亚麻木酚素的提取纯化与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚麻籽中含有多种木酚素,其中开环异落叶松树脂酚(SECO)的含量最高,SECO以二糖苷开环异落叶松树脂酚二葡萄糖苷(SDG)的形式存在于亚麻籽中。研究发现亚麻木酚素具有多种生物活性,如抗癌、防治心血管疾病、减缓更年期症状、预防骨质疏松等。开发利用亚麻木酚素对预防这些膳食模式依赖性的疾病和提高人民身体素质具有重要意义。亚麻木酚素的开发利用还可以大大提高亚麻籽的附加值,产生显著的经济效益,促进国内亚麻资源深加工与利用。
     本文通过对亚麻木酚素的测定、提取、纯化及亚麻籽综合利用方法的系统研究,建立了一条SDG提取和纯化的工艺路线,具有安全、经济、易于工业化的优点,得到了高纯度(95%以上)的木酚素产品。本文从体外细胞培养和化学计算相结合的角度出发,研究了亚麻木酚素的抗乳腺癌功效及其作用机理。通过生物活性实验与理论计算交互验证的方法解释了其量效、构效关系。研究发现,在SDG的测定过程中,将碱水解与有机溶剂提取合并可以更充分地从脱脂亚麻籽壳中提取SDG。研究了木酚素测定中普遍采用的酸水解方法对SDG的影响,纯化的SDG样品经过酸水解主要生成3种产物,低盐酸浓度下产物以SECO及开环异落叶松树脂酚葡糖苷(SG)为主,提高盐酸浓度和作用时间,产物以脱水开环异落叶松树脂酚(ANHSEC)为主,但木酚素总量降低。采用HPLC-PAD-MS可准确测定SDG、SG、SECO与ANHSEC,采用NMR验证了HPLC-PAD-MS的测定结果并鉴别了SDG的构型。以SDG为对照,建立了HPLC定量方法,避免了酸水解导致的损失,路线简便,方法可靠,灵敏度令人满意。本文还采用比色法测定SDG,使其定量更为方便快捷。
     为富集SDG和综合利用亚麻籽中功能性成分,本文采用湿法脱粘,以粘性脱除率(定义为粘质物脱除率与0.1%粘质物溶液粘度的乘积)为指标,确定了最适脱粘条件:温度70°C,水料比7:1,pH 6.0,时间60 min,脱粘4次。分析了所得粗亚麻籽胶的组成,其多糖与蛋白含量分别为65.4%和8.50%(w/w)。其单糖组成(摩尔比例)为鼠李糖:岩藻糖:阿拉伯糖:木糖:葡萄糖:半乳糖= 5.10:1.00:4.18:8.98:2.13:2.75,木糖含量最高,表明中性多糖含量较高。采用湿法脱壳,在砂轮间距0.40 mm、砂轮转速2800 rpm、水力分级两次条件下,富仁、富壳与混合部分的得率分别为52.6%、22.3%和12.7%,总回收率87.7%,仁中含壳率和壳中含仁率分别为20.9%和11.1%,达到较为满意的程度。分析了亚麻籽脱粘和仁壳分离的影响,发现部分SDG(9.6%)随粉碎的壳层流失,SDG主要分布在富壳部分,其次是混合部分,富仁部分含量很少。
     采用正交实验设计的方法优化了SDG的搅拌提取条件:提取溶剂为50%乙醇(v/v),温度60°C,液固比20 mL/g,时间3 h。该条件下SDG的得率达1.80 g/100 g脱脂亚麻籽壳粉(DFHF),向提取液中加入0.25 mol/L NaOH时,SDG的得率提高至1.90 g /100 g DFHF。研究了超声辅助提取对亚麻木酚素得率的影响,发现超声功率160 W、时间30 min、温度40°C的条件下,SDG得率可达到2.01 g/100 g DFHF。采用中心组合设计和响应面分析确定微波辅助提取的工艺条件为:乙醇浓度40.9 % (v/v),液固比21.9: 1 (mL/g),超声处理5 min进行预浸,在130 W微波功率下辐照90.5 s。该条件下SDG得率为2.19 g/100 g DFHF,高于常规搅拌提取和超声辅助提取的得率。圆二色性检测表明实验所用微波辐照条件对SDG构型没有影响。MAE大大缩短了提取时间,显著提高了SDG的得率,并节省了能耗。
     研究了亚麻木酚素粗提物在正己烷、氯仿、乙酸乙酯和水四种溶剂中的分配特性,发现SDG极性较大,主要保留在水相中。以洗脱物紫外吸收特征为评判指标,采用硅胶柱层析法二次洗脱分离出SDG产物。HPLC-PAD-MS检测其纯度为91.85%,硅胶柱层析的回收率为92.4%。采用大孔吸附树脂对SDG粗提物进行了静态吸附和解析。筛选出吸附率和解析率分别为86.4%和95.1%的X-5大孔吸附树脂。采用X-5为分离介质,研究其动态吸附特征及合适的洗脱条件,确定采用乙醇溶液进行梯度洗脱分离SDG,在20%乙醇洗脱组分中检测出SDG,其纯度为65.7%,但整个分离过程回收率偏低,为80.8%。采用Sephadex LH-20凝胶柱分离纯化SDG,确定水作为洗脱溶剂,二次分离得到纯度96.6%的SDG产物,回收率达到97.2%。
     研究了不同浓度SECO及其在人体内的代谢产物END与ENL对雌激素阳性乳腺癌细胞MCF-7增殖的抑制作用,并同金雀异黄素(GEN)进行对照,发现SECO与GEN在较高浓度(分别为100和40μmol/L)下对MCF-7具有抑制作用,而在低浓度(10~40和10~20μmol/L)下促进MCF-7增殖作用。END和ENL在10~100μmol/L浓度下均表现出对MCF-7增殖的抑制作用。采用流式细胞仪检测了由100μmol/L的SECO、40μmol/L的END、ENL与GEN作用后的MCF-7细胞的周期分布变化,发现G0/G1期细胞比例增加,S期细胞比例降低,G2/M期细胞比例略有增高,说明SECO、END、ENL与GEN可能是通过影响细胞DNA的增殖来实现对MCF-7的抑制作用的。
     采用放射性配基竞争结合法测定了SECO与α雌激素受体(ERα)的结合活力,发现在10μmol/L浓度下SECO不具有与ERα结合的活力。采用分子对接方法(DOCK)研究了SECO、END、ENL等配基与雌激素受体对接过程中的能量变化(ΔG),结果表明ΔG与配基分子的结合活力间无明显的线性相关性,通过对接研究初步确定了ERα与ERβ的配基结合部位及可能的作用方式。通过比较分子场分析(CoMFA),建立了预测配基分子与ERα、ERβ结合活力的CoMFA模型,结果表明氢键在模型中起重要作用,模型的预测结果与实测结果接近。采用该模型预测了END、ENL及SECO同ERα与ERβ的相对结合活力,结果表明ENL的结合活力远高于SECO,并且三者与ERβ的结合活力均高于与ERα的结合活力。因此,在ERβ分布较多的器官中,SECO发挥功效的途径之一可能是通过代谢产物ENL来实现的。
Flaxseed (Linum usitatissimum L) is a rich source for several kinds of lignans. Secoisolariciresinol (SECO,C20H26O6) is the most abundant among these lignans and exists in flaxseed as a diglucoside (SDG). Researches have been carried out and flaxseed lignan (mainly SDG) was found to possess multiple bioactivities including anticancer, preventing cardiovascular disease, releasing postmenopausal symptoms, preventing osteoporosis and antioxidation. Exploitation of flaxseed lignan could make great contribution to prevent these dietary-dependent diseases and improve people’s health. Extraction and purification of flaxseed lignan would add value to flaxseed and make economic benefit. Besides, comprehensive utilization of flaxseed needs deep and systematic research.
     This paper aims at accurate and fast determination of flaxseed lignan and development of a safe, economic and easy-to-scale-up process to extract and isolate SDG (with purity higher than 95%). Besides, an integrate process for utilization of flaxseed has also been taken into consideration. As to the inhibition effect on breast cancer and its mechanism, in vitro cell culture experiment and chemical calculation are combined to cross validation and to explore its dose-effect and structure-activity relationship.
     For the determination of SDG, we found combination of basic hydrolysis and solvent extraction would get high SDG yield and the result is more accurate. Acid hydrolysis of purified SDG would cause three main hydrolysates, namely secoisolariciresinol glucoside (SG), SECO and anhydrosecoisolariciresinol (ANHSEC). With lower HCl concentration, SECO and SG were produced mainly and ANHSEC became the main product when acid concentration and heating duration was improved. HPLC-PAD-MS was adopted to determine SDG, SG, SECO and ANHSEC, and NMR was used to identify configuration of SDG. The quantitative method using SDG as standard avoided artifacts caused by acid hydrolysis was considered as simple, reliable and sensible. A colorimetric method was also developed to determine SDG quickly and easily.
