Th细胞在类风湿关节炎中的作用及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类风湿关节炎(rheumatoid arthritis, RA)是一种以关节炎为主要临床表现的自身免疫性疾病,其特征是以大量T淋巴细胞浸润的慢性滑膜炎。迄今为止,发病机制还不甚明确,但发病机制中未知抗原被递呈给T辅助细胞(T Helper Cell, Th细胞)是一重要环节,已有大量文献证明Th细胞和细胞因子在RA发病中起重要作用。CD4+T细胞与不同的初始抗原接触,接受不同的信号模式,可分化为4种不同的Th细胞亚型,分别为Th1、Th2、Th17细胞以及调节性T细胞(Treg细胞)。尽管Th细胞的活化是一个关键的保护性免疫反应过程,但不同的Th细胞亚型在类风湿关节炎中发挥着不同的作用,Th细胞除了通过分泌细胞因子和趋化因子发挥作用以外,细胞与细胞之间的直接接触也是其作用方式之一。总之,Th细胞分化过程的紊乱就会引起免疫病理反应,从而导致自身免疫性疾病。
     19世纪80年代认为Th细胞在类风湿关节炎中起着重要作用,其中,Th1细胞驱动疾病的发生与疾病炎症有关,而Th2细胞在一定程度上对抗炎症。由于Th1和Th2细胞呈极化分化,在正常情况下,Th1和Th2细胞相互促进,相互制约,使机体Th1/Th2细胞维持一定的平衡。在某种特定的病理环境中,可能导致Th1/Th2的失衡,首先可能是Th1和Th2细胞数量分化不平衡,使得Th1和Th2细胞所分泌的炎性细胞因子和抗炎细胞因子失衡,从而启动疾病的发生。自从上世纪末和本世纪初,先后认识Treg细胞和Th17细胞以来,发现Th17细胞加重炎症和延续破坏进程,而Treg细胞在对抗炎症和维持自身免疫耐受以及调节免疫反应中起着关键的作用,相关的研究认为Th17细胞和Treg细胞在RA的发病过程中,尤其是在疾病的后期起着更为关键的作用,因此,我们推测认为:Th17/Treg细胞的失衡可能与Th1/Th2细胞一样参与了疾病的发生和发展。但鉴于Thl、Th2、Th17细胞以及Treg细胞均有CD4+T细胞分化而来,并且相互作用,相互抑制,形成一个非常复杂的网络,所以,这一新的发病模式必须经过进一步的证实。目前国内外均未发现这方面的研究,本研究旨在细胞、蛋白以及基因水平上,对Th1细胞、Th2细胞、Th17细胞以及Treg细胞对类风湿关节炎作用进行初步探讨。
     目的
     本研究通过分离RA患者外周血淋巴细胞、血清并提取RNA,检测其淋巴细胞的凋亡和Th1、Th2、Th17细胞以及Treg细胞数量、相关细胞因子血清浓度和各亚型的特异性转录因子表达状况,初步探讨Th亚型细胞在RA的作用及其意义。
     方法
     首先将入选的RA患者根据DAS28,分为DAS28≤3.2组,3.25.1组;将外周血淋巴细胞,加入3H-TdR培养24h,过滤、固定、烘干后,用液体闪烁计数仪测定每分钟衰变值;同时将淋巴细胞加入双层琼脂糖凝胶中,裂解、解旋、电泳、染色,应用CASP彗星图像分析软件进行自动分析,初步分析RA患者淋巴细胞代谢与疾病的关系;对淋巴细胞CD4、PI、AnnexV进行标记,运用FCM检测CD4+淋巴细胞的凋亡率,分析CD4+T淋巴细胞凋亡与疾病的关系:对外周血淋巴细胞进行培养、刺激以及胞内外标记,运用FCM检测Th1细胞、Th2细胞、Th17细胞以及Treg细胞数量,进一步分析Th细胞与疾病的关系;分离外周血清,应用CBA和ELISA法检测Th细胞相关细胞因子水平,进一步说明Th细胞功能与疾病的关系;同时运用RT-PCR测定Th细胞特异性转录因子,在基因水平上,验证Th细胞与疾病的关系。各组实验数据以均数±标准差(x±s)或中位数±四分位数间距(M±QR)表示。两组数据间的差异用t检验或Wilcoxon检验和Kruskal-Wallis H检验,P<0.05或P<0.0083为差异有显著性。
     结果
     1.RA患者外周淋巴细胞DNA代谢状况比正常对照者活跃,两者比较无统计学意义(P>0.05);RA患者外周淋巴细胞DNA损伤低于正常对照者,两者比较无统计学意义(P>0.05);RA患者外周CD4+T淋巴细胞凋亡率低于正常对照者,两者比较有统计学意义(P<0.05)。
     2.Th1细胞在RA患者外周淋巴细胞中的百分率高于正常人,两者比较有统计学意义(P<0.05);Th2细胞在RA患者外周淋巴细胞中的百分率高于正常人,两者比较无统计学意义(P>0.05);Th17细胞在RA患者外周淋巴细胞中的百分率高于正常人,两者比较有统计学意义(P<0.05);Treg细胞在RA患者外周淋巴细胞中的百分率低于正常人,两者比较有统计学意义(P<0.05)。
     3. DAS28≤3.2的RA患者Th1和Th2细胞在外周淋巴细胞所占的百分率大于正常人,两者比较无统计学意义(P>0.05),Th17细胞在外周淋巴细胞所占的百分率小于正常人,两者比较有统计学意义(P<0.05),Treg细胞在外周淋巴细胞所占的百分率小于正常人,两者比较无统计学意义(P>0.05);3.20.05),Th17细胞在外周淋巴细胞所占的百分率大于正常人,两者比较有统计学意义(P<0.05),Treg细胞在外周淋巴细胞所占的百分率小于正常人,两者比较无统计学意义(P>0.05);DAS28>5.1的RA患者Th1和Th17细胞在外周淋巴细胞所占的百分率为大于正常人,两者比较有统计学意义(P<0.05),Treg细胞在外周淋巴细胞所占的百分率小于正常人,两者比较有统计学意义(P<0.05),Th2细胞在外周淋巴细胞所占的百分率大于正常人,两者比较无统计学意义(P>0.05)。
     4.RA患者IL-2、IL-4、IL-6、IL-10、IL-17A, IFN-y和TNF-a的血清浓度均增高,与正常人比较有统计学意义(P<0.0083);TGF-β血清浓度也增高,与正常人比较无统计学意义(P>0.083)。
     5. DAS28≤3.2的RA患者IL-2. IL-4和TNF-α血清浓度大于正常人,两者比较有统计学意义(P<0.0083),IL-6、IL-10和IL-17A血清浓度大于正常人,两者比较无统计学意义(P>0.0083),IFN-γ和TGF-β血清浓度小于正常人,两者比较无统计学意义(P>0.0083);3.20.0083);DAS28>5.1的RA患者IL-2、IL-4、IL-6、IL-10、IL-17A、IFN-y和TNF-a血清浓度均大于正常人,两者比较有统计学意义(P<0.0083);TGF-β血清浓度大于正常人,与正常人比较无统计学意义(P>0.0083)。
     6.RA患者Th1、Th2、Th17、Treg细胞四种特异性转录因子T-bet、GATA-3、ROR-γt、Foxp3 mRNA在RA的表达量分别为17.01、26.12、28.31、29.11。
     结论
     1.RA患者外周血CD4+T淋巴细胞异常增殖,可能是由于凋亡受阻造成的。
     2. Th17/Treg细胞与Thl/Th2-一样在RA中发挥着重要的作用,可能在不同的时期参与疾病的发生和发展。
     3.Th细胞分泌的细胞因子促使促炎因子与抗炎因子的失衡,从而参与RA的发病。
     4. Th1、Th2和Th17细胞是通过分泌细胞因子起作用的,而Treg细胞是通过细胞间的直接接触来对抗炎症的。
     5. Th1、Th2、Th17和Treg细胞的特异性转录因子T-bet. ROR-γt、GATA-3、Foxp3 mRNA在RA患者中均有表达。
Rheumatoid arthritis is a kind of chronic autoimmune disease with the joints inflammation characterized by a large number of T lymphocytes infiltration in the synovial. To now, the pathogenic mechanism in RA is also unclear. However that the unknown antigen is presented to T helper (Th) cells is at the hub in the pathogenesis.There are a lot of data that suggest Th types and cytokines contribute to the pathogenesis in RA. Naive conventional CD4 T cells have open to their 4 distinct fates that are determined by the pattern of signals during their initial interaction with antigen.These 4 population are Thl,Th2, Th17 and regulatory T (Treg) cells. They exert such functions mainly through secreting cytokines and chemokines that play different functions. Th cells play a central role in cellular defence against pathogens as well as in cellular self-tolerance. The activation of Th cells is a crucial process determining the course of a protective immune response. Dysregulated activation processes can lead to pathologic immune reactions and may induce autoimmune diseases.
