的光电流输出(18.31mAcm-2)明显高于染料IQ5(16.47mA),但光电压由于受到电荷回传的影响,使得开路电压略有降低。将染料IQ21与有机小分子染料S3共敏化之后,可弥补IQ21在IPCE低波长区域的吸收缺陷,将光电流进一步提升至了19.82mA cm-2;另外由于染料S3的自身叉链结构成功协助抑制了染料IQ21抑制电荷回传问题,使得开路电压提升了20mV,最终光电转换效率达到10.41%。
     利用吡啶并吡嗪基团作为额外受体构建了两个新型D-A-π-A型啉染料IQ13和IQ17,并比较了与喹喔啉单元的性能。IQ13和IQ17的吸收光谱和IPCE宽度都超过了参比染料IQ4,但最终染料IQ13电池的电池效率8.33%(其中Jsc为18.65mA cm-2、Voc为632mV、填充因子为0.707)和染料IQ17的电池效率8.76%,(Jsc为18.55mA cm-2、Voc为674mV、填充因子为0.701),均低于染料IQ4的电池效率8.85%(Jsc为16.72mAcm-2、Voc为766mV、填充因子为0.690)。研究发现,吡啶并吡嗪类的染料容易产生电子回传问题,使得IQ13和IQ17电压相比于IQ4要下降100mV以上。
Owing to the high power conversion efficiency and low cost, dye-sensitized solar cells (DSSCs) have been regarded as one of the most prospective and potential photovoltaic devices. In a typical DSSC, the dye sensitizer plays key role in absorbing the sunlight and separating charges. As such important component, molecular structure of sensitizers should be elaborately tailored with the aim of broad absorption, suitable energy levels, controllable adsorption pattern and compact layer morphology as well as excellent stability. In this dissertation, we focused on D-A-π-A-featured sensitizers, in which an additional electron-withdrawing unit of quinoxaline is specifically incorporated into the π bridge as the additional electron-deficient acceptor, especially for broadening spectral response and optimizing energy levels.
     In the introduction, the working principle of DSSCs and their evaluation parameters is briefly described. The strategies for enhancing the photocurrent and photovoltage of DSSCs are also reviewed, and the molecular design and research contents of this thesis are outlined.
     Four novel quinoxaline-containing organic sensitizers (IQ1, IQ2, TQ1and TQ2) with D-A-π-A configuration were designed and studied. By theoretically investigating DFT and time-dependent DFT, the effects of auxiliary quinoxaline acceptor on the additional absorption band and electron transition were especially concerned about. The incorporated auxiliary quinoxaline unit with low band-gap can efficiently optimize energy levels and broaden absorption band with a new band which can result in an efficient light-harvesting for photovoltaic conversion, and conveniently tailor the solar cell performance with a facile structural modification on quinoxaline unit with long alkoxy groups. More importantly, the incorporated quinoxaline unit can essentially facilitate the electron transfer from the donor to the acceptor/anchor, resulting in a great improvement in both the electron distribution of donor unit and the photostability of synthetic intermediates and final sensitizers. The EIS Bode plots reveal that the replacement of methoxy group with octyloxy group increases the injection electron lifetime by2.4fold. IQ2and TQ2can perform well without any coadsorbent, successfully suppress the charge recombination and enhance the electron life time, resulting in a decreased dark current and enhanced Voc.Using a liquid-electrolyte, DSSC based on dye IQ2exhibited broad action spectrum and high optimizing efficiency (η=8.50%) with a high Voc of776mV.
     To date, only a few pure metal-free organic sensitizers based on an iodine electrolyte are capable of achieving9%in photovoltatic efficiency. For overcoming the photovoltaic bottleneck, an electron-withdrawing unit of2,3-diphenylquinoxaline as the additional acceptor was successfully incorporated to construct a novel D-A-π-A featured dye IQ4. Investigated theoretically by DFT and time-dependent DFT, the incorporated auxiliary quinoxaline unit with low band-gap can efficiently optimize energy levels and broaden absorption band, and the λmax of IQ4extend to529nm. The coadsorbent-free DSSC based on dye IQ4exhibits very promising conversion efficiency as high as9.24%, with a short circuit current density (Jsc) of17.55mA cm-2, open circuit voltage (Voc) of0.74V, fill factor (FF) of0.71under AM1.5illumination (100mW cm-2). IQ4-based DSSC devices with ionic liquid electrolyte can keep constant performance during1000h aging test under one sun at60℃. Due to the spatial restriction, the two phenyl groups grafted upon the additional electron-withdrawing quinoxaline is demonstrated as an efficient building block, not only improving its photo-and thermal-stability, but also being as a successful anti-aggregation functional unit.
     A series of sensitizers based on the auxiliary acceptor unit of quinoxaline, containing indoline as electron donor and cyanoacetic acid as acceptor/anchor, have been specifically developed as IQ6, IQ7and IQ8for high efficiency DSSCs. Inviting IQ4as the reference sensitizer, the general influence of different π-spacer in these D-A-π-A organic sensitizers on their absorption, energy levels and photovoltaic performances can be investigate carefully. It is found that, on one hand, the additional thienyl unit near the anchor group has no distinct obvious effect on the absorption spectra and energy levels. On the other hand, the additional thienyl group close to the donor group obviously red-shifts the absorption band and positively shifts the LUMO levels. Contrast with IQ4, the low charge collection efficiency (ΦCol) of IQ6, IQ7and IQ8result in their unsatisfactory IPCE plateaus. Moreover, although IQ6and IQ7possess the higher conduction band (ECB) than IQ4, the relatively faster charge recombination rate limits its Voc performance. After extending the π-linker on the basis of IQ4, the diffusion lengths of IQ6-IQ8becomes shorter, which dramatically decrease their photocurrent and impair their photovoltaic performances.
