含能材料损伤本构模型的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含能材料是核武器与常规武器杀伤、破坏和动力能源的关键性材料,评估含能材料在各种复杂应力条件下的生存能力和安全性具有重要意义。含能材料的损伤对含能材料的力学和爆轰性能有重要影响,通过数值模拟方法研究含能材料时,使用损伤本构模型可以更贴近实际描述其力学本质。本文从含能材料的宏观特性出发,建立了粘弹性统计裂纹损伤本构模型,并进行了数值模拟验证。主要做了以下工作:
     1、对含能材料损伤本构模型的研究进展进行了充分的调研,在综合考虑了含能材料粘弹性和准脆性宏观力学特性的基础上,将广义粘弹性模型和微裂纹损伤模型耦合起来,建立了粘弹性损伤本构模型。
     2、基于建立的损伤本构模型,编写了自定义材料模型子程序,利用LS-DYNA主程序提供的接口,将其加入到LS-DYNA中,编译生成了包含可以通用计算的LS-DYNA求解器。
     3、利用编译生成的LS-DYNA求解器对约束PBX-9501炸药的动态撞击实验进行了数值模拟。将模拟结果与实验数据进行对比,结果表明,试样的准二维表面位移场与实验结果吻合较好,说明该模型用于研究PBX炸药在动态加载下的力学响应是有效的。
Energetic materials are key materials in killing, destroying and power resource and widely used in nuclear and conventional weapon. It is a significative work to evaluate the viability and safety of the energetic materials in kinds of complex loading conditions. The damage in the energetic materials has important influence on the mechanical and detonation performance of the energetic materials. When studying the energetic materials using numerical simulation method, constitutive model with damage is much closer to the mechanical essential of the energetic materials. Base on the macroscopical property of the energetic materials, a constitutive model with damage, Visco-SCRAM, is developed and validated by numerical simulation. The main content can be summarized as:
     1.The literature review of constitutive models with damage of the energetic materials is conducted systematically and sufficiently. Based on the integrated consideration of macroscopical viscoelasticity and quasi-brittleness of the energetic materials, the general viscoelasticity model and microcrack damage model are coupled together to form a constitutive model with damage.
     2.Based on the constitutive model with damage which has been developed, a user-defined material model subroutine is finished. Using the interface that the LS-DYNA main program provides, the subroutine is implemented into LS-DYNA. A LS-DYNA solver which contains the constitutive model and can be generally used is compiled and built.
     3.The experiment, dynamic impact of confined PBX-9501 high explosive, is numerically simulated using LS-DYNA solver compiled and built. The comparison between the simulation result and experimental data shows that the quasi-planar displacement field in the simulation is coincident well with the one in the experiment. The result indicates that the constitutive with damage exhibits good veracity and validity in simulating the mechanical response of PBX in dynamic loading.
引文
[1]张晶,崔利海.钝感弹药.国防技术基础,2009,9:36-38.
    [2]张玉龙,唐德兵.美国核弹头库存管理中的科学实验项目.现代军事,2008,1:34-39.
    [3]冯西桥,余寿文.准脆性材料细观损伤力学.北京:高等教育出版社,2002.
    [4]马丽莲.高能炸药拉伸应力-应变曲线测定方法的研究.含能材料,1993,3:28-35.
    [5] Asay B W,Funk D J,Labs G W,et al.Measurement of the stress/strain response of energetic materials at a function of strain rate and temperature:PBX9501 and Mock 9501.DE96000025,1995.
    [6] Gray G T,Idar D J,Blumenthal W R,et al.High-and low-strain rate compression properties of several energetic material composites as a function of strain and temperature.Proceedings of 11th International Symposium on Detonation,1998.
    [7]吴会民,卢芳云等.三种含能材料力学行为应变率效应的实验研究.含能材料,2004,12(4):227-230.
    [8] Quidot M,Racimor P,Chabin P.Cmex project:development of a constitutive model for cast plastic bonded explosives.Proceedings of 12th International Symposium on Detonation,2002.
    [9]陈鹏万,黄风雷,张瑜等.用巴西实验评价炸药的力学性能.兵工学报,2001,22(4):533-537.
    [10]罗景润,张寿齐,李大红等.高聚物粘结炸药断裂特性实验研究.爆炸与冲击,2000,20(4):338-342.
    [11] Liu C,Browning R.Fracture in PBX 9501 at low rates.Proceedings of 12th International Symposium on Detonation,2002.
    [12]陈荣.一种PBX炸药试样在复杂应力动态加载下的力学性能实验研究:博士学位论文.长沙:国防科学技术大学,2010.
    [13]陈鹏万,丁雁生,何松伟等.炸药冲击损伤的实验研究.含能材料,2003,11(1):13-17.
    [14]代晓淦,申春迎,文玉史等.Steven试验中不同形状弹头撞击下炸药响应规律研究.含能材料,2009,17(1):50-54.
    [15] Asay B W,Dickson P M,Henson B,et al.Dynamic measurement of the influence of projectile radius and velocity on strain localization during impact of an energetic material.Proceedings of 11th International Symposium on Detonation,1998.