     To integrate recover bioactive components in flaxseed, a wet process was proposed to get rid of the mucilage. Yield and static viscosity of the extract were determined and produced as a comprehensive index, demucilage ratio, to evaluate different levels of each factor. Demucilage conditions were optimized as following: temperature of 70°C, liquid to solid ratio of 7:1, pH 6.0, soaking duration 1 h and soaking times four. Major components of crude flaxseed gum, i.e., polysaccharide and protein were determined as 65.4% and 8.50% respectively. Monosaccharide composition was determined as rhamnose: fucose: arabinose: xylose: glucose: galactose = 5.10: 1.00: 4.18: 8.98: 2.13: 2.75 in mole ratio. High content of xylose means that crude gum contains neutral polysaccharide of high content. Hull and kernel were separated with a wet process. Flaxseed were breaking with a grinding wheel under the conditions that wheel distance 0.40 mm and wheel speed 2800 rpm. Broken flaxseed was fractionated by hydrocyclone for two times. Kernel-rich fraction, hull-rich fraction and mixture fraction were recovered and the yields of them were 52.6%, 22.3% and 12.7% respectively. Kernel content of hull-rich fraction and hull content of kernel-rich fraction were 20.9% and 11.1% respectively. Effect of Demucilage and dehull on SDG was investigated, and it was found little amount of SDG (9.6%) leaked with fine hull, most of the SDG was enriched in hull-rich fraction, mixture fraction has higher content of SDG than kernel-rich fraction.
     Conditions for stirring extraction of SDG from defatted flaxseed hull flour (DFHF) were optimized using orthogonal experimental design. Under the optimized conditions, i.e., 50% (v/v) aqueous ethanol as solvent, temperature of 60°C, liquid to solid ratio 20 mL/g and stirring duration of 3 h, 1.80 g SDG was obtained from 100 g DFHF. When adding NaOH to solvent with final concentration of 0.25 mol/L, SDG yield was improved to 1.90 g /100 g DFHF. Ultrasound-assisted extraction (UAE) of SDG was investigated and under the conditions that ultrasonic power as 160 W, time duration as 30 min, temperature as 40°C, SDG yield of 2.01 g/100 g DFHF. Central composite design and response surface analysis were carried out to optimize a microwave-assisted extraction (MAE) process for SDG. With ethanol concentration of 40.9 % (v/v), liquid to solid ratio of 21.9: 1 (mL/g), presoaking with ultrasound treatment for 5 min, microwave power of 130 W and irradiation time of 90.5 s, SDG yield of 2.19 g/100 g DFHF was obtained. MAE was superior to stirring extraction and UAE in SDG yield and time-saving. Circular dichroism of SDG with MAE was determined and it was found MAE didn’t change its configuration.
     Partition of crude SDG extract was carried out with 4 kind of solvent, i.e., n-hexane, chloroform, acetic ether and water, SDG was found mostly in water fraction. By Judging UV spectra, SDG was purified on a silica gel column for 2 times. Purity of the eluate was determined by HPLC-PAD-MS as 91.85%, and 92.4% SDG was recovered. Static adsorption and desorption capacity pf several kinds of macroporous adsorption resin (MAR) were determined and X-5 was found to possess a high adsorption and desorption rate as 86.4% and 95.1% respectively. X-5 was used to isolate SDG and dynamic elution characteristics were investigated. Gradient concentration of aqueous ethanol was adopted to separate SDG from the crude extract. SDG was eluted with 20% (v/v) aqueous ethanol and purity was determined with HPLC-PAD-MS as 65.7%. 80.8% SDG was recovered after MAR separation. Sephadex LH-20 column chromatography was used to purify SDG. Elution conditions were investigated and water was found to give the best resolution. After separation on Sephadex LH-20 column for two times, 97.2% SDG was recovered and eluate purity was determined as 96.6%.
     Effect of different concentration of SECO and its metabolites, enterodiol (END) and enterolactone (ENL) on proliferation of an estrogen receptor (ER) positive cancer cell, MCF-7 was studied. Genistein (GEN) was used as the counter. We found that SECO and GEN could inhibit proliferation of MCF-7 at high concentration (100 and 40μmol/L respectively). However, proliferation of MCF-7 was promoted when 10~40μmol/L SECO or 10~20μmol/L GEN was added to culture media. Two kinds of mammalian lignans, END and ENL showed dose-dependent inhibitory effect on proliferation of MCF-7 in concentration range of 10~100μmol/L. Flow cytometry method was adopted to analyze the changes of MCF-7 cell cycle after treatment with 100μmol/L SECO, 40μmol/L END, 40μmol/L ENL and 40μmol/L GEN. Results showed cell ratio of both G0/G1 and G2/M stages increased while that of S stage decreased. Therefore, SECO, END, ENL and GEN may exert its inhibitory effect by control proliferation of DNA proliferation.
     The method by competitive binding of irradiative ligand was used to determine relative binding affinity (RBA) of SECO to ERα. It was found that at concentration of 10μmol/L, SECO could not bind to ERα. Docking study of different ligands including SECO, END, ENL with two types of ER, i.e., ERαand ERβwas carried out. Energy change (ΔG) of the system during docking was compared and we found that there was no obvious linear relationship betweenΔG and log (RBA). However, ligand binding domain (LBD) was determined and possible interactions between ligands and ER were analyzed. RBA of ligands to ERαand ERβwere predicted by comparative molecular field analysis (CoMFA). It was found that hydrogen bond plays an important role in the interaction between ligands and both ER. Predictive values of optimized CoMFA model was close to observed values. RBA of END, ENL and SECO to ERαand ERβwere predicted by the CoMFA models, we found that RBA of ENL was much higher than that of SECO for both estrogen receptors. And all three ligands showed higher RBA to ERβthan that to ERα. Therefore, we suppose that in the tissues where ERβwas distributed, SECO may exert anticancer bioactivity by its metabolite ENL.
引文
1. Vaisey M, Morris D H. 1 Introduction: History of the Cultivation and Uses of Flaxseed, in Flax, The Genus Linum [M], Muir A D, Westcott N D. NY: Taylor and Francis Inc. 2003, 1-21
    2.吴艳霞.亚麻籽及亚麻籽油[J].陕西粮油科技, 1994, 19 (2): 22-23
    3. Oomah B D, Mazza G, Kenaschuk E O. Dehulling Characteristics of Flaxseed[J]. Lebensmittel-Wissenschaft und-Technologie, 1996, 29: 245-250
    4. Wanasundara P K J P D, Shahidi F. Removal of flaxseed mucilage by chemical and enzymatic treatments[J]. Food Chemistry 1997, 59 (1): 47-55
    5. Thakor N J S. Dehulling of Canola by Hydrothermal treatments[D]: [Ph D Thesis], The University of Saskatchewan (Canada). 1993
    6. Oomah B D, Mazza G. Fractionation of flaxseed with a batch dehuller[J]. Industrial Crops and Products, 1998, 9: 19-27
    7. Peterson S W. Linseed oil meal, in Processed plant protein foodstuffs[M], Altschul A M. NY: Acdemic Press. 1958, 593-617
    8. Bhatty R S, Cherdkiatgumchai P. Compositional analysis of laboratory-prepared and commercial samples of linseed meal and of hull isolated from flax[J]. Journal of the American Oil Chemists' Society, 1990, 67 (2): 79-84
    9. Kadivar M. Studies on integrated processes for the recovery of mucilage, hull, oil and protein from solin (low linolenic acid flax)[D]: [Ph.D Thesis], Saskatoon: Applied Microbiology and Food Science, The University of Saskatchewan (Canada). 2001
    10. Oomah B D, Mazza G. Effect of Dehulling on Chemical Composition and Physical Properties of Flaxseed[J]. Lebensmittel-Wissenschaft und-Technologie, 1997, 30: 135-140
    11. Wiesenborn D, Tostenson K, Kangas N. Continuous abrasive method for mechanically fractionating flaxseed[J]. Journal of the American Oil Chemists Society, 2003, 80 (3): 295-300
    12. Han N F, Cui W, Process and Apparatus for Flaxseed Component Separation[P], Canada CA 2462787. 2003-07-03
    13. Kolodziejczyk P P, Fedec P. Processing flaxseed for human consumption, in Flaxseed in Human Nutrition[M], Cunane S C, Thompson L U. Champaign, Illinois: AOCS Press. 1995, 261-280
    14. Westcott N D, Muir A D. 3 Chemical Studies on the Constituents of Linum spp., in Flax, The Genus Linum [M], Muir A D, Westcott N D. NY: Taylor and Francis Inc. 2003, 55-73