     Considering that the alkyl-functionalized cyclopentadithiophene (CPDT) segment as the conjugated bridge shows an extremely high molar absorption coefficient and high power conversion efficiency in D-π-A featured sensitizers. The CPDT unit was choosen as the alternative π-bridge based on IQ5to develop IQ21. Additionally, dye S3was introduced as the co-adsorbent in dye bath for inhibiting the recombination reaction. IQ5is used as the reference sensitizer to clearly illustrate the influence of both the π-spacer in quinoxaline-based organic sensitizers and the novel organic co-adsorbent upon the photovoltaic performances. It has shown that the utilization of CPDT unit can distinctly increase the Jsc, with a photovoltatic efficiency (9.03%). Moreover, the employment of novel co-adsorbent S3further improves the efficiency (10.41%) by suppressing the charge recombination rate and providing the enhanced light harvesting ability in the short wavelength region of IQ21.
     Two novel D-A-π-A dyes IQ13and IQ17were developed with pyrido[3,4-b]]pyrazine unit as the additional acceptor, indoline as the donor, cyanoacetic acid as the terminal acceptor and thiophene as the π-bridge. Due to its stronger electron-withdrawing character, the absorption spectra and IPCE of IQ13and IQ17is broader than that of the reference dye IQ4. Correspondingly, the IPCE extends to over800nm, which is broader than that of IQ4. However, IQ13and IQ17based DSSCs show the η of8.33%and8.76%, which is lower than that of IQ4(8.85%) under the same conditions, which might be attributed to the relatively faster charge recombination rate limits Voc performance IQ13and IQ17leading to the photovoltage loss over100mV than that of IQ4.
引文
[1]Service R. F. Solar Report Sets the Agenda. Science,2005,309(5734):549-549.
    [2]Potocnik J. Renewable Energy Sources and the Realities of Setting an Energy Agenda. Science,2007,315(5813):810-811.
    [3]Hagfeldt A., Boschloo G., Sun L., Kloo L., Pettersson H. Dye-Sensitized Solar Cells. Chem. Rev.,2010,110(11):6595-6663.
    [4]Ooyama Y., Harima Y. Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells. Eur. J. Org. Chem.,2009,2009(18):2903-2934.
    [5]Hagfeldt A., Graetzel M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev.,1995,95(1):49-68.
    [6]Nazeeruddin M. K., Zakeeruddin S. M., Lagref J. J., Liska P., Comte P., Barolo C., Viscardi G., Schenk K., Graetzel M. Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coordin. Chem. Rev.,2004, 248(13-14):1317-1328.
    [7]Gratzel M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorg. Chem.,2005,44(20):6841-6851.
    [8]Nakade S., Kanzaki T., Kubo W., Kitamura T., Wada Y., Yanagida S. Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell:The Case of Solar Cells Using the I-/I3-Redox Couple. J. Phys. Chem. B,2005,109(8):3480-3487.
    [9]Robertson N. Optimizing Dyes for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed., 2006,45(15):2338-2345.
    [10]Martinson A. B. F., Hamann T. W., Pellin M. J., Hupp J. T. New Architectures for Dye-Sensitized Solar Cells. Chem. Eur. J.,2008,14(15):4458-4467.
    [11]O'Regan B., Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353(6346):737-740.
    [12]Ooyama Y., Harima Y. Photophysical and Electrochemical Properties, and Molecular Structures of Organic Dyes for Dye-Sensitized Solar Cells. Chemphyschem,2012, 13(18):4032-4080.
    [13]Tachibana Y., Haque S. A., Mercer I. P., Moser J. E., Klug D. R., Durrant J. R. Modulation of the Rate of Electron Injection in Dye-Sensitized Nanocrystalline TiO2 Films by Externally Applied Bias. J. Phys. Chem. B,2001,105(31):7424-7431.
    [14]Shrestha L. K., Glatter O., Aramaki K. Structure of Nonionic Surfactant (Glycerol a-Monomyristate) Micelles in Organic Solvents:A SAXS Study. J. Phys. Chem. B, 2009,113(18):6290-6298.
    [15]Kim J. Y., Lee K., Coates N. E., Moses D., Nguyen T., Dante M., Heeger A. J. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science,2007, 317(5835):222-225.
    [16]Nazeeruddin M. K., De Angelis F., Fantacci S., Selloni A., Viscardi G., Liska P., Ito S., Takeru B., Gratzel M. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc.,2005,127(48): 16835-16847.
    [17]Asghar M. I., Miettunen K., Halme J., Vahermaa P., Toivola M., Aitola K., Lund P. Review of stability for advanced dye solar cells. Energy Environ. Sci.,2010,3(4): 418-426.
    [18]Hara K., Kurashige M., Dan-Oh Y., Kasada C., Shinpo A., Suga S., Sayama K., Arakawa H. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J. Chem.,2003,27(5):783-785.
    [19]Hara K., Dan-Oh Y., Kasada C., Ohga Y., Shinpo A., Suga S., Sayama K., Arakawa H. Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells. Langmuir,2004,20(10):4205-4210.
    [20]Hara K., Wang Z., Sato T., Furube A., Katoh R., Sugihara H., Dan-Oh Y., Kasada C., Shinpo A., Suga S. Oligothiophene-Containing Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. B,2005,109(32):15476-15482.
    [21]Hara K., Miyamoto K., Abe Y., Yanagida M. Electron Transport in Coumarin-Dye-Sensitized Nanocrystalline TiO2 Electrodes. J. Phys. Chem. B,2005, 109(50):23776-23778.
    [22]Kitamura T., Ikeda M., Shigaki K., Inoue T., Anderson N. A., Ai X., Lian T., Yanagida S. Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells. Chem. Mater.,2004, 16(9):1806-1812.
    [23]Wang X., Koyama Y., Nagae H., Yamano Y., Ito M., Wada Y. Photocurrents of solar cells sensitized by aggregate-forming polyenes:Enhancement due to suppression of singlet-triplet annihilation by lowering of dye concentration or light intensity. Chem. Phys. Lett.,2006,420(4-6):309-315.
    [24]Hwang S., Lee J. H., Park C., Lee H., Kim C., Park C., Lee M., Lee W., Park J., Kim K., Park N., Kim C. A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun.,2007(46):4887-4889.
    [25]Liang M., Xu W., Cai F., Chen P., Peng B., Chen J., Li Z. New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C.,2007, 111(11):4465-4472.