    [16]周建平.化学不稳定的工程材料的粘弹性损伤本构模型:博士学位论文.长沙:国防科学技术大学,1989.
    [17]彭威.复合固体推进剂弹性损伤本构模型的细观力学研究:博士学位论文.长沙:国防科学技术大学,2001.
    [18]罗景润.PBX的损伤、断裂及本构关系研究:博士学位论文.绵阳:中国工程物理研究院,2001.
    [19] Hinterhoelzl R M.Coupling the theory of viscoelasticity and continuum damage mechanics to model the time dependent behavior of fiber reinforced plastics and particulate composites.International Journal of Materials & Product Technology,2002,17(1-2):121-133.
    [20] Frey R B.The initiation of explosive charges by rapid shear.Proceedings of 7th International Symposium on Detonation,1981.
    [21] Boyle V M,Pilarski D L,Blake O H.Combined pressure-shear ignition sensitivity test.US Army Laboratory Command Technical Report,BRL-TR-2927.
    [22] Bardenhagen S G,Brackbill J U,Sulsky D L.Shear deformation in granular material.Proceedings of 11th International Symposium on Detonation,1998.
    [23] Krzewinski B,Lieb R,Baker P,et al.Shear deformation and shear initiation of explosives and propellants.Proceedings of 12th International Symposium on Detonation,2002.
    [24] Joshi V S,Cart E J,Guirguis R H.Measurement of ignition threshold of explosives using a hybrid Hopkinson bar-drop weight test.Proceedings of 13th International Symposium on Detonation,2006.
    [25] Jensen R C,Blommer E J,Brown B.An instrumented shotgun facility to study impact initiated explosive reactions.Proceedings of 7th International Symposium on Detonation,1981.
    [26] Green L G,James E,Lee E L,et al.Delayed detonation in propellants from low velocity impact.Proceedings of 7th International Symposium on Detonation,1981.
    [27] Bonnett D L,Butler P B.Hot-spot ignition of condensed phase energetic materials.Journal of Propulsion and Power,1996,12:680-690.
    [28] Field J E,Swallowe G M,Heavens S N.Ignition mechanisms of explosives during mechanical deformation.Proceedings of the Royal Society of London,1982,A 382: 231-244.
    [29] Field J E.Hot spot ignition mechanisms for explosives.Academy of Chemical Research,1992,25:489-496.
    [30] Dienes J K.Frictional hot-spots and statistical crack mechanics.LA-UR-83-3278,1983.
    [31] Dienes J K.Frictional hot-spots and propellant sensitivity.Proceedings of Material Society Symposium,24,1984.
    [32] Howe P M,Gibbons G J,Webber P E.An experimental investigation of the role of shear in initiation of detonation by impact.Proceedings of 8th International Symposium on Detonation,1985.
    [33] Dienes J K.Statistical crack mechanics.LA-UR-83-1705,1983.
    [34] Dienes J K.Foundations of statistical crack.LA-UR--85-3264,1985.
    [35] Dienes J K.A unified theory of flow, hot-spots, and fragmentation with an application to explosive sensitivity.High Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation,L Davidson,et al. eds.,Springer,New York,366-398.
    [36] Dienes J K,Kershner J D.Multiple-shock initiation via Statistical Crack Mechanics.Proceedings of 11th International Symposium on Detonation,1998.
    [37] Dienes J K,Middleditch J,Kershner J D,et al.Progress in Statistical Crack Mechanics: an approach to initiation . Proceedings of 12th International Symposium on Detonation,2002.
    [38] Dienes J K,Zuo Q H,Kershner J D.Impact initiation of explosives and propellants via Statistical Crack Mechanics.Journal of the Mechanics and Physics of Solids,2006,54:1237-1275.
    [39] Addessio F L,Johnson J N.A constitutive model for the dynamic response of brittle materials.Journal of Applied Physics,1990,67(7):3275-3286.
    [40] Bennett J G,Haberman K S,Johnson J N,et al.A constitutive model for the non-shock ignition and mechanical response of high explosives.Journal of the Mechanics and Physics of Solids,1998,46:2303-2322.
    [41] Haberman K S,Bennett J G,Asay B W,et al.Modeling, Simulation and Experimental Verification of Constitutive Models for Energetic Materials.LA-UR-97-2304,1997.
    [42] Zuo Q H,Addessio F L,Dienes J K,et al.A rate-dependent damage model for brittle materials based on the dominant crack.International Journal of Solids and Structures,2006,43:3350–3380.
    [43] Seaman L,Curran D R,Murri W J.A continuum model for dynamic tensile microstructure and fragment.Journal of Applied Mechanics,1985,52:593-600.
    [44] Seaman L,Simons J W,Erlich D C,et al.Development of a viscous internal damage model for energetic materials based on the BFRACT microfracture model.Proceedings of 11th International Symposium on Detonation,1998.
    [45] Matheson E R,Rosenberg J T,Ngo T A,et al.Programmed XDT:a new technique to investigate impact-induced delayed detonation . Proceedings of 11th International Symposium on Detonation,1998.