    15. Meagher L P, Beecher G R. Assessment of Data on the Lignan Content of Foods[J]. Journal of Food Composition and Analysis, 2000, 13 (6): 935-947
    16. Zimmermann R, Bauermann U, Morales F. Effects of growing site and nitrogen fertilization on biomass production and lignan content of linseed (Linum usitatissimum L.)[J]. Journal of The Science of Food and Agriculture, 2006, 86 (3): 415-419
    17. Blitz C L, Murphy S P, Au D L M. Adding lignan values to a food composition database[J]. Journal of Food Composition and Analysis, 2007, 20: 99–105
    18. Thompson L URickard S ECheung F, et al. Variability in anticancer lignan levels in flaxseed[J]. Nutrition and Cancer, 1997, 27 (1): 26-30
    19. Winton A L, Winton K B. Seeds of the flax family[M]. London, UK: John Wiley and Sons, 1932,
    20. Wanasundar J P D. Protein products and sprouts from flaxseed (Linum usitatksimum L.)[D]: [Ph. D Thesis], Newfoundland: Memorial University of Newfoundland. 1995
    21.中国种植业信息网〉农业作物数据库. http://zzys.agri.gov.cn/nongqing.asp. 2006-09-21
    22.党占海,张建平.我国亚麻产业现状及发展对策.食物与能源安全战略中的中国油料--中国作物学会油料作物专业委员会第五届学术年会论文集. 2004-11.北京:中国农业科学技术出版社
    23. Oomah B D. Flaxseed as a functional food source[J]. Journal of the Science of Food and Agriculture, 2001, 81 (9): 889-894
    24. Grieve M. A Modern Herbal, the medicinal, culinary, cosmetic and economic properties, cultivation and Folk-Lore of Herbs.[M]. Dover: Dover Publications Inc., 1971, 476
    25. Zheng Y-L, Wiesenborn D P, Tostenson K, et al. Screw pressing of whole and dehulled Flaxseed for organic oil[J]. Journal of the American Oil Chemists Society, 2003, 80 (10): 1039-1045
    26. Zheng Y-L. Screw pressing of whole and dehulled flaxseed for organic oil rich in omega-3 fatty acids[D]: [Ph.D Thesis], North Dakota State University. 2003
    27. Myllymaki O. Processing of flaxseed [P], Finland US 6,440,479 2002 -08-27
    28. McKevith B. Nutritional aspects of oilseeds[J]. Nutrition Bulletin, 2005, 30 (1): 13-26
    29. Lucas E A, Wild R D, Hammond L J, et al. Flaxseed improves lipid profile without altering biomarkers of bone metabolism in postmenopausal women[J]. The Journal of clinical endocrinology and metabolism, 2002, 87 (4): 1527-1532
    30.陈海华,许时婴,王璋.亚麻籽胶化学组成和结构的研究[J].食品工业科技, 2004, 25 (1): 103-105
    31.钟粟.亚麻胶的提取、特性及应用[D]: [硕士学位论文],北京:中国农业大学. 2001
    32. Cui W, Mazza G. Physicochemical Characteristics of Flaxseed Gum[J]. Food research international, 1996, 29 (3-4): 397-402
    33. Kris-Etherton P M, Hecker K D, Bonanome A, et al. Bioactive Compounds in Foods: Their Role in the Prevention of Cardiovascular Disease and Cancer [J]. American Journal of Medicine, 2002, 113 (9B): 71S-88S
    34. Axelson M, Sj?vall J, Gustafsson B E, et al. Origin of lignans in mammals and identification of a precursor from plants[J]. Nature, 1982, (298): 659-660
    35. Borriello S P, Setchell K D, Axelson M, et al. Production and metabolism of lignans by the human faecal flora[J]. Journal of Applied Bacteriology, 1985, 58 (1): 37-43
    36. Bambagiotti-Alberti M, Coron S A, Ghiara C, et al. Investigation of Mammalian Lignan Precursors in Flax Seed: First Evidence of Secoisolariciresinol Diglucoside in Two Isomeric Forms by Liquid Chromatography/Mass Spectrometry[J]. Rapid Communications in Mass Spectrometry, 1994, 8: 929-932
    37. Obermeyer W R, Musser S M, Betz J M, et al. Chemical studies of phytoestrogens and related compounds in dietary supplements: flax and chaparral[J]. Proceedings of The Society for Experimental Biology and Medicine, 1995, 208 (1): 6-12
    38. Thompson L U. Secoisolariciresinol diglycoside protection against cancer[J]. Food and Chemical Toxicology, 1996, 34 (11): 1188
    39. Schottner M, Spiteller G, Gansser D. Lignans interfering with 5 a-dihydrotestosterone binding to human sex hormone-binding globulin[J]. Journal of Natural Products, 1998, 61 (1): 119-121
    40. Thompson L U. Experimental studies on lignans and cancer[J]. Baillière's Clinical Endocrinology and Metabolism, 1998, 12 (4): 691-705
    41. Orcheson L J, Rickard S E, Seidl M M, et al. Flaxseed and its mammalian lignan precursor cause a lengthening or cessation of estrous cycling in rats[J]. Cancer Letters, 1998: 69-76
    42. Prasad K, Purified SDG as an antioxidant [P], Canada US 5,846,944 1998-12-08
    43. Prasad K. Flaxseed: a source of hypocholesterolemic and antiatherogenic agents[J]. Drug News Perspect, 2000, 13 (2): 99-104
    44. Prasad K. Antioxidant Activity of Secoisolariciresinol Diglucoside-derived Metabolites, Secoisolariciresinol, Enterodiol, and Enterolactone[J]. International Journal of Angiology, 2000, 9 (4): 220-225
    45. Ward W E, Yuan Y V, Cheung A M, et al. Exposure to purified lignan from flaxseed (Linum usitatissimum) alters bone development in female rats[J]. British Journal of Nutrition, 2001, 86 (4): 499-505
    46. Horn-Ross P L, Hoggatt K J, Lee M M. Phytoestrogens and thyroid cancer risk: the San Francisco Bay Area thyroid cancer study[J]. Cancer Epidemiology Biomarkers and Prevention, 2002, 11 (1): 43-9
    47. Nesbitt P D, Thompson L U. Lignans in homemade and commercial products containing flaxseed[J]. Nutrition and Cancer, 1997, 29 (3): 222-227
    48. Mazur W M, Fotsis T, W?h?l? K, et al. Isotope dilution gas chromatographic mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples[J]. Analytical Biochemistry, 1996, 233 (2): 169-180
    49. Nilsson M, Aman P, Harkonen H, et al. Nutrient and lignan content, dough properties and baking performance of rye samples used in Scandinavia[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 1997, 47 (1): 26-34
    50. Nilsson M, Aman P, Harkonen H, et al. Content of Nutrients and Lignans in Roller Milled Fractions of Rye[J]. Journal of the Science of Food and Agriculture, 1997, 73: 143-148
    51. Jenab M, Thompson L U. The influence of flaxseed and lignans on colon carcinogenesis and beta-glucuronidase activity[J]. Carcinogenesis, 1996, 17 (6): 1343-8
    52. Thompson L U, Seidl M M, Rickard S E, et al. Antitumorigenic effect of a mammalian lignan precursor from flaxseed[J]. Nutrition and Cancer, 1996, 26 (2): 159-165
    53. Clark W F, Muir A D, Westcott N D, et al. A novel treatment for lupus nephritis: lignan precursor derived from flax [J]. Lupus, 2000, 9 (6): 429-436
    54. Westcott N D, Muir A D. Flax seed lignan in disease prevention and health promotion[J]. Phytochemistry Reviews, 2003, 2 (3): 401-417
    55. Prasad K, Mantha S V, Muir A D, et al. Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism[J]. Mol Cell Biochem, 2000, 206 (1-2): 141-149
    56. Prasad K. Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat[J]. Journal of Laboratory and Clinical Medicine, 2001, 138 (1): 32-39
    57. Bhathena S J, Velasquez M T. Beneficial role of dietary phytoestrogens in obesity and diabetes[J]. American Journal of Clinical Nutrition, 2002, 76 (6): 1191-1201
    58. Prasad K. Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed[J]. Molecular & Cellular Biochemistry, 1997, 168 (1-2): 117-123
    59. Prasad K, Use of Purified SDG as an Antioxidant[P], CA 2563381. 1997-10-04
    60. Kitts D D, Yuan Y V, Wijewickreme A N, et al. Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone[J]. Molecular and Cellular Biochemistry, 1999, 202 (1-2): 91-100
    61. Prasad K. Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed[J]. Circulation, 1999, 99 (10): 1355-1362
    62. Niemeyer H B, Metzler M. Differences in the antioxidant activity of plant and mammalian lignans[J]. Journal of Food Engineering, 2003, 56 (2-3): 255-256
    63. Bloedon L T, Szapary P O. Flaxseed and cardiovascular risk[J]. Nutrition Reviews, 2004, 62 (1): 18-27
    64. Rajesha J, Murthy K N C, Kumar M K, et al. Antioxidant Potentials of Flaxseed by in VivoModel[J]. Journal of Agricultural and Food Chemistry, 2006, ASAP Article
    65. Hosseinian F F H. Antioxidant properties of flaxseed lignans using in vitro model systems[D]: [Ph. D Thesis], Department of Pharmacy University of Saskachewan (Canada). 2006
    66. Beatrice R, Philippe C, Cosmetic uses of lignans[P], WO2004012697. 2004-02-12
    67. Hasselwander O, Kraemer KJentzsch A, et al., Use of Lignans in Cosmetic or Dermatological Preparations[P], WO2005048970 2005-06-02
    68. Jang I S, Ju G M, Kang S H, et al., Method for Preparing Secoisolariciresinol (Seco) and Cosmetic Composition Comprising Seco as Active Ingredient[P], KR20040059270 2004-07-05