     Th cells are at the hub of this paradigm, which was developed in the 1980s. Many studies led to the belief that RA was a Thl-driven disease. The Thl phenotype is associated with inflammation in RA, whereas the Th2 phenotype copes with inflammation to some extent. The excess of pro-inflammatory cytokines and relative deficiency in anti-inflammatory cytokines define the Thl/Th2 imbalance, which was believed to drive RA. The Th17 cells increase the process of inflammation and joints destruction in RA. Treg cells play a critical role in competing with inflammation and maintaining self-tolerance as well as regulating immune responses. The study belive that Th17 cells and Treg cells play a important role, especially in the latter process. Although Treg cells play a critical role in the pathogenesis in RA, the imbalance of Thl/Th2 and Thl7/Treg may be the pathogenic mechanism of RA. It has been speculated that Thl7/Treg cells may be involved in the occurrence of disease and development as Thl/Th2 cells. Given Thl, Th2, Thl7 cells and Treg cells are differentiated from CD4+T cell, it is a very complex network which is mutuall interaction and inhibition in the four phenotype cells. The new paradigm must be further confirmed. But the speculation haven't been studied by our or foreign workers. To further explore the action of the Th1,Th2, Th17 and regulatory T cells to rheumatoid arthritis, we have the study in cell, protein and gene level.
     Objective
     To investigate the effect of lymphocyte apoptosis, Thl cells,Th2 cells, Th17 cells, Treg cells and related cytokines in RA.The study detected the number and function of the four phenotype cells and the expression of transcription factor subtypes by detecting the peripheral blood lymphocytes,blood serum and lymphocytic mRNA in patients with RA.
     Methods
     Firstly,all the RA patients selected into this study were divided into different disease activity groups according to Disease Activity Score.The 3H-TdR was added to the peripheral blood lymphocytes for 24 hours and then filtered,fixed, dried and measured the decay of values per minute using liquid scintillation counting. At the same time the lymphocytes were added into the dual-layer agarose gel, cracked, unwinded, electrophored and stained. Analysis CASP comet image automatic analysis software illustrated the relationship between lymphocytes metabolism and the disease preliminarily. The lymphocytes were marked by CD4, PI, AnnexinⅤand then detected apoptosis of CD4+lymphocyte by flow cytometry to analysis the relationship between the CD4+lymphocyte apoptosis and diseases in RA furtherly.The peripheral blood mononuclear cells were cultured, stimulated, as well as in vivo markered and then detected the number of the Thl phenotype cells, Th2 phenotype cells, Th17 phenotype cells and Treg phenotypes cell number to analysis the relationship between the various subtypes of Th cell and disease in RA furtherly. The relevant levels of cytokines in peripheral blood were found through the Cytometric Bead Array and Enzyme-linked Immunosorbent Assay to detect the relationship between function of the various subtypes of Th cell and the desease in RA. Finally, The RNA in Peripheral blood mononuclear cells were extracted and measured expression of transcription factors of the four phenotypes cells by Real Time PCR. All data were expressed as Mean±standard deviation (x±s) or median±quartile range(M±QR). The difference between different groups was assessed with t-test or Wilcoxon-test and Kruskal-Wallis H-test. If the pvalue was less than 0.05 or 0.0083,It was considered to be a statistically significant difference.
     Results
     1. The DNA metabolic activity of peripheral lymphocyte was higher in RA compared with the control, but there was no statistical significance (P> 0.05); The DNA damage of peripheral lymphocytes in RA was higher compared with the control,but there was no statistical significance (P> 0.05); The apoptosis of CD4+T lymphocyte was lower than the control,but there was no statistical significance (P<0.05).
     2. The percentage of Thl cells in peripheral lymphocyte in RA was higher than that in the control, but there was statistical significance (P<0.05); The percentage of Th2 cells in peripheral lymphocyte in RA was higher than that in the control, but there was no statistical significance (P>0.05); The percentage of Thl7 cells in peripheral lymphocyte in RA was higher than that in the control, but there was statistical significance (P<0.05); The percentage of Treg cells in peripheral lymphocyte in RA was higher than that in the control, but there was statistical significance (P<0.05);
     3. The percentage of Thl and Th2 cells in peripheral lymphocyte in RA with DAS28≤3.2 was higher than that in the control, but there was no statistical significance (P>0.05), The percentage of Th17 cells in peripheral lymphocyte in RA was higher than that in norma and there was statistical significance (P<0.05), The percentage of Treg cells in peripheral lymphocyte in RA was lower than that in the control and there was no statistical significance (P>0.05); The percentage of Thl and Th2 cells in peripheral lymphocyte in RA with 3.2 0.05), The percentage of Th17 cells in peripheral lymphocyte in RA was higher than that in the control and there was statistical significance (P<0.05), The percentage of Treg cells in peripheral lymphocyte in RA was lower than that in the control, but there was no statistical significance (P>0.05); The percentage of Thl and Thl7 cells in peripheral lymphocyte in RA with DAS28>5.1 was higher than that in the control and there was statistical significance (P <0.05); The percentage of Treg cells in peripheral lymphocyte in RA was lower than that in the control and there was statistical significance (P>0.05),The percentage of Th2 cells in peripheral lymphocyte in RA was higher than that in the control, but there was no statistical significance (p>0.05).
     4. The serum concentration of IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-y and TNF-a in RA were increased compared with the control,and there was statistically significant (p<0.05); The level of TGF-βwas also increased compared with the control,but there was no statistical significance (P> 0.05).
     5. The serum concentration of IL-2, IL-4 and TNF-a in RA with DAS28≤3.2 was increased compared with the control, and there was statistical significance (P<0.0083); The serum concentration of IL-6, IL-10 and IL-17A was greater than the control,but there was no statistical significance (p> 0.0083);The serum concentration of IFN-γand TGF-βwas lower than control,but there was no statistical significance (p> 0.0083); The serum concentration of IL-2, IL-6, IL-10 and IL-17A in RA with 3.2 0.0083);The serum concentration of IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-y and TNF-a in RA patients with DAS28> 5.1 was increasd compared with the control,and there was statistical significance (p<0.0083); Althoght the serum concentration of TGF-P was higher compared with the control,but there was no statistical significance (P> 0.0083).
     6. The expression level of T-bet, ROR-yt, GATA-3, Foxp3 mRNA that is dividely specific transcription factor of Thl, Th2, Th17 and Treg cells in RA is 17.01,26.12,28.31,29.11.