    [26]Xu W., Pei J., Shi J., Peng S., Chen J. Influence of acceptor moiety in triphenylamine-based dyes on the properties of dye-sensitized solar cells. J. Power Sources,2008,183(2):792-798.
    [27]Xu W., Peng B., Chen J., Liang M., Cai F. New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells. J. Phys. Chem. C.,2008,112(3):874-880.
    [28]Ning Z., Zhang Q., Wu W., Pei H., Liu B., Tian H. Starburst Triarylamine Based Dyes for Efficient Dye-Sensitized Solar Cells. J. Org. Chem.,2008,73(10):3791-3797.
    [29]Yang S., Wu K., Chi Y., Cheng Y., Chou P. Tris(thiocyanate) Ruthenium(II) Sensitizers with Functionalized Dicarboxyterpyridine for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed.,2011,50(36):8270-8274.
    [30]Shi D., Pootrakulchote N., Li R., Guo J., Wang Y., Zakeeruddin S. M., Gratzel M., Wang P. New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes. J. Phys. Chem. C.,2008,112(44): 17046-17050.
    [31]Gao F., Wang Y., Shi D., Zhang J., Wang M., Jing X., Humphry-Baker R., Wang P., Zakeeruddin S. M., Gratzel M. Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells. J. Am. Chem. Soc.,2008,130(32): 10720-10728.
    [32]Wang P., Klein C., Humphry-Baker R., Zakeeruddin S. M., Gratzel M. A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells. J. Am. Chem. Soc.,2004,127(3):808-809.
    [33]Wang P., Zakeeruddin S. M., Moser J. E., Humphry-Baker R., Comte P., Aranyos V., Hagfeldt A., Nazeeruddin M. K., Gratzel M. Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye-Sensitized Solar Cells. Adv. Mater.,2004,16(20): 1806-1811.
    [34]Chou C., Wu K., Chi Y., Hu W., Yu S. J., Lee G., Lin C., Chou P. Ruthenium(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed.,2011,50(9):2054-2058.
    [35]Bessho T., Zakeeruddin S. M., Yeh C., Diau E. W., Gratzel M. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins. Angew. Chem. Int. Ed.,2010,49(37):6646-6649.
    [36]Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science,2011,334 (6056):629-634.
    [37]Pan Z., Zhang H., Cheng K., Hou Y., Hua J., Zhong X. Highly Efficient Inverted Type-I CdS/CdSe Core/Shell Structure QD-Sensitized Solar Cells. ACS Nano,2012,6(5): 3982-3991.
    [38]Mishra A., Fischer M. K. R., Bauerle P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure:Property Relationships to Design Rules. Angew. Chem. Int. Ed,2009,48(14):2474-2499.
    [39]Yen Y., Chou H., Chen Y., Hsu C., Lin J. T. Recent developments in molecule-based organic materials for dye-sensitized solar cells. J. Mater. Chem.,2012,22(18): 8734-8747.
    [40]Kanaparthi R. K., Kandhadi J., Giribabu L. Metal-free organic dyes for dye-sensitized solar cells:recent advances. Tetrahedron,2012,68(40):8383-8393.
    [41]Qu S., Qin C., Islam A., Hua J., Chen H., Tian H., Han L. Tuning the Electrical and Optical Properties of Diketopyrrolopyrrole Complexes for Panchromatic Dye-Sensitized Solar Cells. Chem. Asian J.,2012,7(12):2895-2903.
    [42]Velusamy M., Justin Thomas K. R., Lin J. T., Hsu Y., Ho K. Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells. Org. Lett., 2005,7(10):1899-1902.
    [43]Chen R., Yang X., Tian H., Wang X., Hagfeldt A., Sun L. Effect of Tetrahydroquinoline Dyes Structure on the Performance of Organic Dye-Sensitized Solar Cells. Chem. Mater.,2007,19(16):4007-4015.
    [44]Li S., Jiang K., Shao K., Yang L. Novel organic dyes for efficient dye-sensitized solar cells. Chem. Commun.,2006(26):2792-2794.
    [45]Kim S., Lee J. K., Kang S. O., Ko J., Yum J. H., Fantacci S., De Angelis F., Di Censo D., Nazeeruddin M. K., Gratzel M. Molecular Engineering of Organic Sensitizers for Solar Cell Applications. J. Am. Chem. Soc.,2006,128(51):16701-16707.
    [46]Choi H., Baik C, Kang S. O., Ko J., Kang M., Nazeeruddin M. K., Gratzel M. Highly Efficient and Thermally Stable Organic Sensitizers for Solvent-Free Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed.,2008,47(2):327-330.
    [47]Hwang S., Lee J. H., Park C., Lee H., Kim C., Park C., Lee M., Lee W., Park J., Kim K., Park N., Kim C. A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun.,2007(46):4887-4889.
    [48]Thomas K. R. J., Lin J. T., Hsu Y., Ho K. Organic dyes containing thienylfluorene conjugation for solar cells. Chem. Commun.,2005(32):4098-4100.
    [49]Hagberg D. P., Edvinsson T., Marinado T., Boschloo G., Hagfeldt A., Sun L. A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem. Commun., 2006(21):2245-2247.
    [50]Liang M., Xu W., Cai F., Chen P., Peng B., Chen J., Li Z. New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C.,2007, 111(11):4465-4472.
    [51]Tsai M., Hsu Y., Lin J. T., Chen H., Hsu C. Organic Dyes Containing 1H-Phenanthro[9,10-d]imidazole Conjugation for Solar Cells. J. Phys. Chem. C.,2007, 111(50):18785-18793.
    [52]Justin Thomas K. R., Hsu Y., Lin J. T., Lee K., Ho K., Lai C., Cheng Y., Chou P. 2,3-Disubstituted Thiophene-Based Organic Dyes for Solar Cells. Chem. Mater.,2008, 20(5):1830-1840.
    [53]Ning Z., Zhang Q., Wu W., Pei H., Liu B., Tian H. Starburst Triarylamine Based Dyes for Efficient Dye-Sensitized Solar Cells. J. Org. Chem.,2008,73(10):3791-3797.