    69. Varga T K, Diosady L L. Simultaneous extraction of oil and antinutritional compounds from flaxseed[J]. Journal of the American Oil Chemists' Society, 1994, 71 (6): 603-607
    70. Alzueta C, Ortiz L T, Rebole A, et al. Effects of removal of mucilage and enzyme or sepiolite supplement on the nutrient digestibility and metabolyzable energy of a diet containing linseed in broiler chickens[J]. Animal feed science and technology 2002, 97 (3-4): 169-181
    71.杨宏志.亚麻籽脱毒和木脂素提取工艺研究[D]: [博士学位论文],北京:中国农业大学. 2005
    72. Maddock T D. Using flax as a feedstuff for beef cattle[D]: [Ph.D Thesis], Agriculture, Animal Culture and Nutrition, North Dakota State University. 2005
    73. Madhusudhan K T, Singh N. Effect of detoxification treatment on the physicochemical properties of linseed proteins[J]. Journal of Agricultural and Food Chemistry, 1985, 33: 1219-1222
    74. Madhusudhan K T, Singh N. Effect of Heat Treatment on the Functional Properties of Linseed Meal[J]. Journal of Agricultural and Food Chemistry, 1985, 33: 1222-1226
    75.李南.亚麻籽在食品开发中的远景[J].食品研究与开发, 2001, 12 (S): 49-51
    76. Kurzer M S, Xu X. Dietary Phytoestrogens[J]. Annual Review of Nutrition, 1997, 17: 353-381
    77. Johansson M, Popoff T, Theander O. Effect of Spruce Root Constituents on Extracellular Enzymes of Fomes annosus[J]. Physiologia Plantarum, 1976, 37 (4): 275-282
    78. Thompson L U, Robb P, Serraino M, et al. Mammalian lignan production from various foods[J]. Nutrition and Cancer, 1991, 16 (1): 43-52
    79. Fang J-M, Lee C-K, Cheng Y-S. Lignans from leaves of Juniperus chinensis[J]. Phytochemistry, 1992, 31 (10): 3659-3661
    80. Schottner M, Gansser D, Spiteller G. Lignans from the roots of Urtica dioica and their metabolites bind to human sex hormone binding globulin (SHBG)[J]. Planta Med, 1997, 63 (6): 529-532
    81. Adlercreutz H, Mazur W. Phyto-oestrogens and western diseases[J]. Annals of Medicine, 1997, 29 (2): 95-120
    82. Qiu S-X. Phytochemical studies on Aster pilosus and other medicinal plants[D]: [Ph.D. ], Chicago, US: Chemistry, Pharmaceutical.;Health Sciences, Pharmacy.;Chemistry, Organic. 0491;0572;0490 University of Illinois at Chicago, Health Sciences Center. 1998
    83. Cunnane S C, Hamadeh M J, Liede A C, et al. Nutritional attributes of traditional flaxseed in healthy young adults [J]. American Journal of Clinical Nutrition, 1995, 61: 62-68
    84. Milder I E J, Arts I C W, Putte B v d, et al. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol[J]. British Journal of Nutrition, 2005, 93: 393-402
    85. Coulman K D. The effect of flaxseed and sesame seed on lignan metabolism and biomarkers of chronic disease risk in postmenopausal women.[D]: [M. Sc Thesis], Health Sciences, Nutrition, University of Toronto (Canada). 2003
    86. Coulman K A, Liu Z, Hum W Q, et al. Whole sesame seed is as rich a source of mammalian lignanprecursors as whole flaxseed[J]. Nutrition and Cancer, 2005, 52 (2): 156-165
    87. Liu Z, Saarinen N M, Thompson L U. Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats[J]. Journal of Nutrition, 2006, 136 (4): 906-912
    88. Fletcher R J. Food sources of phyto-oestrogens and their precursors in Europe [J]. British Journal of Nutrition, 2003, 89 (S1): 831-836
    89. Bakke J E, Klosterman H J. A new diglucoside from flaxseed [J]. Proceedings of the North Dakota Academy of Science 1956, (10): 18-22
    90. Johnsson P. Phenolic compounds in flaxseed: Chromatographic and spectroscopic analyses of glucosidic conjugates[D]: [Licentiate thesis], Uppsala: Department of Food Science, Swedish University of Agricultural Sciences. 2004
    91. Mazur W M. Phytoestrogen content in foods[J]. Baillieres Clin Endocrinol Metab, 1998, 12 (4): 729-742
    92. Mazur W M, Uehara M, W?h?l? K, et al. Phyto-oestrogen content of berries, and plasma concentrations and urinary excretion of enterolactone after a single strawberry-meal in human subjects[J]. British Journal of Nutrition, 2000, 83 (4): 381-387
    93. Valsta L M, Kilkkinen A, Mazur W, et al. Phyto-oestrogen database of foods and average intake in Finland[J]. Br J Nutr, 2003, 89 Suppl 1: S31-S38
    94. Kiely M, Faughnan M, W?h?l? K, et al. Phyto-oestrogen levels in foods: the design and construction of the VENUS database[J]. British Journal of Nutrition, 2003, 89 Suppl 1: S19-S23
    95. Ford J D, Huang K S, Wang H B, et al. Biosynthetic pathway to the cancer chemopreventive secoisolariciresinol diglucoside-hydroxymethyl glutaryl ester-linked lignan oligomers in flax (Linum usitatissimum) seed[J]. Journal of Natural Products, 2001, 641 (11): 1388-1397
    96. Kamal-Eldin A, Peerlkamp N, Johnsson P, et al. An oligomer from flaxseed composed of secoisolariciresinoldiglucoside and 3-hydroxy-3-methyl glutaric acid residues[J]. Phytochemistry, 2001, 58 (4): 587-590
    97. Setchell K D, Lawson A M, Mitchell F L, et al. Lignans in man and in animal species[J]. Nature, 1980, 287 (5784): 740-742
    98. Begum A N, Nicolle C, Mila I, et al. Dietary lignins are precursors of mammalian lignans in rats[J]. Journal of Nutrition, 2004, 134 (1): 120-127
    99. Glits? L V, Mazur W M, Adlercreutz H, et al. Intestinal metabolism of rye lignans in pigs[J]. British Journal of Nutrition, 2000, 84: 429-437
    100. Wang L-Q. Mammalian phytoestrogens: enterodiol and enterolactone[J]. Journal of Chromatography B, 2002, 777: 289-309
    101. Nesbitt P D. Mammalin lignan production from flaxseed: studies in vitro and in humans[D]: [M.Sc.], Toronto: Graduate Department of Nutritional Sciences, University of Toronto. 1997
    102. Horn-Ross P L, Barnes S, Lee M, et al. Assessing Phytoestrogen Exposure in Epidemiologic Studies: Development of a Database (United States)[J]. Cancer Causes and Control, 2000, 11 (4): 289-298
    103. Milder I E J, Feskens E J M, Arts I C W, et al. Intake of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in Dutch men and women[J]. Journal of Nutrition, 2005, 135 (5): 1202-1207
    104. Horn-Ross P L, Barnes S, Lee V S, et al. Reliability and validity of an assessment of usual phytoestrogen consumption (United States)[J]. Cancer Causes and Control, 2006, 17 (1): 85-93
    105. Penalvo J L, Haajanen K M, Botting N, et al. Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2005, 53 (24): 9342-9347
    106. Lee Y J, Adlercreutz H, Kwon H. Quantitative analysis of isoflavones and lignans in sea vegetables consumed in Korea using isotope dilution gas chromatography-mass spectrometry[J]. Food Science and Biotechnology, 2006, 15 (1): 102-106
    107. Kuijsten A, Buijsman M, Arts L C W, et al. A validated method for the quantification of enterodiol and enterolactone in plasma using isotope dilution liquid chromatography with tandem mass spectrometry[J]. Journal Of Chromatography B-Analytical Technologies In The Biomedical And Life Sciences, 2005, 822 (1-2): 178-184
    108. Wilkinson A P, W?h?l? K, Williamson G. Identification and quantification of polyphenol phytoestrogens in foods and human biological fluids[J]. Journal of Chromatography B, 2002, 777 93-109
    109. Eliasson C, Kamal-Eldin A, Andersson R, et al. High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction[J]. Journal of Chromatography A, 2003, 1012: 151–159
    110. Charlet S, Bensaddek L, Raynaud S, et al. An HPLC procedure for the quantification of anhydrosecoisolariciresinol. Application to the evaluation of flax lignan content[J]. Plant Physiology and Biochemistry, 2002, 40 (3): 225-229
    111. Cerundolo R, Court M H, Hao Q, et al. Identification and concentration of soy phytoestrogens in commercial dog foods[J]. American Journal of Veterinary Research, 2004, 65 (5): 592-596
    112. Pe?alvo J L, Nurmi T, Haajanen K, et al. Determination of lignans in human plasma by liquid chromatography with coulometric electrode array detection[J]. Analytical Biochemistry, 2004, 332 (2): 384-393
    113. Kraushofer T, Sontag G. Determination of matairesinol in flax seed by HPLC with coulometric electrode array detection[J]. Journal of Chromatography B, 2002, 777: 61–66
    114. Kraushofer T, Sontag G. Determination of some phenolic compounds in flax seed and nettle roots by HPLC with coulometric electrode array detection[J]. European Food Research and Technology, 2002, 215 (6): 529-533
    115. Meagher L P, Beecher G R, Flanagan V P, et al. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal[J]. Journal of Agricultural and Food Chemistry, 1999, 47 (8): 3173-3180