     Conclusion
     1. The proliferation CD4+T lymphocytes in RA patients are abnormal.It may be due to obstruction caused by apoptosis.
     2. The Th17/Treg cells play an important role in RA as Thl/Th2 cells. They may be involved in different stages of occurrence and development in the disease.
     3. TheTh cells secrete cytokines to promote pro-inflammatory cytokines and anti-inflammatory factor in the imbalance, which participate in the pathogenesis of RA.
     4. The Thl, Th2 and Th17 cells work by secreting cytokines, while Treg cells cope with the inflammation through direct contact between cells.
     5. The T-bet, ROR-yt, GATA-3 and Foxp3 mRNA which are special transcription factor of the Thl, Th2,Th17 and Treg cells are expressed respectively in RA patients.
引文
[1]WagnerUG, Koetz K, Weyand CM, et al. Perturbation of the T cell repertoire in rheumatoid arthritis. ProcNatl Acad Sci USA,1998,95:14447-14452
    [2]吴东海,关于早期类风湿关节炎的几点思索.中华风湿病学杂志,2004,8(3):129-130
    [3]Gerald T. Nepom the role of the DR4 shared epitope in selection and autoreactive T cells in rheumatoid arthritis[J]. Rheumatic disease clinics of north America,2001,27 (2):305-313
    [4]Liu HT, Pope RM. The role of apop tosis in rheumatoid arthritis.CurrOp in Pharma,2003,3: 317-322
    [5]Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helperT cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol,1986,136:2348-2357
    [6]Killar L, MacDonald G, West J,et al.Ia-restricted T cells that do not produce interleukin 4(IL 4)/B cell stimulatoryfactor 1(BSF-1) fail to help antigen-specificB cells. J Immunol, 1987,138:1674-1679
    [7]Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell,1994,76(2):241-251
    [8]Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell,1996,85:307-310
    [9]Steinman L. A brief history of T(H)17:the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med,2007,13:139-145
    [10]Nadkarni S, Mauri C, Ehrenstein MR. Anti-TNF-a therapy induces a distinct regulatory T cellpopulation in patients with rheumatoid arthritis via TGF-p. J Exp Med,2007,204:33-39
    [11]Van ParijsL, AbbasAK. Homeostasis and self2tolerance in the immune system: turning lymphocytes off. Science,1998,280:243-248
    [12]Boussiotis VA, Lee BJ, Freeman GJ, et al. Induction of T cell clonal anergy results in resistance, whereas CD28-mediated costimulation primes for susceptibility to Fas-and Bax-mediated programmed cell death. J Immunol,1997,159 (7):3156-3167
    [13]Cantwell MJ, Hua T, Zvaifler NJ, et al. Deficient Fas ligand expression by synovial lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum,1997,40 (9):1644-1652
    [14]Fasunuma T, Kayagaki N, Asahara H,et al. Accumulation of soluble Fas in inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum,1997,40 (1):80-86
    [15]Fujisawa K, Asahara H, Okamoto K,et al. Therapeutic effect of the anti-Fas antibody on arthritis in HTLV-1 tax transgenic mice. J Clin Invest,1996,98 (2):271-278
    [16]Cope AP. Studies of T2cell activation in chronic inflammation. Arthritis Res,2002, 4(Suppl3):197-211
    [17]Vallejo AN, SchirmerM, Weyand CM, et al. Clonality and longevity of CD4+CD28null T cells are associated with defects in apop toticpathways. J Immunol,2000,165:6301-6307
    [18]Catrina A I, Ulfgren AK, Lindblad S, et al. Low levels of apoptosis and high FL IP exp ression in early rheumatoid arthritis synovium.Ann Rheum Dis,2002,61:934-936
    [19]Fontenot JD, RudenskyAY. A well adap ted regulatory contrivance:regulatory T cell development and the forkheadfamily transcrip tion factor Foxp3. Nat Immunol,2005,6 (4): 331-337
    [20]Szabo SJ,Kim ST,Costa GL, et al. A novel transcription factor, T-bet, directs Thl lineage commitment.cell,2000,100:655-659
    [21]WagnerUG, Koetz K, Weyand CM, et al. Perturbation of the T cell repertoire in rheumatoid arthritis. Proc Natl Acad Sci USA,1998,95:14447-14452
    [22]American College of Rheumatology. American College of Rheumatology 2008Recommendations for the Use of Nonbiologic and Biologic Disease-Modifying Antirheumatic Drugsin Rheumatoid Arthritis.Arthritis & Rheumatism (Arthritis Care & Research),2008,59(6):762-784
    [23]Jian-Ming Yang,Marc Arnush, Qiong-Yu Chen.Cadminu-induced damage to primary cultures of rat Leydig cells. Reproducctive Toxicology,2003, (17):553-560
    [24]Nossal GJ. B lymphocyte physiology:the beginning and the end.Ciba Found Symp, 1997,204:220-30
    [25]Pani G, Kozlowski M, Cambier JC,et al. Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling J Exp Med,1995,181 (6):2077-2084
    [26]陶怡,陈瑞林,黄成辉等.类风湿关节炎患者外周血淋巴细胞的凋亡及其意义,现代临床医学生物工程学杂志,2006,12(6):464-467
    [27]Krammer PH.CD95 (APO21/Fas) mediated apop tosis:live and let die.Adv Immunol, 1999,71:163-210
    [28]Schirmer M,Vallejo A M,Weyand C M. Resistance to apoptosis and elevated expression of Bcl22 in clonally expanded CD4+CD28-T cells from rheumatoid arthritis patients.J Immunol,1998,161:1018-1025
    [29]张浩,董书魁,李雪丽,等.类风湿关节炎患者滑膜组织和外周血CD4+T细胞的凋亡分析.中国免疫学杂志,2003,19:872-873
    [30]Schedel J, Gay RE, Kuenzler P, et al. FLICE-inhibitory protein expression in synovial fibroblasts and at sites of cartilageand bone erosion in rheumatoid arthritis. Arthritis Rheum, 2002,46:1512-1516
    [31]Catrina AI, Ulfgren AK, Lindblad S, et al. Low levels of apoptosis and high FLIP expression in early rheumatoid arthritis synovium.Ann Rheum Dis,2002,61:934-936
    [32]Proussakova OV, Rabaya NA, Moshnikova AB, et al.Oligomerization of soluble Fas antigen induces its cytotoxicity. J Biol Chem,2003,38:36236-36241
    [33]Jian-Ming Yang, Marc Arnush, Qiong-Yu Chen.Cadminu-induced damage to primary cultures of rat Leydig cells. Reproducctive Toxicology,2003,, (17):553-560
    [34]Bendelac A, Savage PB, Teyton L. The biology of NK T cells. Annu Rev Immunol,2007,25:297-336
    [1]Manoury-Schwartz B, et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-receptors, J Immunol,1997(158):5501-5506
    [2]Vermeire K, et al. Accelerated collagen-induced arthritis in IFN-γ. receptor-deficient mice, J. Immunol,1997(158),5507-5513
    [3]Mosmann TR, Cherwinski H,Bond MW,et al. Two types of murine helper T cell clone I Definition according to profiles of lymphokine activities and secreted proteins.J Immunol.1986,136:2348-2357
    [4]Sakaguchi S,Sakaguchi N,Asano M,et al.Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor chains(CD25).Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol,1995,160(3):1151-1164
    [5]Harrington LE,Mangan PR,Weaver CT.Expanding the effector CD4 T-cell repertoire:the Th17 lineage.Curr Opin Immunol,2006,18(3):349-356
    [6]Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol 2002,2:933-944
    [7]Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell,1996,85:307-310
    [8]Veys EM, Menkes CJ,Emery PA,et al. randomized double-blind study comparing twenty-four-weektreatment with recombinant interferon-versus placebo in the treatment of rheumatoid arthritis.Arthritis Rheum,1997,(40):62-68
    [9]Vallejo AN, SchirmerM, Weyand CM, et al. Clonality and longevity of CD4+CD28null T cells are associated with defects in apop toticpathways.J Immunol,2000,165:6301-6307
    [10]WagnerUG, Koetz K, Weyand CM, et al. Perturbation of the T cell repertoire in rheumatoid arthritis. Proc Natl Acad Sci USA,1998,95:14447-14452
    [11]Manoury-Schwartz B, Chiocchia G, Bessis N, et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors. J Immunol,1997;158:5501-5506.