    [54]Ning Z., Tian H. Triarylamine:a promising core unit for efficient photovoltaic materials. Chem. Commun.,2009(37):5483-5495.
    [55]Liu B., Li W., Wang B., Li X., Liu Q., Naruta Y., Zhu W. Influence of different anchoring groups in indoline dyes for dye-sensitized solar cells:Electron injection, impedance and charge recombination. J. Power Sources,2013,234(0):139-146.
    [56]Fabregat-Santiago F., Garcia-Belmonte G., Mora-Sero I., Bisquert J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys.,2011,13(20):9083-9118.
    [57]Liang Y., Peng B., Chen J. Correlating Dye Adsorption Behavior with the Open-Circuit Voltage of Triphenylamine-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C.,2010, 114(24):10992-10998.
    [58]Xu W., Peng B., Chen J., Liang M., Cai F. New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells. J. Phys. Chem. C.,2008,112(3):874-880.
    [59]Shi J., Wang L., Liang Y., Peng S., Cheng F., Chen J. All-Solid-State Dye-Sensitized Solar Cells with Alkyloxy-Imidazolium Iodide Ionic Polymer/SiO2 Nanocomposite Electrolyte and Triphenylamine-Based Organic Dyes. J. Phys. Chem. C.,2010,114(14): 6814-6821.
    [60]Pei J., Peng S., Shi J., Liang Y., Tao Z., Liang J., Chen J. Triphenylamine-based organic dye containing the diphenylvinyl and rhodanine-3-acetic acid moieties for efficient dye-sensitized solar cells. J. Power Sources,2009,187(2):620-626.
    [61]Horiuchi T., Miura H., Uchida S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem. Commun.,2003(24):3036-3037.
    [62]Horiuchi T., Miura H., Sumioka K., Uchida S. High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes. J. Am. Chem. Soc.,2004,126(39): 12218-12219.
    [63]Ito S., Miura H., Uchida S., Takata M., Sumioka K., Liska P., Comte P., Pechy P., Gratzel M. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun.,2008(41):5194-5196.
    [64]Kuang D., Uchida S., Humphry-Baker R., Zakeeruddin S. M., Gratzel M. Organic Dye-Sensitized Ionic Liquid Based Solar Cells:Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers. Angew. Chem. Int. Ed., 2008,47(10):1923-1927.
    [65]Numata Y., Ashraful I., Shirai Y., Han L. Preparation of donor-acceptor type organic dyes bearing various electron-withdrawing groups for dye-sensitized solar cell application. Chem. Commun.,2011,47(21):6159-6161.
    [66]Katono M., Bessho T., Meng S., Humphry-Baker R., Rothenberger G., Zakeeruddin S. M., Kaxiras E., Gratzel M. D-π-A Dye System Containing Cyano-Benzoic Acid as Anchoring Group for Dye-Sensitized Solar Cells. Langmuir,2011,27(23): 14248-14252.
    [67]Mao J., He N., Ning Z., Zhang Q., Guo F., Chen L., Wu W., Hua J., Tian H. Stable Dyes Containing Double Acceptors without COOH as Anchors for Highly Efficient Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed.,2012,51(39):9873-9876.
    [68]Roncali J., Blanchard P., Frere P.3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J. Mater. Chem.,2005, 15(16):1589-1610.
    [69]Gao P., Tsao H. N., Yi C, Gratzel M., Nazeeruddin M. K. Extended π-Bridge in Organic Dye-Sensitized Solar Cells:the Longer, the Better? Adv. Energy Mat.,2013, DOI:10.1002/aenm.201301485.
    [70]Bouit P., Marszalek M., Humphry-Baker R., Viruela R., Orti E., Zakeeruddin S. M., Gratzel M., Delgado J. L., Martin N. Donor-π-Acceptors Containing the 10-(1,3-Dithiol-2-ylidene)anthracene Unit for Dye-Sensitized Solar Cells. Chem. Eur. J., 2012,18(37):11621-11629.
    [71]Erten-Ela S., Yilmaz M. D., Icli B., Dede Y., Icli S., Akkaya E. U. A Panchromatic Boradiazaindacene (BODIPY) Sensitizer for Dye-Sensitized Solar Cells. Org. Lett., 2008,10(15):3299-3302.
    [72]Li J., Chen C., Lee C., Chen S., Lin T., Tsai H., Ho K., Wu C. Unsymmetrical Squaraines Incorporating the Thiophene Unit for Panchromatic Dye-Sensitized Solar Cells. Org. Lett.,2010,12(23):5454-5457.
    [73]Zeng W., Cao Y., Bai Y., Wang Y., Shi Y., Zhang M., Wang F., Pan C., Wang P. Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chem. Mater.,2010, 22(5):1915-1925.
    [74]Zhang G., Bala H., Cheng Y., Shi D., Lv X., Yu Q., Wang P. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chem. Commun.,2009(16):2198-2200.
    [75]Sayama K., Tsukagoshi S., Hara K., Ohga Y., Shinpou A., Abe Y., Suga S., Arakawa H. Photoelectrochemical Properties of J Aggregates of Benzothiazole Merocyanine Dyes on a Nanostructured TiO2 Film. J. Phys. Chem. B,2002,106(6):1363-1371.
    [76]Wiberg J., Marinado T., Hagberg D. P., Sun L., Hagfeldt A., Albinsson B. Effect of Anchoring Group on Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cells. J. Phys. Chem. C.,2009,113(9):3881-3886.
    [77]Wiberg J., Marinado T., Hagberg D. P., Sun L., Hagfeldt A., Albinsson B. Distance and Driving Force Dependencies of Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cells(?). J. Phys. Chem. B,2010,114(45):14358-14363.
    [78]Ning Z., Fu Y., Tian H. Improvement of dye-sensitized solar cells:what we know and what we need to know. Energy Environ. Sci.,2010,3(9):1170-1181.
    [79]Ning Z., Zhang Q., Pei H., Luan J., Lu C., Cui Y., Tian H. Photovoltage Improvement for Dye-Sensitized Solar Cells via Cone-Shaped Structural Design. J. Phys. Chem. C., 2009,113(23):10307-10313.