    116. Smeds A I, Hakala K, Hurmerinta T T, et al. Determination of plant and enterolignans in human serum by high-performance liquid chromatography with tandem mass spectrometric detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41 (3): 898-905
    117. Milder I E J, Arts L C W, Venema D P, et al. Optimization of a liquid chromatography-tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods[J]. Journal of Agricultural and Food Chemistry, 2004, 52 (15): 4643-4651
    118. Sicilia T, Niemeyer H B, Honig D M, et al. Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds[J]. Journal of Agricultural and Food Chemistry, 2003, 51 (5): 1181-1188
    119. Liggins J, Grimwood R, Bingham S A. Extraction and Quantification of Lignan Phytoestrogens in Food and Human Samples[J]. Analytical Biochemistry, 2000, 287 (1): 102-109
    120. Willfor S M, Smeds A I, Holmbom B R. Chromatographic analysis of lignans[J]. Journal Of Chromatography A, 2006, 1112 (1-2): 64-77
    121. Muir A D, Westcott N D, Process for Extracting and Purifying Lignans and Cinnamic Acid Derivatives from Flaxseed[P], Canada CA 2216979. 1996-10-03
    122. Westcott N D, Muir A D, Process for extracting lignans from flaxseed [P], Canada US 5,705,618 1998-01-06
    123. Muir A D, Westcott N D, Prasad K. Extraction, purification and animal model testing of an anti-atherosclerotic lignan secoisolariciresinol diglucoside from flaxseed (Linum usitatissimum). in ISHS Acta Horticulturae. 1999. II WOCMAP, Mendoza
    124. Westcott N D, Paton D, Complex containing lignan, phenolic and aliphatic substances from flax and process for preparing [P], Canada US 6,264,853. 2001-07-24
    125. Dobbins T A, Wiley D B, A Process for Recovering Secoisolariciresinol Diglycoside from De-Fatted Flaxseed[P], WO03084974 2003-10-16
    126. Shukla R, Hilaly A K, Moore K M, Process for obtaining lignan [P], US 6,767,565 2004-07-27
    127. Pihlava J-M, Ryhanen H H, Hietantemi E-L. Process for isolating and purifying secoisolariciresinol diglcoside (sdg) from flaxseed[P], Finland US2004030108. 2004-02-12
    128. Cacace J E, Mazza G. Pressurized low polarity water extraction of lignans from whole flaxseed[J]. Journal of Food Engineering 2006, 77: 1087-1095
    129. Qiu S-X, Lu Z-Z, Luyengi L, et al. Isolation and Characterization of Flaxseed (Linum usitatissimum) Constituents[J]. Pharmaceutical Biology, 1999, 37 (1): 1-7
    130. Andreas D, Saskia H, Peter W. Isolation of the lignan secoisolariciresinol diglucoside from flaxseed (Linum usitatissimum L.) by high-speed counter-current chromatography[J]. Journal of Chromatography A, 2002, 943 (2): 299-302
    131. Rickard S E. Disposition and Anticancer Effects of Flaxseed Lignans in the Rat[D]: [Ph. D], Toronto: Graduate Department of Nutritional Sciences, University Of Toronto. 2000
    132. McCann M J, Gill C I R, McGlynn H, et al. Role of mammalian Lignans in the prevention and treatment of prostate cancer[J]. Nutrition and Cancer, 2005, 52 (1): 1-14
    133. Serraino M, Thompson L U. Flaxseed supplementation and early markers of colon carcinogenesis[J]. Cancer Letters, 1992, 63 (2): 159-165
    134.Barnes S. Phytoestrogens and breast cancer[J]. Baillikre's Clinical Endocrinology and Metabolism, 1998, 12 (4): 559-579
    135. Li D H, Yee J A, Thompson L U, et al. Dietary supplementation with secoisolariciresinol diglycoside (SDG) reduces experimental metastasis of melanoma cells in mice[J]. Cancer Letters, 1999, 142 (1): 91-96
    136. Demark-Wahnefried W, Price D T, Polascik T J, et al. Pilot Study of Dietary Fat Restriction and Flaxseed Supplementation in Men with Prostate Cancer before Surgery: Exploring the Effects on Hormonal Levels, Prostate-Specific Antigen, and Histopathologic Features[J]. Urology, 2001, 58: 47-52
    137. Peeters P H M, Keinan-Boker L, Schouw Y T v d, et al. Phytoestrogens and breast cancer risk: Review of the epidemiological evidence[J]. Breast Cancer Research and Treatment 2003, 77: 171-183
    138. Adlercreutz H. Phytoestrogens and breast cancer[J]. Journal of Steroid Biochemistry & Molecular Biology, 2003, 83: 113-118
    139. McCann S E, Muti P, Vito D, et al. Dietary lignan intakes and risk of pre- and postmenopausalbreast cancer[J]. International Journal of Cancer, 2004, 111 (3): 440-443
    140. Linseisen J, Piller R, Hermann S, et al. Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case-control study[J]. International Journal of Cancer, 2004, 110 (2): 284-290
    141. Keinan-Boker L, Schouw Y T v D, Grobbee D E, et al. Dietary phytoestrogens and breast cancer risk[J]. American Journal of Clinical Nutrition, 2004, 79: 282-288
    142. Thompson L U, Chen J M, Li T, et al. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer[J]. Clinical Cancer Research, 2005, 11 (10): 3828-3835
    143. Hutchins A M, Martini M C, Olson B A, et al. Flaxseed consumption influences endogenous hormone concentrations in postmenopausal women[J]. Nutrition and Cancer, 2001, 39 (1): 58-65
    144. Brooks J D, Ward W E, Lewis J a E, et al. Supplementation with flaxseed alters estrogen metabolism in postmenopausal women to a greater extent than does supplementation with an equal amount of soy[J]. The American journal of clinical nutrition, 2004, 79 (2): 318-325
    145. Ward W E, Yuan Y V, Cheung A M, et al. Exposure to flaxseed and its purified lignan reduces bone strength in young but not older male rats[J]. Journal of Toxicology and Environmental Health-Part A, 2001, 63 (1): 53-65
    146. Kardinaal A F, Morton M S, Bruggemann-Rotgans I E, et al. Phyto-oestrogen excretion and rate of bone loss in postmenopausal women[J]. Eur J Clin Nutr, 1998, 52 (11): 850-855
    147. Kim M K, Chung B C, Yu V Y, et al. Relationships of urinary phyto-oestrogen excretion to BMD in postmenopausal women[J]. Clinical Endocrinology, 2002, 56 (3): 321
    148. Mazur W M, Duke J A, W?h?l? K, et al. Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans[J]. Journal of Nutritional Biochemistry, 1998, 9 (4): 193-200
    149. Lissin L W, Cooke J P. Phytoestrogens and Cardiovascular Health[J]. Journal of the American College of Cardiology, 2000, 35 (6): 1403-1410
    150. Prasad K. Dietary flax seed in prevention of hypercholesterolemic atherosclerosis [J]. Atherosclerosis Supplements, 1997, 132: 69-76
    151. Prasad K, Mantha S V, Muir A D, et al. Reduction of hypercholesterolemic atherosclerosis by CDC-flaxseed with very low alpha-linolenic acid[J]. Atherosclerosis, 1998, 136: 367-375
    152. Davakis E, Varvayanni M, Deligiannis P, et al. Whole flaxseed consumption lowers serum LDL-cholesterol and lipoprotein(a) concentrations in postmenopausal women [J]. Nutrition Research, 1998, 18 (7): 1203-1214
    153. Sano T, Oda E, Yamashita T, et al. Antithrombic and anti-atherogenic effects of partially defatted flaxseed meal using a laser-induced thrombosis test in apolipoprotein E and low-density lipoprotein receptor deficient mice[J]. Blood Coagul Fibrinolysis, 2003, 14 (8): 707-712
    154. Lucas E A, Lightfoot S A, Hammond L J, et al. Flaxseed reduces plasma cholesterol and atherosclerotic lesion formation in ovariectomized Golden Syrian hamsters[J]. Atherosclerosis, 2004, 173: 223-229
    155. Rickard S E, Yuan Y V, Thompson L U. Plasma insulin-like growth factor I levels in rats are reduced by dietary supplementation of flaxseed or its lignan secoisolariciresinol diglycoside[J]. Cancer Letters, 2000, 161: 47-55
    156. Chen J M, Stavro P M, Thompson L U. Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor[J]. Nutrition and Cancer, 2002, 43 (2): 187-192
    157. Prasad K. Suppression of Phosphoenolpyruvate Carboxykinase Gene Expression bySecoisolariciresinol Diglucoside (SDG), a New Antidiabetic Agent[J]. International Journal of Angiology, 2002, 11 (2): 107-109
    158. Ogborn M R, Nitschmann E, Weiler H, et al. Flaxseed ameliorates interstitial nephritis in rat polycystic kidney disease[J]. Kidney International, 1999, 55 (2): 417-423
    159. Stuglin C, Prasad K. Effect of flaxseed consumption on blood pressure, serum lipids, hemopoietic system and liver and kidney enzymes in healthy humans[J]. Journal of Cardiovascular Pharmacology and Therapeutics, 2005, 10 (1): 23-27
    160. Prasad K, Antioxidant activity in SDG metabolites [P], Canada US 6,486,126 2002 -11-26