    [12]Boissier MC, Chiocchia G, Bessis N, et al. Biphasic effect of interferongamma in murine collagen-induced arthritis. Eur J Immunol,1995,25:1184-1190
    [13]Sakaguchi S,Sakaguchi N,Asano M,et al.Immunologic self-tolerance maintained by activated T cells expressing IL-2 recepor chains(CD25).Breakdown of a single mechanism of self-tolerance cause various autoimmune diseases.J Immunol,1995,160(3):1151-1164
    [14]Sakaguchi S,Sakaguchi N,Shimizu J,et al.Immunologic tolerance maintained by CD25+CD4+regulatory T cells:their common role in controlling autoimmunity,tumor immunity,and transplantation tolerance.Immunol Rev,2001,182:18-32
    [15]Harrington LE,Hatton RD,Mangan PR,et al.Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages.Nat Immunol,2005,6(11):1123-1132
    [16]Miossec P. Interleukin-17 in rheumatoid arthritis.if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum,2003,48:594-601
    [17]Chabaud M, Durand JM, Buchs N,et al.Human interleukin-17:a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum, 1999,42:963-970
    [18]Raza K, Scheel-Toellner D, Lee CY, et al. Synovial fluid leukocyte apoptosis is inhibited in patients with very early rheumatoid arthritis. Arthritis Res Ther,2006,8:120
    [19]Fossiez F, Djossou O, Chomarat P,et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med,1996,183:2593-2603
    [20]Jovanovic DV, DiBattista JA, Martel-Pelletier J, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-lbeta and TNF-alpha,by human macrophages. J Immunol,1998,160:3513-3521
    [21]Sakaguchi S, Sakaguchi N, Asano et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995,155:1151-1164
    [22]Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein,scurfin, results in the fatal lymphoproliferative disorderof the scurfy mouse. Nat Genet,2001,27:68-73
    [23]Sakaguchi S. Regulatory T cells:Key controllers of immuno logic self-tolerance. Cell,2000, 101:455-458
    [24]Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P,et al.Soumelis V:A critical function for transforming growth factorbeta,interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nature Immunology,2008,9:650-657
    [25]Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmuneinflammation. J Exp Med,2005,201:233-240
    [26]Mangan PR, Harrington LE, Quinn DB, et al. Transforminggrowth factor-beta induces development of the T (H)17 lineage.Nature,2006,441:231-234
    [27]Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory ytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity,2006,24:179-189
    [1]Andreakos ET, Foxwell BM, Brennan FM, et al. Cytokines and anti-cytokine biologicals in autoimmunity:present and future. Cytokine Growth Factor,2002,13:299-313
    [2]Mosmann TR, Coffinan RL. TH1 and TH2 cells different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol,1989,7:145-173
    [3]Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell,1994,76:241-251
    [4]Palmer G, Mezin F, Juge-Aubry CE, et al. Interferon beta stimul ates interleukin 1 recep tor antagonist p roduction in human articular chondrocytesand synovial fibroblasts. Ann Rheum Dis,2004,63 (1):43-49
    [5]Manzo A, et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol,2005,35:1347-1359
    [6]Dayer J M. Interleukin 1 or tumor necrosis factor-alpha:which is the real target in rheumatoid arthritis.J Rheumatol Suppl,2002,65:10-15
    [7]Manoury-Schwartz B. et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-y receptors. J Immunol,1997,158:5501-5506
    [8]Vermeire K. Accelerated collagen-induced arthritis in IFN-yreceptor-deficient mice. J Immunol,1997,158:5507-5513
    [9]Brentano F, Kyburz D,et al. The role of Toll-like receptor signalling in thepathogenesis of arthritis. Cell Immunol,2005,233:90-96
    [10]Feldmann M, Brennan FM,Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol,1996,14:397-440
    [11]Nakahara H, Song J, Sugimoto M, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum,2003,48(6):1521-1529
    [12]Nishimoto N, Yoshizaki K,Miyasaka N, et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody:a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum,2004,50(6):1761-1769
    [13]Shevach EM. From vanilla to 28 flavors:multiple varieties of T regulatory cells. Immunity, 2006,25:195-201
    [14]Gracie JA, et al. A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest, 1999,104:1393-1401
    [15]McInnes IB, Liew FY, Gracie JA. Interleukin-18:a therapeutic target in rheumatoid arthritis?Arthritis Res Ther,2005,7:38-41
    [16]Zabo S J, Kim S T, Costa G L, et al. A novel transcription factor,T-bet, directs Thl lineage
    commitment. Cell,2000,100:655-669
    [17]Bettelli E, Sullivan B, Szabo S J, et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmuneencephalomyelitis. J Exp Med,2004,200:79-87
    [18]Korn T, Reddy J, Gao W, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Medicine,2007,13:423-431
    [19]Mcdellin S, Marincila F, Rossi CR, et al. The multifaceted relationship between IL-10 and adaptive immunity:putting together the pieces of a puzzle. Cytokine Growth Factor, 2004,15:61-76
    [20]Raza K, Falciani F, Curnow SJ, et al.Salmon M:Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Research & Therapy,2005,7:784-795
    [21]Udhomme G J, Piccirillo C A. The inhibitory effect of transforming growth factor-betal(TGF-p) in auto-immune disease. J Autoimmuity,2000,14(1):23-42
    [22]Chen W, Jin W, Wahl S M. Engagement of cytotoxie T-lymphocyte-associated antigen-4(CTLA-4) induce transforming growth factor-betal(TGF-β) production by murine CD4+ T cell. J Exp Med,1998,188(10):1849-1857
    [23]Andreakos E T, Foxwell B M, Brennan F M, et al. Cytokines and anti-cytokine biologicals in autoimmunity:present and future. Cytokine Growth Factor,2002,13:299-313
    [24]MacKay K, Milicic A, Lee D, et al. Rheumatoid arthritis susceptibility and interleukin 10:a study of two ethnically diverse populations. Rheumatology(Oxford),2003,42(1):149-153
    [25]Prudhomme GJ, Piccirillo CA. The inhibitory effect of transforming growth factor-betal(TGF-β) in auto-immune disease. J Autoimmuity,2000,14(1):23-42
    [26]Park H, Li Zhao-xia,Ouyang Xue-xian, et al. A distinct lineage of CD4 T+cells regulates tissue inflammation by producing interleukin 17.Nat Immunol,2005,6 (11):1133-1141
    [27]Harrington LE, Hatton RD,Mangan PR, et al. Interleukin 17 producing CD4+effector T cells develop via a liesge distinct from the T helper type 1 and lineages.Nat Immunol,2005,6(11):1123-1132
    [1]Fontenot JD,Rudensky AY. A well adap ted regulatory contrivance:regulatory T cell development and the forkhead family transcrip tion factor Foxp3. Nat Immunol,2005,6 (4): 331-337
    [2]Szabo SJ,Kim ST,Costa GL, et al. A novel transcription factor, T-bet, directs Thl lineage commitment.cell,2000,100:655-659
    [3]Zhang w,flavell RA,McKenzie BS, et al. The orphan nuclear receptor RORyt directs the differentiation program of proinflammatory IL-17+T helper cells. Cell,2006,45:1021-103
    [4]Ivanov I, McKenzie BS, Zhou L, et al. The orphan nuclear recep tor RORgammat directs the differentiation program of p roinflammatory IL-17+T helper cells.Cell,2006,126 (6):1 121-1133
    [5]Ichiyama K, Yoshida H, Wakabayashi Y, et al. Foxp3inhibits RORgammat-mediated IL 17A mRNA transcrip tion through direct interaction with RORgammat J Biol Chem,2008, 283 (25):17003-17008
    [6]Ting CN, Olson MC, Barton KP, et al. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature,1996,384:474-478
    [7]Laouar Y, Sutterwala FS, Gorelik L, Flavell RA. Transforminggrowth factor-beta controls T helper type 1 cell developmentthrough regulation of natural killer cell interferon-gamma. Nat Immunol,2005,6:600-607
    [8]Rathinam C, Geffers R, Yucel R, et al. The transcriptional repressorGfi-1 controls STAT3-dependent dendritic cell developmentand function. Immunity 2005, murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity, 1999,11:473-782
    [9]Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science,2005,307:254-258
    [10]Brod SA,Benjamin D,Hafler DA.Restricted T cell expression of TL-2/IFN-y mRNA in human inflammatory disease.J Immunol,1991,147:810-815
    [11]Selmaj K,Raine CS,Camella B,et al.Identification of imphotoxin and tumor necrosis factor in multiple sclerosis.J clin Invest,1991,87:849-854
    [12]Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005,6:1123-1132
    [13]Nakanishi K. Regulation of Thl and Th2 immune responses by IL-18. Kekkaku,2002,77 (2):87-93.