    [80]Ooyama Y., Shimada Y., Kagawa Y., Imae I., Harima Y. Photovoltaic performance of dye-sensitized solar cells based on donor-acceptor π-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes with a carboxyl group at different positions of the chromophore skeleton. Org. Biomol. Chem.,2007,5(13): 2046-2054.
    [81]Ooyama Y., Shimada Y., Ishii A., Ito G., Kagawa Y., Imae I., Komaguchi K., Harima Y. Photovoltaic performance of dye-sensitized solar cells based on a series of new-type donor-acceptor π-conjugated sensitizer, benzofuro[2,3-c]oxazolo[4,5-a]carbazole fluorescent dyes. J. Photochem. Photobiol, A.,2009,203(2-3):177-185.
    [82]Ooyama Y., Shimada Y., Inoue S., Nagano T., Fujikawa Y., Komaguchi K., Imae I., Harima Y. New molecular design of donor-π-acceptor dyes for dye-sensitized solar cells: control of molecular orientation and arrangement on TiO2 surface. New J. Chem.,2011, 35(1):111-118.
    [83]Ooyama Y., Shimada Y., Kagawa Y., Yamada Y., Imae I., Komaguchi K., Harima Y. Synthesis of new-type donor-acceptor π-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole fluorescent dyes and their photovoltaic performances of dye-sensitized solar cells. Tetrahedron Lett.,2007,48(52):9167-9170.
    [84]Ren X., Jiang S., Cha M., Zhou G., Wang Z. Thiophene-Bridged Double D-π-A Dye for Efficient Dye-Sensitized Solar Cell. Chem. Mater.,2012,24(17):3493-3499.
    [85]Numata Y., Islam A., Chen H., Han L. Aggregation-free branch-type organic dye with a twisted molecular architecture for dye-sensitized solar cells. Energy Environ. Sci.,2012, 5(9):8548-8552.
    [86]Seidel G., Mynott R., Furstner A. Elementary Steps of Gold Catalysis:NMR Spectroscopy Reveals the Highly Cationic Character of a "Gold Carbenoid". Angew. Chem. Int. Ed.,2009,48(14):2510-2513.
    [87]Bai Y., Zhang J., Zhou D., Wang Y., Zhang M., Wang P. Engineering Organic Sensitizers for Iodine-Free Dye-Sensitized Solar Cells:Red-Shifted Current Response Concomitant with Attenuated Charge Recombination. J. Am. Chem. Soc.,2011: null-null.
    [88]Yum J., Baranoff E., Wenger S., Nazeeruddin M. K., Gratzel M. Panchromatic engineering for dye-sensitized solar cells. Energy Environ. Sci,2011,4(3):842-857.
    [89]Dias F. B., King S., Monkman A. P., Perepichka I. I., Kryuchkov M. A., Perepichka I. F., Bryce M. R. Dipolar Stabilization of Emissive Singlet Charge Transfer Excited States in Polyfluorene Copolymers. J. Phys. Chem. B,2008,112(21):6557-6566.
    [90]Khazraji A. C., Hotchandani S., Das S., Kamat P. V. Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization. J. Phys. Chem. B,1999,103(22):4693-4700.
    [91]Alex S., Santhosh U., Das S. Dye sensitization of nanocrystalline TiO2:enhanced efficiency of unsymmetrical versus symmetrical squaraine dyes. J. Photochem. Photobiol, A.,2005,172(1):63-71.
    [92]Hara K., Dan-Oh Y., Kasada C., Ohga Y., Shinpo A., Suga S., Sayama K., Arakawa H. Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells. Langmuir,2004,20(10):4205-4210.
    [93]Hamann T. W., Ondersma J. W. Dye-sensitized solar cell redox shuttles. Energy Environ. Sci.,2011,4(2):370-381.
    [94]Miyashita M., Sunahara K., Nishikawa T., Uemura Y., Koumura N., Hara K., Mori A., Abe T., Suzuki E., Mori S. Interfacial Electron-Transfer Kinetics in Metal-Free Organic Dye-Sensitized Solar Cells:Combined Effects of Molecular Structure of Dyes and Electrolytes. J. Am. Chem. Soc.,2008,130(52):17874-17881.
    [95]Wang Z., Kawauchi H., Kashima T., Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordin. Chem. Rev.,2004,248:1381-1389.
    [96]Wang Z., Cui Y., Dan-Oh Y., Kasada C., Shinpo A., Hara K. Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells:Electron Lifetime Improved by Coadsorption of Deoxycholic Acid. J. Phys. Chem. C.,2007,111(19):7224-7230.
    [97]Neale N. R., Kopidakis N., van de Lagemaat J., Gratzel M., Frank A. J. Effect of a Coadsorbent on the Performance of Dye-Sensitized TiO2 Solar Cells:Shielding versus Band-Edge Movement. J. Phys. Chem. B,2005,109(49):23183-23189.
    [98]Koumura N., Wang Z., Mori S., Miyashita M., Suzuki E., Hara K. Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics.J. Am. Chem. Soc.,2006,128(44): 14256-14257.
    [99]Kim C., Choi H., Kim S., Baik C., Song K., Kang M., Kang S. O., Ko J. Molecular Engineering of Organic Sensitizers Containing p-Phenylene Vinylene Unit for Dye-Sensitized Solar Cells. J. Org. Chem.,2008,73(18):7072-7079.
    [100]Zhu W., Wu Y., Wang S., Li W., Li X., Chen J., Wang Z., Tian H. Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response. Adv. Funct. Mater.,2011,21(4):756-763.
    [101]Cui Y., Wu Y., Lu X., Zhang X., Zhou G., Miapeh F. B., Zhu W., Wang Z. Incorporating Benzotriazole Moiety to Construct D-A-π-A Organic Sensitizers for Solar Cells:Significant Enhancement of Open-Circuit Photovoltage with Long Alkyl Group. Chem. Mater.,2011,23(19):4394-4401.