    161. Eklund P C, Langvik O K, Warna J P, et al. Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans[J]. Organic and Biomolecular Chemistry, 2005, 3 (18): 3336-3347
    162. Demark-Wahnefried W, Robertson C N, Walther P J, et al. Pilot Study to Explore Effects of Low-Fat, Flaxseed-Supplemented Diet on Proliferation of Benign Prostatic Epithelium and Prostate-Specific Antigen[J]. Urology 2004, 63: 900-904
    163. Murkies A L, Wilcox G, Davis S R. Phytoestrogens[J]. Journal of Clinical Endocrinology and Metabolism, 1998, 83 (2): 297-303
    164. Zittermann A. Phytoestrogens[J]. Zentralbl Gynakol, 2003, 125 (6): 195-201
    165. Ososki A L, Kennelly E J. Phytoestrogens: a review of the present state of research[J]. Phytotherapy Research, 2003, 17 (8): 845-869
    166. Dixon R A. Phytoestrogens[J]. Annual Review of Plant Biology, 2004, 55: 225-261
    167. Ibarreta D, Daxenberger A, Meyer H H D. Possible health impact of phytoestrogens and xenoestrogens in food[J]. Acta Pathologica Microbiologica et Immunologica Scandinavica, 2001, 109 (3): 161-184
    168. Nikander E. Phytoestrogens in Postmenopausal Women–Effects on Climacteric Symptoms, Reproductive Organs, and Markers of Bone and Vascular Health[D]: [Academic Dissertation], Helsinki, Finland: Department of Obstetrics and Gynecology, Helsinki University Central Hospital, University of Helsinki. 2004
    169. Abe K, Iino T, Fujii W, et al., Process for producing sdg and foods and drinks containing the same[P], US2005158435 2005-07-21
    170. Prasad K. Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG)[J]. Molecular and Cellular Biochemistry, 2000, 209 (1-2): 89-96
    171. Mazur W M, Adlercreutz H. Naturally occurring oestrogens in food[J]. Pure and Applied Chemistry, 1998, 70 (9): 1759-1776
    1. Bakke J E and Klosterman H J. A new diglucoside from flaxseed [J]. Proceedings of the North Dakota Academy of Science 1956(10): 18-22
    2. Meagher L P and Beecher G R. Assessment of data on the lignan content of foods[J]. Journal of Food Composition and Analysis, 2000, 13(6): 935-947
    3. Kraushofer T and Sontag G. Determination of matairesinol in flax seed by hplc with coulometric electrode array detection[J]. Journal of Chromatography B, 2002, 777: 61-66
    4. Horn-Ross P L, Barnes S, Lee M, et al. Assessing phytoestrogen exposure in epidemiologic studies: Development of a database (united states)[J]. Cancer Causes and Control, 2000, 11(4): 289-298
    5. Kiely M, Faughnan M, Wahala K, et al. Phyto-oestrogen levels in foods: The design and construction of the venus database[J]. British Journal of Nutrition, 2003, 89 Suppl 1: S19-S23
    6. Valsta L M, Kilkkinen A, Mazur W, et al. Phyto-oestrogen database of foods and average intake in finland[J]. Br J Nutr, 2003, 89 Suppl 1: S31-S38
    7. Milder I E J, Arts I C W, Putte B v d, et al. Lignan contents of dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol[J]. British Journal of Nutrition, 2005, 93: 393-402
    8. Horn-Ross P L, Barnes S, Lee V S, et al. Reliability and validity of an assessment of usual phytoestrogen consumption (united states)[J]. Cancer Causes and Control, 2006, 17(1): 85-93
    9. Kamal-Eldin A, Peerlkamp N, Johnsson P, et al. An oligomer from flaxseed composed of secoisolariciresinoldiglucoside and 3-hydroxy-3-methyl glutaric acid residues[J]. Phytochemistry, 2001, 58(4): 587-590
    10. Johnsson P. Phenolic compounds in flaxseed: Chromatographic and spectroscopic analyses of glucosidic conjugates[D]: [Licentiate thesis]. Uppsala: Swedish University of Agricultural Sciences, 2004
    11. Thompson L U, Robb P, Serraino M, et al. Mammalian lignan production from various foods[J]. Nutrition and Cancer, 1991, 16(1): 43-52
    12. Xie L H, Ahn E M, Akao T, et al. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria[J]. Chemical & Pharmaceutical Bulletin, 2003, 51(4): 378-384
    13. Willfor S M, Smeds A I and Holmbom B R. Chromatographic analysis of lignans[J]. Journal Of Chromatography A, 2006, 1112(1-2): 64-77
    14. Muir A D and Westcott N D. Quantitation of the lignan secoisolariciresinol diglucoside in baked goods containing flax seed or flax meal[J]. Journal of Agricultural and Food Chemistry, 2000, 48(9): 4048-4052
    15. Johnsson P, Kamal-Eldin A, Lundgren L N, et al. Hplc method for analysis of secoisolariciresinol diglucoside in flaxseeds[J]. Journal of Agricultural and Food Chemistry, 2000, 48(11): 5216-5219
    16. Wilkinson A P, W?h?l? K and Williamson G. Identification and quantification of polyphenol phytoestrogens in foods and human biological fluids[J]. Journal of Chromatography B, 2002, 777 93-109
    17. Eliasson C, Kamal-Eldin A, Andersson R, et al. High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction[J]. Journal of Chromatography A, 2003, 1012: 151-159
    18. Milder I E J, Arts L C W, Venema D P, et al. Optimization of a liquid chromatography-tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods[J]. Journal of Agricultural and Food Chemistry 2004, 52(15): 4643-4651
    19. Smeds A I, Hakala K, Hurmerinta T T, et al. Determination of plant and enterolignans in humanserum by high-performance liquid chromatography with tandem mass spectrometric detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(3): 898-905
    20. Mazur W M, Fotsis T, Wahala K, et al. Isotope dilution gas chromatographic mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples[J]. Analytical Biochemistry, 1996, 233(2): 169-180
    21. Obermeyer W R, Musser S M, Betz J M, et al. Chemical studies of phytoestrogens and related compounds in dietary supplements: Flax and chaparral[J]. Proceedings of The Society for Experimental Biology and Medicine, 1995, 208(1): 6-12
    22. Nilsson M, Aman P, Harkonen H, et al. Content of nutrients and lignans in roller milled fractions of rye[J]. Journal of the Science of Food and Agriculture, 1997, 73: 143-148
    23. Muir A D, Westcott N D and Prasad K. Extraction, purification and animal model testing of an anti-atherosclerotic lignan secoisolariciresinol diglucoside from flaxseed (linum usitatissimum)[C]. in ISHS Acta Horticulturae. 1999. II WOCMAP - Mendoza. 245-248
    24. Fritsche J, Angoelal R and Dachtler M. On-line liquid-chromatography-nuclear magnetic resonance spectroscopy-mass spectrometry coupling for the separation and characterization of secoisolariciresinol diglucoside isomers in flaxseed[J]. Journal of Chromatography A, 2002, 972(2): 195-203
    25. Nurmi T and Adlercreutz H. Sensitive high-performance liquid chromatographic method for profiling phytoestrogens using coulometric electrode array detection: Application to plasma analysis[J]. Analytical Biochemistry, 1999, 274(1): 110-117
    26. Kraushofer T and Sontag G. Determination of some phenolic compounds in flax seed and nettle roots by hplc with coulometric electrode array detection[J]. European Food Research and Technology, 2002, 215(6): 529-533
    27. Meagher L P, Beecher G R, Flanagan V P, et al. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal[J]. Journal of Agricultural and Food Chemistry, 1999, 47(8): 3173-3180
    28. Charlet S, Bensaddek L, Raynaud S, et al. An hplc procedure for the quantification of anhydrosecoisolariciresinol. Application to the evaluation of flax lignan content[J]. Plant Physiology and Biochemistry, 2002, 40(3): 225-229
    29. Sicilia T, Niemeyer H B, Honig D M, et al. Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds[J]. Journal of Agricultural and Food Chemistry, 2003, 51(5): 1181-1188
    30. Kuijsten A, Buijsman M, Arts L C W, et al. A validated method for the quantification of enterodiol and enterolactone in plasma using isotope dilution liquid chromatography with tandem mass spectrometry[J]. Journal Of Chromatography B-Analytical Technologies In The Biomedical And Life Sciences, 2005, 822(1-2): 178-184
    31.高锦明.植物化学[M].北京:科学出版社, 2003
    32. Kadivar M. Studies on integrated processes for the recovery of mucilage, hull, oil and protein from solin (low linolenic acid flax)[D]: [Ph.D Thesis]. Saskatoon: The University of Saskatchewan (Canada), 2001
    33. Hall C A, Manthey F A, Lee R E, et al. Stability of a-linolenic acid and secoisolariciresinol diglucoside in flaxseed-fortified macaroni[J]. Journal of Food Science, 2005, 70(8): c483-c489