    [14]De Becker GD,Moulin V,Tielemans F,et al. Regulation of T helper cell differentiation in vivo by soluble and membrane proteins provided by antigen-presenting cells. Eur J Immunol,1998,28(10):3161-3171
    [15]Ruedl C,Bachmann MF,Kopf M. The antigen dose determines T helper subset development by regulation of CD40 ligand. Eur J Immunol,2000,30 (7):2056-2064
    [16]Liang Zhou,Jared E, Mark MW.TGF-β-induced Foxp3 inhibits Th17 cell differentiation by antagonizing ROR-yt function. Nature,2008,453(7192):236-240
    [1]吴东海.关于早期类风湿关节炎的几点思索.中华风湿病学杂志.2004.8(3);129-130
    [2]Gerald T. Nepom the role of the DR4 shared epitope in selectionand autoreactive T cells in rheumatoid arthritis. Rheumatic disease clinics of north America,2001,27 (2):305-313
    [3]Kimmig S,Baumgrass R. Biological switches:the'all-or-none' principle in T-cell activation. Z Rheumatol,2009,7 (9):560-565
    [4]Liu HT, Pope RM. The role of apop tosis in rheumatoid arthritis.CurrOp in Pharma,2003,3: 317-322
    [5]Mosmann TR, Cherwinski H, Bond MW,et al. Two types of murine helperT cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol,1986,136:2348-2357
    [6]Noben-Trauth N, Shultz LD, Brombacher F, et al. An interleukin4 (IL-4)-independent pathway for CD4+T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc Natl Acad Sci,1997,94:10838-10843
    [7]Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor ROR gammat directs the differentiation program of proinflammatory IL-17-T helper cells. Cell,2006,126:1121-1133
    [8]Killar L, MacDonald G, West J,et al, la-restricted T cells that do not produce interleukin 4(IL-4)/B cell stimulatory factor 1(BSF-1) fail to help antigen-specific B cells. J Immunol,1987,138:1674-1679
    [9]Mosmann TR, Coffman RL. TH1 and TH2 cells different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immuno 1,1989,7:145-173
    [10]Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell,1994,76:241-251
    [11]Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature,2008,452:773-776
    [12]Wildin RS, Ramsdell F, Peake J, et al. X-linkedneonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet, 2001,27:18-20
    [13]Barski A, Cuddapah S, Cui K, et al. Highresolution profiling of histone methylations in the human genome. Cell,2007,129:823-837
    [14]Hwang ES, Szabo SJ, Schwartzberg PL,et al. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3.Science,2005,307:430-433
    [15]Szabo SJ, Kim ST, Costa GL. A novel transcription factor,T-bet, directs Thl lineage commitment. Cell,2000,100:655-669.
    [16]Chen Y, Kuchroo VK, Inobe J. Regulatory T cell clones induced by oral
    tolerance:suppression of autoimmune encephalomyelitis.Science,1994,265:1237-1240
    [17]Carrier Y, Yuan J, Kuchroo VK,et al. Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derivedfrom TGF-beta T cell-transgenic mice. J Immunol,2007,178:179-185
    [18]Groux H, O'Garra A, Bigler M, et al. A CD4-T-cell subset inhibits antigen-specific T-cell responsesand prevents colitis. Nature,1997,389:737-742
    [19]Jankovic D, Kullberg MC, Feng CG, et al. Conventional T-bet(-)Foxp3(-) Thl cells are the major source of host-protective regulatory IL-10 duringintracellular protozoan infection. J Exp Med,2007,204:273-283
    [20]Anderson CF, Oukka M, Kuchroo VJ.CD4(-)CD25(-)Foxp3(-) Thl cells are the sourceof IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med,2007,204:285-297
    [21]McGeachy MJ, Bak-Jensen KS, Chen Y,et al.TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell mediated pathology. Nat Immunol, 2007,8:1390-1397
    [22]Suzuki Y, Orellana MA, Schreiber RD,et al. Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science,1988,240:516-518
    [23]Selmaj K, Raine CS, Cannella B.Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest,1991,87:949-954
    [24]Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8_ memory T cells. Nature,2006,441:890-893
    [25]Kopf M, Le Gros G, Bachmann M,et al. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature,1993,362:245-248
    [26]Coffman RL, Seymour BW, Hudak S. Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science,1989,245:308-310
    [27]Longphre M, Li D, Gallup M, et al. AllergeninducedIL-9 directly stimulates mucin transcription in respiratory epithelial cells. J Clin Invest,1999,104:1375-1382
    [28]Fiorentino DF, Bond MW, Mosmann TR. Twotypes of mouse T helper cell. IV. Th2 clones secretea factor that inhibits cytokine production by Thl clones. J Exp Med, 1989,170:2081-2095
    [29]Moore KW, de Waal Malefyt R, Coffman RL et al. Interleukin-10 and the interleukin-l0receptor. Annu Rev Immunol,2001,19:683-765
    [30]Wynn TA. IL-13 effector functions. Annu Rev Immunol,2003,21:425-456
    [31]Zaiss DM, Yang L, Shah PR. Amphiregulin, a TH2 cytokine enhancingresistance to nematodes. Science,2006,314:1746
    [32]Fort MM, Cheung J, Yen D,et al. IL-25 induces L-4, IL-5, and IL-13 and Th2-associated pathologies n vivo. Immunity,2001,15:985-995
    [33]Yao Z, Fanslow WC, Seldin MF, et al. Herpesvirus aimiri encodes a new cytokine, IL-17, which inds to a novel cytokine receptor. Immunity,1995,3:811-821
    [34]Hymowitz SG, Filvaroff EH, Yin JP, et al. IL-17s dopt a cystine knot fold:structure and activity of novel cytokine, IL-17F, and implications for receptor binding. EMBO J,2001,20:5332-5341
    [35]Leonard WJ, Spolski R. Interleukin-21:a modulatorof lymphoid proliferation, apoptosis and differentiation.Nat Rev Immunol,2005,5:688-698
    [36]Zheng Y, Danilenko DM, Valdez P, et al.Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis.Nature,2007,445:648-651
    [37]Sakaguchi S. Naturally arising CD4 regulatoryT cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol,2004,22:531-562
    [38]Joffre O, Santolaria T, Calise D, et al. Prevention of acute and chronic allograft rejection with CD4-CD25-Foxp3-regulatory T lymphocytes.Nat Med,2008,14:88-92
    [39]Shevach EM. From vanilla to 28 flavors:multiple varieties of T regulatory cells. Immunity, 2006,25:195-201
    [40]Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis,and tolerance of T cells by regulatoryT cell-dependent and-independent mechanisms.Immunity,2006,25:455-471
    [41]Li MO, Wan YY, Flavell RA. T cell-produced transforminggrowth factor-betal controls T cell toleranceand regulates Thl-and Th17-cell differentiation.Immunity,2007,26:579-591
    [42]Asseman C, Read S, Powrie F. Colitogenic Thl cells are present in the antigen-experienced T cell pool in normal mice:control by CD4_ regulatory T cells and IL-10. J Immunol,2003,171:971-978
    [43]Asseman C, Mauze S, Leach MW, Co. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med,1999,190:995-1004
    [44]Rubtsov YP, Rasmussen JP, Chi EY, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunit,2008,28:546-558