    [102]Liu B., Zhu W., Zhang Q., Wu W., Xu M., Ning Z., Xie Y., Tian H. Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells:tuning photovoltaic performance by structural modification of donor group in donor-π-acceptor system. Chem. Commun.,2009(13):1766-1768.
    [103]Horiuchi T., Miura H., Sumioka K., Uchida S. High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes. J. Am. Chem. Soc.,2004,126(39): 12218-12219.
    [104]Akhtaruzzaman M., Islam A., Yang F., Asao N., Kwon E., Singh S. P., Han L., Yamamoto Y. A novel metal-free panchromatic TiO2 sensitizer based on a phenylenevinylene-conjugated unit and an indoline derivative for highly efficient dye-sensitized solar cells. Chem. Commun.,2011,47(45):12400-12402.
    [105]Chang Y. J., Chow T. J. Triaryl linked donor acceptor dyads for high-performance dye-sensitized solar cells. Tetrahedron,2009,65(46):9626-9632.
    [106]Zhang M., Liu J., Wang Y., Zhou D., Wang P. Redox couple related influences of π-conjugation extension in organic dye-sensitized mesoscopic solar cells. Chem. Sci., 2011,2(7):1401-1406.
    [107]O Regan B. C., Walley K., Juozapavicius M., Anderson A., Matar F., Ghaddar T., Zakeeruddin S. M., Klein C., Durrant J. R. Structure/Function Relationships in Dyes for Solar Energy Conversion:A Two-Atom Change in Dye Structure and the Mechanism for Its Effect on Cell Voltage. J. Am. Chem. Soc.,2009,131(10):3541-3548.
    [108]Koumura N., Wang Z., Miyashita M., Uemura Y., Sekiguchi H., Cui Y., Mori A., Mori S., Hara K. Substituted carbazole dyes for efficient molecular photovoltaics:long electron lifetime and high open circuit voltage performance. J. Mater. Chem.,2009, 19(27):4829-4836.
    [109]Fabregat-Santiago F., Bisquert J., Garcia-Belmonte G., Boschloo G., Hagfeldt A. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energ. Mat. Sol. C.,2005,87(1-4):117-131.
    [110]Marinado T., Nonomura K., Nissfolk J., Karlsson M. K., Hagberg D. P., Sun L Mori S., Hagfeldt A. How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes. Langmuir,2009,26(4):2592-2598.
    [111]Bisquert J., Palomares E., Quinones C. A. Effect of Energy Disorder in Interfacial Kinetics of Dye-Sensitized Solar Cells with Organic Hole Transport Material. J. Phys. Chem. B,2006,110(39):19406-19411.
    [112]Liu J., Zhou D., Xu M., Jing X., Wang P. The structure-property relationship of organic dyes in mesoscopic titania solar cells:only one double-bond difference. Energy Environ. Sci.,2011,4(9):3545-3551.
    [113]Kern R., Sastrawan R., Ferber J., Stangl R., Luther J. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta,2002,47(26):4213-4225.
    [114]Zeng W., Cao Y., Bai Y., Wang Y., Shi Y., Zhang M., Wang F., Pan C., Wang P. Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chem. Mater.,2010, 22(5):1915-1925.
    [115]Wu Y., Marszalek M., Zakeeruddin S. M., Zhang Q., Tian H., Gratzel M., Zhu W. High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells:Molecular Engineering on D-A-π-A Featured Organic Indoline Dyes. Energy Environ. Sci.,2012.
    [116]Kim B., Zhen C., Jeong E. J., Kieffer J., Kim J. Organic Dye Design Tools for Efficient Photocurrent Generation in Dye-Sensitized Solar Cells:Exciton Binding Energy and Electron Acceptors. Adv. Funct. Mater.,2012,22(8):1606-1612.
    [117]Miyashita M., Sunahara K., Nishikawa T., Uemura Y., Koumura N., Hara K., Mori A., Abe T., Suzuki E., Mori S. Interfacial Electron-Transfer Kinetics in Metal-Free Organic Dye-Sensitized Solar Cells:Combined Effects of Molecular Structure of Dyes and Electrolytes. J. Am. Chem. Soc.,2008,130(52):17874-17881.
    [118]Gao F., Wang Y., Shi D., Zhang J., Wang M., Jing X., Humphry-Baker R., Wang P., Zakeeruddin S. M., Gratzel M. Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells. J. Am. Chem. Soc.,2008,130(32): 10720-10728.
    [119]Liang M., Chen J. Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev.,2013,42(8):3453-3488.
    [120]Takacs C. J., Sun Y., Welch G. C, Perez L. A., Liu X., Wen W., Bazan G. C., Heeger A. J. Solar Cell Efficiency, Self-Assembly, and Dipole-Dipole Interactions of Isomorphic Narrow-Band-Gap Molecules. J. Am. Chem. Soc.,2012,134(40): 16597-16606.
    [121]Chen T., Hu W., Song J., Guai G. H., Li C. M. Interface Functionalization of Photoelectrodes with Graphene for High Performance Dye-Sensitized Solar Cells. Adv. Funct Mater.,2012,22(24):5245-5250.
    [122]Lan C., Wu H., Pan T., Chang C., Chao W., Chen C., Wang C., Lin C., Diau E. W. Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells. Energy Environ. Sci.,2012,5(4):6460-6464.
    [123]Wang Z., Koumura N., Cui Y., Takahashi M., Sekiguchi H., Mori A., Kubo T. Furube A., Hara K. Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics:Tuning of Solar-Cell Performance by Structural Modification. Chem. Mater.,2008,20(12):3993-4003.
    [124]Wu Y., Zhu W. Organic sensitizers from D-π-A to D-A-π-A:effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev.,2013,42(5):2039-2058.
    [125]Chang D. W., Lee H. J., Kim J. H., Park S. Y., Park S., Dai L., Baek J. Novel Quinoxaline-Based Organic Sensitizers for Dye-Sensitized Solar Cells. Org. Lett.,2011, 13(15):3880-3883.
    [126]Wu Y., Zhang X., Li W., Wang Z., Tian H., Zhu W. Hexylthiophene-Featured D-A-π-A Structural Indoline Chromophores for Coadsorbent-Free and Panchromatic Dye-Sensitized Solar Cells. Advanced Energy Materials,2012,2(1):149-156.