    34. Hyv?rinen H K, Pihlava J M, Hiidenhovi J A, et al. Effect of processing and storage on the stability of flaxseed lignan added to bakery products[J]. Journal of Agricultural and Food Chemistry, 2006,54(1): 48-53
    35. Hyv?rinen H K, Pihlava J-M, Hiidenhovi J A, et al. Effect of processing and storage on the stability of flaxseed lignan added to dairy products [J]. Journal of Agricultural and Food Chemistry, 2006, 54 (23): 8788 -8792
    36. Liggins J, Grimwood R and Bingham S A. Extraction and quantification of lignan phytoestrogens in food and human samples[J]. Analytical Biochemistry, 2000, 287(1): 102-109
    37. Penalvo J L, Haajanen K M, Botting N, et al. Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2005, 53(24): 9342-9347
    1. Kadivar M. Studies on integrated processes for the recovery of mucilage, hull, oil and protein from solin (low linolenic acid flax)[D]: [Ph.D Thesis]. Saskatoon: The University of Saskatchewan (Canada), 2001
    2. Madhusudhan B, Wiesenborn D, Schwarz J, et al. A dry mechanical method for concentrating the lignan secoisolariciresinol diglucoside in flaxseed[J]. Lebensmittel-Wissenschaft und-Technologie, 2000, 33: 268-275
    3.狄济乐.亚麻籽作为一种功能食品来源的研究[J].中国油脂, 2002, 27(4): 55-57
    4.陈海华.亚麻籽的营养成分及开发利用[J].中国油脂, 2004, 29(6): 72-75
    5.赵利,党占海,李毅等.亚麻籽的保健功能和开发利用[J].中国油脂, 2006, 31(3): 71-74
    6. Alzueta C, Ortiz L T, Rebole A, et al. Effects of removal of mucilage and enzyme or sepiolite supplement on the nutrient digestibility and metabolyzable energy of a diet containing linseed in broiler chickens[J]. Animal feed science and technology 2002, 97(3-4): 169-181
    7. Maddock T D. Using flax as a feedstuff for beef cattle[D]: [Ph.D Thesis]. North Dakota State University, 2005
    8. Garden J A. Flaxseed gum: Extraction, characterization, and functionality[D]: [Ph. D Thesis]. Fargo, ND 58105, USA: North Dakota State University, 1993
    9. Oomah B D, Mazza G and Kenaschuk E O. Dehulling characteristics of flaxseed[J]. Lebensmittel-Wissenschaft und-Technologie, 1996, 29: 245-250
    10. Oomah B D and Mazza G. Effect of dehulling on chemical composition and physical properties of flaxseed[J]. Lebensmittel-Wissenschaft und-Technologie, 1997, 30: 135-140
    11. Oomah B D and Mazza G. Fractionation of flaxseed with a batch dehuller[J]. Industrial Crops and Products, 1998, 9: 19-27
    12. Zheng Y L. Screw pressing of whole and dehulled flaxseed for organic oil rich in omega-3 fatty acids[D]: [Ph.D Thesis]. North Dakota State University, 2003
    13. Freeman T P, Structure of flaxseed, in Flaxseed in human nutrition Cunane E S C and Thompson L U. Champaign, Illinois: AOCS Press, 1995. 11-21
    14. Wiesenborn D, Tostenson K and Kangas N. Continuous abrasive method for mechanically fractionating flaxseed[J]. Journal of the American Oil Chemists Society, 2003, 80(3): 295-300
    15. Dev D K and Quensel E. Preparation and functional properties of linseed protein products containing differing levels of mucilage[J]. Journal of Food Science, 1988, 53: 1834–1837, 1857
    16.钱志娟,王璋,许时婴等.玉米胚芽水酶法提油及蛋白质的回收[J].无锡轻工大学学报, 2004, 23(5): 58-62
    17.王瑛瑶,王璋.水酶法从花生中提取油与水解蛋白的研究[J].食品与机械, 2005, 21(3): 17-20, 23
    18. Gb5497-85,粮食油料检验水分测定法. 1985
    19. Gb5512-85粮食油料检验粗脂肪检验法. 1985
    20. Gb5511-85,粮食油料检验粗蛋白质检验法. 1985
    21.大连轻工业学院等八大院校.食品分析[M].北京:中国轻工业出版社, 1994
    22.吴有炜.试验设计与数据处理[M]. 1st ed.苏州:苏州大学出版社, 2002
    23.张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社, 1994
    24.陈海华,许时婴.亚麻籽胶中多糖含量的测定[J].粮油加工与食品机械, 2003(10): 116-117
    25. Cui W, Mazza G, Oomah B D, et al. Optimization of an aqueous extraction process for flaxseed gum by response surface methodology[J]. Lebensmittel Wissenschaft und Technologie, 1994, 27(4): 363-369
    26. Cui W and Mazza G. Physicochemical characteristics of flaxseed gum[J]. Food research international 1996, 29(3-4): 397-402
    27. Fedeniuk R W and Biliaderis C G. Composition and physicochemical properties of linseed (linum usitatissimum l.) mucilage[J]. Journal of Agricultural and Food Chemistry, 1994, 42(2): 240-247
    28.王惠芳,尉蕊仙.亚麻籽中提取亚麻胶的工艺探讨[J].西部粮油科技, 2002(5): 23-24
    29.叶垦,张铁军,张存劳.用浸提法提取亚麻籽胶的中试研究[J].中国油脂, 2001, 26(4): 8-9
    30. Li-Chan E C Y and Ma C Y. Thermal analysis of flaxseed (linum usitatissimum) proteins by differential scanning calorimetry[J]. Food chemistry, 2002, 77(4): 495-502
    31. Kitahara K, Ookita K and Kobayashi Y. Recovery of viscous substances from seeds by non-extractive process[P]. JP 03179001 A2. 1991-08-05
    1. Letellier M and Budzinski H. Microwave assisted extraction of organic compounds[J]. Analusis, 1999, 27: 259-271
    2. Camel V. Recent extraction techniques for solid matrices—supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: Their potential and pitfalls[J]. The Analyst, 2001, 126: 1182-1193
    3. Vinatoru M, Toma M, Radu O, et al. The use of ultrasound for the extraction of bioactive principles from plant materials[J]. Ultrasonics Sonochemistry, 1997, 4: 135-139
    4. Bakke J E and Klosterman H J. A new diglucoside from flaxseed [J]. Proceedings of the North Dakota Academy of Science 1956(10): 18-22
    5. Muir A D and Westcott N D. Process for extracting and purifying lignans and cinnamic acid derivatives from flaxseed[P]. CA 2216979. 1996-10-03
    6. Westcott N D and Paton D. Complex containing lignan, phenolic and aliphatic substances from flax and process for preparing [P]. US 6,264,853. 2001-07-24
    7. Dobbins T A and Wiley D B. A process for recovering secoisolariciresinol diglycoside from de-fatted flaxseed[P]. WO03084974 2003-10-16
    8. Heintzman R and Bennett M L. Process for extraction and stabilization of phytoestrogens from flaxseed and product therefrom[P]. US 20030060420. 2003-03-27
    9. Pihlava J M, Hyvarinen H, Ryhanen E L, et al. Process for isolating and purifyingsecoisolariciresinol diglcoside (sdg) from flaxseed[P]. US2004030108. 2004-02-12
    10. Shukla R, Hilaly A K and Moore K M. Process for obtaining lignan [P]. US 6,767,565 2004-07-27
    11. Abe K, Iino T, Fujii W, et al. Process for producing sdg and foods and drinks containing the same[P]. US2005158435 2005-07-21
    12.吴美娟,李玉林,汤洛湘等.由亚麻饼提取、分离和纯化SDG的方法[P]. CN1162438. 2003-02-05
    13.汪豪,熊非,吴佳俊等.亚麻籽木脂素总糖苷提取物的制备方法及其应用[P]. CN1749262. 2006-03-22
    14.刘大川,庞美霞,吴波.亚麻籽木脂素——开环异落叶松树脂酚二葡萄糖苷提取工艺的研究[J].中国油脂, 2002, 27(5): 83-86
    15. Cacace J E and Mazza G. Pressurized low polarity water extraction of lignans from whole flaxseed[J]. Journal of Food Engineering, 2006, 77: 1087-1095
    16.吴有炜.试验设计与数据处理[M]. 1st ed,苏州:苏州大学出版社, 2002
    17. Mason R L, Gunst R F and Hess J L, Chapter 17. Designs and analyses for fitting response surfaces, in Statistical design and analysis of experiments : With applications to engineering and science (2nd edition). Hoboken, N.J. John Wiley & Sons, Inc. (US), 2003. 568-613
    18.尤田耙.手性化合物的现代研究方法[M],合肥:中国科学技术大学出版社, 1993
    19. Laurence J A, French P W, Lindner R A, et al. Biological effects of electromagnetic fields—mechanisms for the effects of pulsed microwave radiation on protein conformation[J]. J Theor Biol, 2000, 206(2): 291-298
    20. Ganzler K, Salgo A and Valko K. Microwave extraction: A novel sample preparation method for chromatography[J]. Journal of Chromatography, 1986, 371: 299-306
    21. Eskilsson C S and Bj?rklund E. Analytical-scale microwave-assisted extraction[J]. J Chromatogr A, 2000, 902: 227-250
    1. Muir A D, Westcott N D and Prasad K. Extraction, purification and animal model testing of an anti-atherosclerotic lignan secoisolariciresinol diglucoside from flaxseed (linum usitatissimum)[C]. in ISHS Acta Horticulturae. 1999. II WOCMAP - Mendoza. 245-248
    2. Pihlava J M, Hyvarinen H, Ryhanen E L, et al. Process for isolating and purifying secoisolariciresinol diglcoside (sdg) from flaxseed[P]. US2004030108. 2004-02-12
    3. Muir A D and Westcott N D. Process for extracting and purifying lignans and cinnamic acid derivatives from flaxseed[P]. CA 2216979. 1996-10-03
    4. Qiu S-X, Lu Z-Z, Luyengi L, et al. Isolation and characterization of flaxseed (linum usitatissimum) constituents[J]. Pharmaceutical Biology, 1999, 37(1): 1-7
    5. Andreas D, Saskia H and Peter W. Isolation of the lignan secoisolariciresinol diglucoside from flaxseed (linum usitatissimum l.) by high-speed counter-current chromatography[J]. Journal of Chromatography A, 2002, 943(2): 299-302
    6.何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社, 1995年02月
    7.钱庭宝,刘维琳,李金和.吸附树脂及其应用[M].北京:化学工业出版社, 1990年10月