    [45]Belkaid Y, Piccirillo CA, Mendez S, et al. CD4-CD25-regulatory T cells control Leishmania major persistence and immunity Nature,2002,420:502-507
    [46]Collison LW, Workman CJ, Kuo TT, et al. The inhibitorycytokine IL-35 contributes to regulatory T-cell function. Nature,2007,450:566-569
    [47]Stumhofer JS, Silver JS, Laurence A, et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol,2007,8:1363-1371
    [48]Gavin MA, Rasmussen JP, Fontenot JD, et al.Foxp3-dependent programme of regulatory T-cell differentiation. Nature,2007,445:771-775
    [49]McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol,2007,7:429-442
    [50]Falgarone G, Duclos M, Boissier MC. TNF-a antagonists in rheumatoid arthritispatients seen in everyday practice. Joint Bone Spine,2007,74:523-526
    [51]Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med,2007,13:139-145
    [52]Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell1996,85:307-310
    [53]Manoury-Schwartz B, Chiocchia G, Bessis N, et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors. J Immunol,1997,158:5501-5506
    [54]Boissier MC, Chiocchia G, Bessis N, et al. Biphasic effect of interferongamma in murine collagen-induced arthritis. Eur J Immunol,1995,25:1184-1190
    [55]Miossec P. Interleukin-17 in rheumatoid arthritis:if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum2003,48:594-601
    [56]Raza K, Falciani F, Curnow SJ, et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res Ther,2005,7:R784-795
    [57]Murphy CA, Langrish CL, Chen Y, et al. Divergent pro-and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med,2003,198:1951-1957
    [58]Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol,2007,8:950-957
    [59]Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, et al. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol,2007,8:942-949
    [60]Evans HG, Suddason T, Jackson I, et al. Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Tolllike receptor-activated monocytes. Proc Natl Acad Sci U S A,2007,104:17034-17039
    [61]Chabaud M, Durand JM, Buchs N, et al. Human interleukin-17:a T cellderived proinflammatory cytokine produced by the rheumatoid synovium.Arthritis Rheum, 1999,42:963-970
    [62]Korn T, Bettelli E, Gao W, et al. IL-21 initiates analternative pathway to induce proinflammatoryT(H)17 cells. Nature,2007,448:484-487
    [1]Firestein GS.Evolving concepts of rheumatoid arthritis. Nature,2003,423:356-361
    [2]Maini RN, Taylor PC. Anti-cytokine therapy forrheumatoid arthritis. Annu Rev Med,2000, 2000,51:207-229
    [3]McInnes IB, Liew FY.Cytokine networks-towards new therapies for rheumatoid arthritis.Nature Clin. Pract. Rheumatol,2005,1:31-39
    [4]vander Helm-van Mil AH, Wesoly JZ, Huizinga TW. Understanding the genetic contribution to rheumatoid arthritis. Curr Opin Rheumatol,2005,17:299-304
    [5]Klareskog L, Padyukov L,Alfredsson L. Smokingas a trigger for inflammatory rheumatic diseases.Curr Opin Rheumatol,2007,19:49-54
    [6]Jimenez-Boj E. Interaction between synovial inflammatory tissue and bone marrow in rheumatoidarthritis. J Immunol,2005,175:2579-2588
    [7]Nishimoto N, Kishimoto T. Interleukin 6:from bench to bedside. Nature Clin Pract. Rheumatol,2006,2:619-626
    [8]Sattar N, McCarey DW, Capell H. Explaining how'high-grade'systemic inflammation accelerates vascular risk in rheumatoid arthritis.Circulation,2003,108:2957-2963
    [9]Panayi GS. Even though T-cell-directed trials have been of limited success, is there reason for optimism? Nature Clin Pract Rheumatol,2006,2:58-59
    [10]Keystone EC, Abandoned therapies and unpublished trials in rheumatoid arthritis. Curr Opin Rheumatol,2003,15:253-258
    [11]Genovese MC, Abatacept for rheumatoid arthritis refractory to tumor necrosis factor inhibition. N Engl J Med,2005,353:1114-1123
    [12]McInnes IB, Leung BP, Sturrock RD,et al. Interleukin-15 mediates T celldependentregulation of tumor necrosis factor-production in rheumatoid arthritis. Nature Med,1997,3:189-195
    [13]Schulze-Koops H, Kalden JR. The balance of Thl/Th2 cytokines in rheumatoid arthritis. Best Pract Res Clin Rheumatol,2001,15:677-691
    [14]Lubberts E, Koenders MI, vanden Berg WB.The role of T-cell interleukin-17 in conducting destructive arthritis:lessons from animal models.Arthritis Res Ther,2005,7:29-37
    [15]Manoury-Schwartz B. High susceptibility tocollagen-induced arthritis in mice lacking IFN-receptors. J Immunol,1997,158:5501-5506
    [16]Vermeire K. Accelerated collagen-induced arthritis in IFN-yreceptor-deficient mice. J. Immunol,1997,158:5507-5513
    [17]Murphy CA. Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med,2003,198:1951-1957
    [18]Wang J. Transcription factor T-bet regulates inflammatory arthritis through its function in dendritic cells. J Clin Invest,2006,116:414-421
    [19]Alonzi, T. et al. Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med,1998,187:461-468
    [20]Hirota K. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+Th cells that cause autoimmune arthritis. J Exp Med,2007,204:41-47
    [21]Firestein GS, Zvaifler NJ. Peripheral blood andsynovial fluid monocyte activation in inflammatory arthritis. Arthritis Rheum,1987,30:864-871
    [22]Kanik KS, et al. Distinct patterns of cytokine secretion characterize new onset synovitis versus chronic rheumatoid arthritis J Rheumatol,1998,25:16-22
    [23]Ronnelid J, et al. Production of T-cell cytokines at the single-cell level in patients with inflammatory arthritides:enhanced activity in synovial fluid compared to blood. Br. J. Rheumatol,1998,37:7-14
    [24]Chabaud M,et al. Human interleukin-17:a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum,1999,42:963-970
    [25]Goldberg R,Wildbaum G, Zohar Y,et al.Suppression of ongoing adjuvant-induced arthritis by neutralizing the function of the subunit of IL-27. J Immunol,2004,173:1171-1178
    [26]Batten M, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nature Immunol,2006,7:929-936
    [27]Stumhofer JS, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nature Immunol,2006,7:937-945
    [28]Weaver CT, Hatton RD, Mangan PR,Harrington LE. IL-17 family cytokines and theexpanding diversity of effector T cell lineages. Annu Rev Immunol,2007,25:821-852
    [29]Raza K,et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res Ther,2005,7:784-879
    [30]Skapenko A, Leipe J, Lipsky PE. The role of the T cell in autoimmune inflammation. Arthritis Res Ther,2005,7 (Suppl.2):4-14
    [31]Ehrenstein MR,et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF therapy. J Exp Med,2004,200:277-285
    [32]Nadkarni, S., Mauri, C.& Ehrenstein, M. R. Anti-TNFtherapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J Exp Med, 2007,204:33-39
    [33]Weyand CM, Goronzy JJ. T-cell-targeted therapies in rheumatoid arthritis. Nature Clin Pract Rheumatol,2006,2:201-210