    [127]Li W., Wu Y., Zhang Q., Tian H., Zhu W. D-A-π-A Featured Sensitizers Bearing Phthalimide and Benzotriazole as Auxiliary Acceptor:Effect on Absorption and Charge Recombination Dynamics in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces, 2012,4(3):1822-1830.
    [128]Ding W., Wang D., Geng Z., Zhao X., Xu W. Density functional theory characterization and verification of high-performance indoline dyes with D-A-π-A architecture for dye-sensitized solar cells. Dyes Pigments,2013,98(1):125-135.
    [129]Shi J., Chen J., Chai Z., Wang H., Tang R., Fan K., Wu M., Han H., Qin J., Peng T., Li Q., Li Z. High performance organic sensitizers based on 11,12-bis(hexyloxy) dibenzo[a,c]phenazine for dye-sensitized solar cells. J. Mater. Chem.,2012,22(36): 18830-18838.
    [130]Lu X., Feng Q., Lan T., Zhou G., Wang Z. Molecular Engineering of Quinoxaline-Based Organic Sensitizers for Highly Efficient and Stable Dye-Sensitized Solar Cells. Chem. Mater.,2012,24(16):3179-3187.
    [131]Li S., Lee C., Kuo H., Ho K., Sun S. High-Performance Dipolar Organic Dyes with an Electron-Deficient Diphenylquinoxaline Moiety in the π-Conjugation Framework for Dye-Sensitized Solar Cells. Chem. Eur. J.,2012,18(38):12085-12095.
    [132]Pei K., Wu Y., Wu W., Zhang Q., Chen B., Tian H., Zhu W. Constructing Organic D-A-π-A-Featured Sensitizers with a Quinoxaline Unit for High-Efficiency Solar Cells: The Effect of an Auxiliary Acceptor on the Absorption and the Energy Level Alignment. Chem. Eur. J.,2012,18(26):8190-8200.
    [133]Ning Z., Zhou Y., Zhang Q., Ma D., Zhang J., Tian H. Bisindolylmaleimide derivatives as non-doped red organic light-emitting materials. J. Photochem. Photobiol., A.,2007,192(1):8-16.
    [134]Wu K., Li C., Chi Y., Clifford J. N., Cabau L., Palomares E., Cheng Y., Pan H., Chou P. Dye Molecular Structure Device Open-Circuit Voltage Correlation in Ru(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc.,2012,134(17):7488-7496.
    [135]Chang Y. J., Chow T. J. Highly efficient triarylene conjugated dyes for sensitized solar cells. J. Mater. Chem.,2011,21(26):9523-9531.
    [136]Katoh R., Furube A., Mori S., Miyashita M., Sunahara K., Koumura N., Hara K. Highly stable sensitizer dyes for dye-sensitized solar cells:role of the oligothiophene moiety. Energy Environ. Sci.,2009,2(5):542-546.
    [137]Zhang S., Yang X., Numata Y., Han L. Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci.,2013,6(5):1443-1464.
    [138]Wu Y., Zhu W. Organic sensitizers from D-π-A to D-A-π-A:effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev.,2013,42(5):2039-2058.
    [139]Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science,2011,334 (6056):629-634.
    [140]Cai N., Wang Y., Xu M., Fan Y., Li R., Zhang M., Wang P. Engineering of Push-Pull Thiophene Dyes to Enhance Light Absorption and Modulate Charge Recombination in Mesoscopic Solar Cells. Adv. Funct. Mater.,2013,23(14): 1846-1854.
    [141]Cai N., Li R., Wang Y., Zhang M., Wang P. Organic dye-sensitized solar cells with a cobalt redox couple:influences of π-linker rigidification and dye-bath solvent selection. Energy Environ. Sci.,2013.
    [142]Zhang J., Yao Z., Cai Y., Yang L., Xu M., Li R., Zhang M., Dong X., Wang P. Conjugated linker correlated energetics and kinetics in dithienopyrrole dye-sensitized solar cells. Energy Environ. Sci.,2013,6(5):1604-1614.
    [143]Zhang M., Wang Y., Xu M., Ma W., Li R., Wang P. Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadithiophene-benzothiadiazole. Energy Environ. Sci.,2013,6(10):2944-2949.
    [144]Liu B., Li W., Wang B., Li X., Liu Q., Naruta Y., Zhu W. Influence of different anchoring groups in indoline dyes for dye-sensitized solar cells:Electron injection, impedance and charge recombination. J. Power Sources,2013,234(0):139-146.
    [145]Liu J., Yang X., Islam A., Numata Y., Zhang S., Salim N. T., Chen H., Han L. Efficient metal-free sensitizers bearing circle chain embracing π-spacers for dye-sensitized solar cells. Journal of Materials Chemistry A,2013,1(36):10889-10897.
    [146]Kim Y., Yeom H. R., Kim J. Y., Yang C. High-efficiency polymer solar cells with a cost-effective quinoxaline polymer through nanoscale morphology control induced by practical processing additives. Energy Environ. Sci.,2013,6(6):1909-1916.
    [147]Chen H., Chen Y., Liu C., Chien Y., Chou S., Chou P. Prominent Short-Circuit Currents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of 8.0%. Chem. Mater.,2012,24(24):4766-4772.
    [148]Pei K., Wu Y., Islam A., Zhang Q., Han L., Tian H., Zhu W. Constructing High-Efficiency D-A-π-A-Featured Solar Cell Sensitizers:a Promising Building Block of 2,3-Diphenylquinoxaline for Antiaggregation and Photostability. ACS Appl. Mater. Interfaces,2013,5(11):4986-4995.
    [149]Choi H., Baik C., Kang S. O., Ko J., Kang M., Nazeeruddin M. K., Gratzel M. Highly Efficient and Thermally Stable Organic Sensitizers for Solvent-Free Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed.,2008,47(2):327-330.