    [46] Matheson E R,Drumheller D S,Baer M R,An internal damage model for viscoelastic-viscoplastic energetic materials.Shock Compression of Condensed Matter,1999:691-694.
    [47] Matheson E R,Rosenberg J T.The role of damage model in delayed detonation of composite energetic materials.Proceedings of 12th International Symposium on Detonation,2002.
    [48] Schmitt R,Taylor P L,Hertel G.Application of a multiphase mixture theory with coupled damage and reaction with energetic material response.Proceedings of 12th International Symposium on Detonation,2002.
    [49] Matheson E R,Rosenberg J T.A mechanistic study of delayed detonation in impact damaged solid propellant.Shock Compression of Condensed Matter,2001:464-467.
    [50] Zhou Jianping.A constitutive model of polymer materials including chemical aging and mechanical damaged and its experimental verification.Polymer,1993,34(20):4252-4256.
    [51]丁雁生,潘颖,蔡瑞娇,等.PBX材料的蠕变损伤本构关系.含能材料,2000,82:86-90.
    [52]潘颖,蔡瑞娇,丁雁生等.塑料粘结炸药装药的蠕变损伤一维模型.兵工学报,2000,21(2):123-127.
    [53]罗景润,李大红,张寿齐等.简单拉伸下高聚物粘结炸药的损伤测量及损伤演化研究.高压物理学报,2000,14(3):203-208.
    [54]黄风雷,王泽平,丁儆.复合固体推进剂动态断裂研究.兵工学报,1995,2:47-50.
    [55]周风华,王礼立,胡时胜.有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则.爆炸与冲击,1992,12(4):333-342.
    [56]李英雷,李大红,胡时胜.TATB钝感炸药本构关系的实验研究.爆炸与冲击,1999,19(4):353-359.
    [57]赵锋,孙承纬,文尚刚.飞片撞击下JO-9159炸药的脆性损伤.爆炸与冲击,2001,21(2):121-125.
    [58]陈鹏万,黄风雷.含能材料损伤理论与应用.北京:北京理工大学出版社,2006.
    [59]李俊玲,卢芳云,赵鹏铎等.含能材料的损伤本构模型研究进展.含能材料,2010,18(2):229-235.
    [60]梁增友,黄风雷,段卓平等.PBX炸药及其模拟材料冲击损伤的试验研究.弹箭与制导学报,2008,28(1):131-134.
    [61] Yong Lu,Kai Xu.Modeling the dynamic behavior of concrete materials under blast loading.International Journal of Solid Structures,2004,41(1):131-143.
    [62] Freund L B.Dynamic Fracture Mechanics.London:Cambridge University Press, 1990.
    [63] Evans,A G.Slow Crack Growth in Brittle Materials under Dynamic Loading Conditions.International Journal of Fracture,1974,10(2):251–259.
    [64]欧育湘.炸药学.北京:北京理工大学出版社,2006.
    [65]卢芳云,李翔宇,林玉亮.战斗部结构与原理.北京:科学出版社,2009.
    [66]陈颂汾译,董海山校,Dobratz B M,Crawford P C著.劳伦斯·利弗莫尔国家实验室炸药手册——化学炸药及炸药模拟材料性能.中国工程物理研究院化工材料研究所科技信息室.
    [67]钟一鹏,胡雅达,江宏志.国外炸药性能手册.北京:兵器工业出版社,1990.
    [68] Dickson P M,Asay B W,Henson B F,et al.Observation of the behavior of confined PBX 9501 following a simulated cookoff ignition.Proceedings of 11th International Symposium on Detonation,1998.
    [69] Peterson P D,Idar D J,Crane N B,et al.Quasi-static multiaxial testing of PBX 9501: creep effects on estane molecular weight.LA-UR- 99-684.
    [70] Liu C,Cady C M,Rae P J,et al.On the quantitative measurement of fracture toughness in high explosive and mock materials.Proceedings of 14th International Symposium on Detonation,2010.
    [71] Browning R V,Meyer T O.Effects of humidity and other variables on the strength of PBX-9501.23th Aging, Compatibility and Stockpile Stewardship Conference Proceedings,Sandia National Laboratories,2000.
    [72] Browning R V,Meyer T O.Effects of reduced nitro plasticizer content on the compressive strength of PBX-9501.Report PXRPT-05-03,2005.
    [73] Rangaswamy P,Thompson D G,Liu C,Lewis M W.Modeling the mechanical response of PBX-9501 . Proceedings of 14th International Symposium on Detonation,2010.
    [74]周芬芬等译,Terry R G等著.LASL高能炸药性能数据手册.中国工程物理研究院九〇三所情报室,1982.
    [75]梁增友著.炸药冲击损伤与起爆特性.北京:电子工业出版社,2009.
    [76] Asay B W,Funk D J,Henson B F,Laabs G W. Speckle photography during dynamic impact of an energetic material using laser induced fluorescence. Journal of Applied Physics,1997,82(3):1093-1099.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700