    [34]Schroder AE, Greiner A, Seyfert C,et al.Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci US A,1996,93:221-225
    [35]Isomaki P,et al. Prolonged exposure of T cells to TNF down-regulates TCRξ and expression of the TCR/CD3 complex at the cell surface. J. Immunol.2001,166:5495-5507
    [36]Veys EM, Menkes CJH, Emery PA. randomized,double-blind study comparing twenty-four-weektreatment with recombinant interferon-y versus placebo in the treatment of rheumatoid arthritis. Arthritis Rheum,1997,40:62-68
    [37]Miossec P.Interleukin-17 in rheumatoid arthritis:if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum,2003,48:594-601
    [38]Steinman L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nature Med,2007,13:139-145
    [39]Zheng Y. Interleukin-22, a TH17 cytokine,mediates IL-23-induced dermal inflammation and acanthosis. Nature,2007,445:648-651
    [40]Ikeuchi H,et al. Expression of interleukin-22 in rheumatoid arthritis:potential role as aproinflammatory cytokine. Arthritis Rheum,2005,52:1037-1046
    [41]Yumoto K, et al. Osteopontin deficiency protects joints against destruction in anti-type Ⅱ collagen antibody-induced arthritis in mice. Proc Natl Acad Sci USA,2002,99:4556-4561
    [42]Xu G, et al. Role of osteopontin in amplification and perpetuation of rheumatoid synovitis. J Clin Invest,2005,115:1060-1067
    [43]Brennan FM, et al. Evidence that rheumatoid arthritis synovial T cells are similar to cytokineactivated T cells:involvement of phosphatidylinositol 3-kinase and nuclear factor κB pathways in tumor necrosis factor a production in rheumatoid arthritis. Arthritis Rheum; 2002,46:31-41
    [44]Dayer JM,Burger D. Cell-cell interactions and tissue damage in rheumatoid arthritis. Autoimmun Rev,2004,3 (Suppl.1):14-16
    [45]McInnes IB, Leung BP, Lie w. Cell-cell interactions in synovitis. Interactions betweenT lymphocytes and synovial cells. Arthritis Res,2000,2:374-378
    [46]Edwards JC,et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med,2004,350:2572-2581
    [47]Takemura S, Klimiuk PA, Braun A. T cell activation in rheumatoid synovium is B cell dependent. J Immunol,2001,167:4710-4718
    [48]Seyler TM. BLyS and APRIL in rheumatoid,arthritis.J Clin Invest:2005,115:3083-3092
    [49]Ohata J. Fibroblast-like synoviocytes of mesenchymal origin express functional B cellactivating factor of the TNF family in response to proinflammatory cytokines. J Immunol,2005,174:864-870
    [50]Dorner T, Lipsky PE. Signalling pathways in B cells: implications for autoimmunity. Curr. Top Microbiol. Immunol,2006,305:213-240
    [51]Takemura S. et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol,2001,167: 1072-1080
    [52]Manzo A. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production andprogressive lymphoid organization in rheumatoid synovitis. Eur J Immunol, 2005,35:1347-1359
    [53]Weyand CM,Goronzy JJ. Ectopic germinal center formation in rheumatoid synovitis. Ann NY Acad Sci 2003,987:140-149
    [54]Braun A, Takemura S, Vallejo AN,et al. Lymphotoxin (3-mediated stimulation of synoviocytes in rheumatoid arthritis.Arthritis Rheum,2004,50:2140-2150
    [55]Lindhout E, et al. Fibroblast-like synoviocytes from rheumatoid arthritis patients have intrinsic properties of follicular dendritic cells. J Immunol,1999,162:5949-5956
    [56]Kang YM. CD8 T cells are required for the formation of ectopic germinal centers in rheumatoid synovitis. J Exp Med,2002,195:1325-1336
    [57]Brentano F, Kyburz D, Schorr O,et al. The role of Toll-like receptor signalling in thepathogenesis of arthritis. Cell Immunol,2005,233:90-96
    [58]Seibl R. Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol,2003,162:1221-1227
    [59]Joosten L A. et al. Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88.J Immunol, 2003,171:6145-6153
    [60]Sacre SM. The Toll-like receptor adaptor proteins MyD88 and Mal/TIRAP contribute to the inflammatory and destructive processes in a human model of rheumatoid arthritis. Am J Pathol,2007,170:518-525
    [61]Kelso EB. Therapeutic promise of proteinaseactivated receptor-2 antagonism in jointinflammation. J Pharmacol Exp Ther,2006,316:1017-1024
    [62]Kelso EB,et al. Expression and proinflammatory role of proteinase-activated receptor 2 in rheumatoid synovium: ex vivo studies using a novel proteinase-activated receptor 2 antagonist. Arthritis Rheum,2007,56:765-771
    [63]Feldmann M, Brennan FM, Maini RN.Rheumatoid arthritis. Cell,1996,85:307-310
    [64]Feldmann M, Brennan FM,Maini RN.Role of cytokines in rheumatoid arthritis. Annu Rev Immunol,1996,14:397-440
    [65]Keffer J. Transgenic mice expressing human tumour necrosis factor:a predictive genetic model of arthritis. EMBO J,1991,10:4025-4031
    [66]Quinn MA. Very early treatment with vinfliximab in addition to methotrexate in early, poorprognosis rheumatoid arthritis reduces magnetic resonance imaging evidence of synovitis anddamage, with sustained benefit after infliximab withdrawal: results from a twelve-month randomized,double-blind, placebo-controlled trial. ArthritisRheum, 2005,52:27-35
    [67]Ferrari-Lacraz S. Targeting IL-15 receptorbearing cells with an antagonist mutant IL-15/Fc protein prevents disease development and progression in murine collagen-induced arthritis. J Immunol,2004,173:5818-5826
    [68]Baslund B. Targeting interleukin-15 in patients with rheumatoid arthritis:a proof-of-concept study.Arthritis Rheum,2005,52:2686-2692
    [69]Dayer JM, Bresnihan B. Targeting interleukin-1 in the treatment of rheumatoid arthritis. Arthritis Rheum,2002,46:574-578
    [70]Horai R. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice.J Exp Med,2000,191:313-320
    [71]Hoffman HM. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist.Lancet, 2004,364:1779-1785
    [72]Choe JY, Crain B, Wu SR.et al. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by Toll-like receptor 4 signaling.J Exp Med, 2003,197:537-542
    [73]Gracie JA. A pro inflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest, 1999,104:1393-1401
    [74]McInnes IB, Liew FY, Gracie JA. Interleukin-18:a therapeutic target in rheumatoid arthritis?Arthritis Res Ther,2005,7:38-41
    [75]Joosten L. IL-32, a proinflammatorycytokine in rheumatoid arthritis. Proc Natl Acad Sci USA,2006,103:3298-3303
    [76]Netea MG. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1β and IL-6 production through a caspase 1-dependent mechanism. Proc Natl Acad Sci USA,2005,102:16309-16314
    [77]Kokkola R. High mobility group box chromosomal protein 1:a novel proinflammatory mediator in synovitis. Arthritis Rheum,2002,46:2598-2603
    [78]Morand EF, Leech M,Bernhagen J. MIF:a new cytokine link between rheumatoid arthritis and athero sclerosis. Nature Rev. Drug Discov,2006,5:399-410