    [150]Yum J., Hagberg D. P., Moon S., Karlsson K. M., Marinado T., Sun L., Hagfeldt A., Nazeeruddin M. K., Gratzel M. A Light-Resistant Organic Sensitizer for Solar-Cell Applications. Angew. Chem. Int. Ed.,2009,48(9):1576-1580.
    [151]Nishida J., Masuko T., Cui Y., Hara K., Shibuya H., Ihara M., Hosoyama T., Goto R., Mori S., Yamashita Y. Molecular Design of Organic Dye toward Retardation of Charge Recombination at Semiconductor/Dye/Electrolyte Interface:Introduction of Twisted π-Linker. J. Phys. Chem. C.,2010,114(41):17920-17925.
    [152]Yum J., Baranoff E., Wenger S., Nazeeruddin M. K., Gratzel M. Panchromatic engineering for dye-sensitized solar cells. Energy Environ. Sci.,2011,4(3):842-857.
    [153]Wu Y., Zhang X., Li W., Wang Z., Tian H., Zhu W. Hexylthiophene-Featured D-A-π-A Structural Indoline Chromophores for Coadsorbent-Free and Panchromatic Dye-Sensitized Solar Cells. Advanced Energy Materials,2012,2(1):149-156.
    [154]Bonhote P., Gogniat E., Tingry S., Barbe C., Vlachopoulos N., Lenzmann F., Comte P., Gratzel M. Efficient Lateral Electron Transport inside a Monolayer of Aromatic Amines Anchored on Nanocrystalline Metal Oxide Films. J. Phys. Chem. B,1998, 102(9):1498-1507.
    [155]Meyer T. J., Meyer G. J., Pfennig B. W., Schoonover J. R., Timpson C. J., Wall J. F., Kobusch C., Chen X., Peek B. M. Molecular-Level Electron Transfer and Excited State Assemblies on Surfaces of Metal Oxides and Glass. Inorg. Chem.,1994,33(18): 3952-3964.
    [156]Ooyama Y., Harima Y. Photophysical and Electrochemical Properties, and Molecular Structures of Organic Dyes for Dye-Sensitized Solar Cells. Chemphyschem, 2012,13(18):4032-4080.
    [157]Ooyama Y., Harima Y. Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells. Eur. J. Org. Chem.,2009,2009(18):2903-2934.
    [158]O Regan B. C., Durrant J. R. Kinetic and Energetic Paradigms for Dye-Sensitized Solar Cells:Moving from the Ideal to the Real. Acc. Chem. Res.,2009,42(11): 1799-1808.
    [159]van de Lagemaat J., Park N. G., Frank A. J. Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells:A Study by Electrical Impedance and Optical Modulation Techniques. J. Phys. Chem. B,2000,104(9):2044-2052.
    [160]Fabregat-Santiago F., Bisquert J., Garcia-Belmonte G., Boschloo G., Hagfeldt A. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energ. Mat. Sol. C.,2005,87(1-4):117-131.
    [161]Bisquert J. Chemical capacitance of nanostructured semiconductors:its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys.,2003,5(24): 5360-5364.
    [162]Fabregat-Santiago F., Garcia-Belmonte G., Mora-Sero I., Bisquert J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys.,2011,13(20):9083-9118.
    [163]Cai N., Zhang J., Xu M., Zhang M., Wang P. Improving the Photovoltage of Dithienopyrrole Dye-Sensitized Solar Cells via Attaching the Bulky Bis(octyloxy)biphenyl Moiety to the Conjugated π-Linker. Adv. Funct. Mater.,2013, 23(28):3539-3547.
    [164]Cai N., Wang Y., Xu M., Fan Y.,Li R., Zhang M., Wang P. Engineering of Push-Pull Thiophene Dyes to Enhance Light Absorption and Modulate Charge Recombination in Mesoscopic Solar Cells. Adv. Funct. Mater.,2013,23(14): 1846-1854.
    [165]Zhang M., Wang Y., Xu M., Ma W., Li R., Wang P. Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadithiophene-benzothiadiazole. Energy Environ. Sci.,2013,6(10):2944-2949.
    [166]Cheng M., Yang X., Li J., Zhang F., Sun L. Co-sensitization of Organic Dyes for Efficient Dye-Sensitized Solar Cells. ChemSusChem,2013,6(1):70-77.
    [167]Shi Y., Liang M., Wang L., Han H., You L., Sun Z.,Xue S. New Ruthenium Sensitizers Featuring Bulky Ancillary Ligands Combined with a Dual Functioned Coadsorbent for High Efficiency Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces,2012,5(1):144-153.
    [168]Barea E. M., Ortiz J., Paya F. J., Fernandez-Lazaro F., Fabregat-Santiago F., Sastre-Santos A., Bisquert J. Energetic factors governing injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers. Energy Environ. Sci., 2010,3(12):1985-1994.
    [169]Qin C., Numata Y., Zhang S., Islam A., Yang X., Sodeyama K., Tateyama Y., Han L. A Near-Infrared cis-Configured Squaraine Co-Sensitizer for High-Efficiency Dye-Sensitized Solar Cells. Adv. Funct. Mater.,2013:n/a-n/a.
    [170]Li G., Liang M., Wang H., Sun Z., Wang L., Wang Z., Xue S. Significant Enhancement of Open-Circuit Voltage in Indoline-Based Dye-Sensitized Solar Cells via Retarding Charge Recombination. Chem. Mater.,2013,25(9):1713-1722.
    [171]Blouin N., Michaud A., Gendron D., Wakim S., Blair E., Neagu-Plesu R., Belletete M., Durocher G., Tao Y., Leclerc M. Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. J. Am. Chem. Soc.,2007,130(2):732-742.
    [172]Ying W., Yang J., Wielopolski M., Moehl T., Moser J., Comte P., Hua J., Zakeeruddin S. M., Tian H., Gratzel M. New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells. Chem. Sci.,2014,5(1):206-214.
    [173]Ding W., Wang D., Geng Z., Zhao X., Yan Y. Molecular Engineering of Indoline-Based D-A-π-A Organic Sensitizers toward High Efficiency Performance from First-Principles Calculations.J. Phys. Chem. C.,2013,117(34):17382-17398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700