    [79]van der Pouw Kraan TC. Rheumatoid arthritis subtypes identified by genomic profiling ofperipheral blood cells:assignment of a type Iinterferon signature in a subpopulation of patients.Ann Rheum Dis.2006,18(1):1136-1138
    [80]Edwards SW, Hallett MB. Seeing the wood for the trees:the forgotten role of neutrophils in rheumatoid arthritis Immunol. Today,1997,18:320-324
    [81]Woolley DE. The mast cell in inflammatory arthritis.N Engl J Med,2003,348:1709-1711
    [82]Lee DM. Mast cells:a cellular link between autoantibodies and inflammatory arthritis. Science,2002,297:1689-1692
    [83]Paniagua RT. Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis. J Clin Invest,2006,116:2633-2642
    [84]Dalbeth N,Callan MF. A subset of natural killer cells is greatly expanded within inflamed joints. Arthritis Rheum,2002,46:1763-1772
    [85]Bresnihan B. The safety and efficacy of interleukin-1 receptor antagonist in the treatment of rheumatoid arthritis. Semin. Arthritis Rheum,2001,30:17-20
    [86]SchettG. High-sensitivity C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch Intern Med,2006,166:2495-2501
    [87]Pasco JA. High-sensitivity C-reactive protein and fracture risk in elderly women. JAMA, 2006,296:1353-1355
    [88]Goldring SR. Inflammatory mediators as essential elements in bone remodeling. Calcif. Tissue Int,2003,73:97-100
    [89]Teitelbaum SL. Bone resorption by osteoclasts.Science,2000,289:1504-1508
    [90]Redlich K. Osteoclasts are essential for TNF-a-mediated joint destruction. J Clin Invest, 2002,110:1419-1427
    [91]Gravallese EM. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum,2000,43:250-258
    [92]Yoshida H. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature,1990,345:442-444
    [93]Seitz M, Loetscher P, Fey MF.Constitutive mRNA and protein production of macrophage colony-stimulating factor but not ofother cytokines by synovial fibroblasts fromrheumatoid arthritis and osteoarthritis patients. Br J Rheumatol,1994,33:613-619
    [94]Lacey DL. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell,1998,93:165-176
    [95]Kong YY. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature,1999,402:304-309
    [96]Shigeyama Y. Expression of osteoclast differentiation factor in rheumatoid arthritis.Arthritis Rheum,2000,43:2523-2530
    [97]Horwood NJ, Elliott J, Martin T,Jet al. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells.Endocrinology,1998,139:4743-4746
    [98]Kotake S. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator ofosteoclastogenesis. J Clin Invest,1999,103:1345-1352
    [99]Simonet WS. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell,1997,89:309-319
    [100]Lam J. TNF-a induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest,2000,106:1481-1488
    [101]Li P.RANK signaling is not required for TNF-a mediated increase in CD11 hi osteoclast precursors but is essential for mature osteoclast formation in TNF-a-mediated inflammatory arthritis. J Bone Miner Res,2004,19:207-213
    [102]Ritchlin CT, Haas-Smith SA, Li P, et al. Mechanisms of TNF-a-and RANKL mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest,2003,111: 821-831
    [103]Wei S,Kitaura H, Zhou P, et al.IL-1 mediates TNF-induced osteoclastogenesis. J Clin. Invest,115,282-290
    [104]Wong PK. Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum,2006,54:158-168
    [105]Sato K. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med,2006,203:2673-2682
    [106]Takayanagi H. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature,2000,408:600-605
    [107]Udagawa N,et al. Interleukin-18 (interferon-γ-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-γ to inhibit osteoclast formation. J Exp Med,1997,185:1005-1012
    [108]Bertolini DR, Nedwin GE, Bringman TS,et al. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature, 1986,319:516-518
    [109]Diarra D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nature Med, 2007,13:156-163
    [110]Meyer LH, Franssen, L Pap T. The role of mesenchymal cells in the pathophysiology of inflammatory arthritis. Best Pract Res Clin,Rheumatol,2006,20:969-981
    [111]Lee D M. Cadherin-11 in synovial lining formation and pathology in arthritis. Science, 2007,315:1006-1010
    [112]Pap T,Muller-Ladner U, Gay RE,et al.Fibroblast biology: role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res,2000,2:361-367
    [113]Burger JA, Zvaifler NJ, Tsukada N. Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell-derived factor-1-and CD 106 (VCAM-1)-dependent mechanism. J Clin Invest,2001,107:305-315
    [114]Pap T. Direct interaction of immunoglobulins with synovial fibroblasts: a missing link in the pathogenesis of rheumatoid arthritis? Arthritis Res Ther,2005,7:44-46
    [115]Eberhardt W, Huwiler A, Beck, KF. Amplification of IL-1β-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-κB and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways. J Immunol,2000,165:5788-5797
    [116]Catterall JB. Synergistic induction of matrix metalloproteinase-1 by interleukin-la and oncostatin M in human chondrocytes involves signal transducer and activator of transcription and activator protein 1 transcription factors via a novel mechanism. Arthritis Rheum,2001,44:2296-2310
    [117]Van den Berg WB. Lessons from animal models of arthritis. Curr Rheumatol Rep,2002, 4:232-239
    [118]Pettipher ER, Higgs GA,Henderson B.Interleukin 1 induces leukocyte infiltration andcartilage proteoglycan degradation in the synovial joint. Proc. Natl Acad Sci USA,1986,83:8749-8753
    [119]Joosten LAB. Interleukin-18 Promotes joint inflammation and induces interleukin-1-driven cartilage destruction. Am J Pathol,2004,165:959-967
    [120]Dudler J, Renggli-Zulliger N, Busso N,et al.A Effect of interleukin 17 on proteoglycan degradation in murine knee joints. Ann Rheum Dis,2000,59:529-532
    [121]Lubberts E, et al. Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflamm Res,2002,51: 102-104
    [122]Cai L. Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo. Cytokine,2001,16:10-21
    [123]Veale DJ,Fearon U. Inhibition of angiogenic pathways in rheumatoid arthritis: potential for therapeutic targeting. Best Pract Res Clin Rheumatol,2006,20:941-947
    [124]Paleolog EM. Angiogenesis in rheumatoid arthritis. Arthritis Res,2002,4(Suppl3):81-90
    [125]Loetscher P. CCR5 is characteristic of Thl lymphocytes. Nature,1998,391:344-345
    [126]Haringman JJ, Tak PP. Chemokine blockade:a new era in the treatment of rheumatoid arthritis?Arthritis Res Ther,2004,6:93-97
    [127]Koch AE.Chemokines and their receptors in rheumatoid arthritis: future targets? Arthritis Rheum,2005,52:710-721
    [128]Goekoop-Ruiterman YP, et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study):a randomized,controlled trial. Arthritis Rheum,2005,52:3381-3390

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700