    8. Shukla R, Hilaly A K and Moore K M. Process for obtaining lignan [P]. US 6,767,565 2004-07-27
    9. Henke H. Preparative gel chromatography on sephadex lh-20. 1995, Heidelberg: Huthig, Germany. p. 9-32
    10. Amarowicz R and Shahidi F. A rapid chromatographic method for separation of individual catechins from green tea[J]. Food research international 1996, 29(1): 71-76
    11. Joannou G E, Kelly G E, Reeder A Y, et al. A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids[J]. Journal of Steroid Biochemistry and Molecular Biology, 1995, 54(3-4): 167-184
    12. Madhusudhan B, Wiesenborn D, Schwarz J, et al. A dry mechanical method for concentrating the lignan secoisolariciresinol diglucoside in flaxseed[J]. Lebensmittel-Wissenschaft und-Technologie, 2000, 33: 268-275
    13. Fritsche J, Angoelal R and Dachtler M. On-line liquid-chromatography-nuclear magnetic resonance spectroscopy-mass spectrometry coupling for the separation and characterization of secoisolariciresinol diglucoside isomers in flaxseed[J]. Journal of Chromatography A, 2002, 972(2): 195-203
    14.石碧,狄莹.植物多酚[M].北京:科学出版社, 2000
    15. Harris J P, Merson G H J, Hardy M J, et al. Determination of cyanide in animal feeding stuffs[J]. Analyst 1980, 105(1255): 974-980
    1.乳腺癌警示月:我国乳腺癌发病率30年增长3倍多! Available from: ask.39.net/Topics/rujia/751632.xml. 2006-12-30
    2.我国乳腺癌发病率年递增3%成死亡率增长最快癌症. Available from: www.yybk.net/A_83195. 2006-12-30
    3. Greenlee R T, Hill-Harmon M, Murray T, et al. Cancer statistics, 2001[J]. CA: A Cancer Journal for Clinicians, 2001, 51(1): 15-36
    4. Jemal A, Thomas A, Murray T, et al. Cancer statistics, 2002[J]. 2002, 52(1): 23-47
    5. Goodnough J B. Antitumorigenic effects of flaxseed and its lignan, secoisolariciresinol diglycoside (SDG)[J]. Nutrition Bytes, 2005, 10(1): Article 4
    6. Adlercreutz H. Phytoestrogens and breast cancer[J]. Journal of Steroid Biochemistry & Molecular Biology, 2003, 83: 113-118
    7. Barnes S. Phytoestrogens and breast cancer[J]. Baillikre's Clinical Endocrinology and Metabolism, 1998, 12(4): 559-579
    8. Brooks J D. Phytoestrogens as modulator of estrogen metabolism[D]: [M. Sc Thesis]. Toronto: University of Toronto, 2003
    9. Herman C, Adlercreutz T, Goldin B R, et al. Soybean phytoestrogen intake and cancer risk[J]. The Journal of Nutrition, 1995, 125, SUP(3): 757S-770S
    10. Keinan-Boker L, Schouw Y T v D, Grobbee D E, et al. Dietary phytoestrogens and breast cancer risk[J]. American Journal of Clinical Nutrition, 2004, 79: 282-288
    11. Kurzer M S and Xu X. Dietary phytoestrogens[J]. Annual Review of Nutrition, 1997, 17: 353-381
    12. McCann S E, P.Muti, Vito D, et al. Dietary lignan intakes and risk of pre- and postmenopausal breast cancer[J]. International Journal of Cancer, 2004, 111(3): 440-443
    13. Ziegler R G. Phytoestrogens and breast cancer[J]. American Journal of Clinical Nutrition, 2004, 79: 183-184
    14. Dixon R A. Phytoestrogens[J]. Annual Review of Plant Biology, 2004, 55: 225-261
    15. Thompson L U, Seidl M M, Rickard S E, et al. Antitumorigenic effect of a mammalian lignan precursor from flaxseed[J]. Nutrition and Cancer, 1996, 26(2): 159-165
    16. Thompson L U, Chen J M, Li T, et al. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer[J]. Clinical Cancer Research, 2005, 11(10): 3828-3835
    17. Rickard S E. Disposition and anticancer effects of flaxseed lignans in the rat[D]: [Ph. D Thesis].Toronto: University Of Toronto, 2000
    18. Linseisen J, Piller R, Hermann S, et al. Dietary phytoestrogen intake and premenopausal breast cancer risk in a german case-control study[J]. International Journal of Cancer, 2004, 110(2): 284-290
    19. Danbara N, Yuri T, Tsujita-Kyutoku M, et al. Enterolactone induces apoptosis and inhibits growth of colo 201 human colon cancer cells both in vitro and in vivo[J]. Anticancer Research, 2005, 25(3B): 2269-2276
    20. Sarkar F H and Li Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein[J]. Cancer and Metastasis Reviews, 2002, 21: 265-280
    21.徐瑞成,陈小义,陈莉.四种检测细胞凋亡方法的比较[J].武警医学院学报, 2000, 9(1): 17-20.
    22.郑骏年,谢叔良,陈家存等.流式细胞术定量检测细胞凋亡3种方法的比较研究[J].中国免疫学杂志, 1999, 15(10): 467-469
    23.彭光华.类胡萝卜素及其抗乳腺癌机理研究[D]: [博士学位论文].武汉:华中农业大学, 2002
    24.刘江东,赵刚,邓凤姣等.细胞生物学实验教程[M]. 1 ed.武汉:武汉大学出版社, 2005.6
    25.辛华,邵红莲,车大年等.细胞生物学实验[M].北京:科学出版社, 2001.2
    26.孙震,刘萍,陶文沂.松口蘑菌丝蛋白对hela细胞凋亡的影响[J].营养学报, 2002, 24(1): 75-78
    27. Coldham N G and Sauer M J. Identification, quantitation and biological activity of phytoestrogens in a dietary supplement for breast enhancement[J]. Food and Chemical Toxicology, 2001, 39: 1211-1224
    28. Mazur W M, Duke J A, Wahala K, et al. Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans[J]. Journal of Nutritional Biochemistry, 1998, 9(4): 193-200
    29. Gansser D and Spiteller G. Aromatase inhibitors from urtica-dioica roots[J]. Planta Medica, 1995, 61(2): 138-140
    30. Messina M J and Loprinzi C L. Soy for breast cancer survivors: A critical review of the literature[J]. Journal of Nutrition, 2001, 131: 3095S - 3108S
    31. Hosseinian F F H. Antioxidant properties of flaxseed lignans using in vitro model systems[D]: [Ph. D thesis]. University of Saskachewan (Canada), 2006
    32. Wang L-Q. Mammalian phytoestrogens: Enterodiol and enterolactone[J]. Journal of Chromatography B, 2002, 777: 289-309
    33. Chen J M and Thompson L U. Lignans and tamoxifen, alone or in combination, reduce human breast cancer cell adhesion, invasion and migration in vitro[J]. Breast Cancer Research And Treatment, 2003, 80(2): 163-170
    1. Bitsch N, Korner W, Postupka S, et al. Application of the E-screen assay to test for oestrogenically active substances in swine feed[J]. Journal of Animal Physiology and Animal Nutrition, 2001, 85 (11-12): 369
    2. Kuiper G G J M, Carlsson B, Grandien K, et al. Comparison of the Ligand Binding Specificity and Transcript Tissue Distribution of Estrogen Receptors a and b[J]. Endocrinology, 1997, 138 (3): 863-870
    3. Kuiper G G J M, Lemmen J G, Carlsson B, et al. Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor b[J]. Endocrinology, 1998, 139 (10): 4252-4263
    4. Mueller S O. Overview of in vitro tools to assess the estrogenic and antiestrogenic activity of phytoestrogens[J]. Journal of Chromatography B, 2002, 777: 155-165
    5. Zava D T, Blen M, Duwe G. Estrogenic Activity of Natural and Synthetic Estrogens in Human Breast Cancer Cells in Culture [J]. Environ Health Perspect, 1997, 105 (Suppl 3): 637-645
    6. NIEHSNIHUSPHS, et al., NIH Publication No: 03-4504, ICCVAM Evaluation of In Vitro Test Methods for Detecting Potential Endocrine Disruptors: Estrogen Receptor and Androgen Receptor Binding and Transcriptional Activation Assays. 2003
    7. Schottner M, Gansser D, Spiteller G. Lignans from the roots of Urtica dioica and their metabolites bind to human sex hormone binding globulin (SHBG)[J]. Planta Med, 1997, 63 (6): 529-532
    8. Schottner M, Spiteller G, Gansser D. Lignans interfering with 5 a-dihydrotestosterone binding to human sex hormone-binding globulin[J]. Journal of Natural Products, 1998, 61 (1): 119-121
    9.约翰.加斯泰格尔,托马斯.恩格尔.化学信息学教程[M].梁逸曾,徐峻,姚建华.北京:化学工业出版社, 2005.1, 410-526
    10.李仁利.药物构效关系[M]. 1 ed.北京:中国医药科技出版社, 2003.10, 477-517
    11.徐筱杰,侯廷军,乔学斌等.计算机辅助药物分子设计[M],北京:化学工业出版社. 2004.4, 246-294
    12. Tong W, Perkins R, Xing L, et al. QSAR models for binding of estrogenic compounds to estrogen receptor a and b subtypes[J]. Endocrinology, 1997, 138 (9): 4022-4025
    13. Brzozowski A M, Pike A C W, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor[J]. Nature, 1997, 389: 753-758
    14. Malamas M S, Manas E S, McDevitt R E, et al. Design and synthesis of aryl diphenolic azoles as potent and selective estrogen receptor-beta ligands[J]. Journal of Medicinal Chemistry, 2004, 47: 5021-5040
    15. Brooks J D. Phytoestrogens as modulator of estrogen metabolism[D]: [M. Sc], Toronto: Graduate Department of Nutritional Sciences University of Toronto. 2003
    16. Keinan-Boker L, Schouw Y T v D, Grobbee D E, et al. Dietary phytoestrogens and breast cancer risk[J]. American Journal of Clinical Nutrition, 2004, 79: 282-288
    17. McCann S E, Muti P, Vito D, et al. Dietary lignan intakes and risk of pre- and postmenopausal breast cancer[J]. International Journal of Cancer, 2004, 111 (3): 440-443
    18.徐筱杰,侯廷军,乔学斌等.计算机辅助药物分子设计[M],北京:化学工业出版社. 2004.4, 325-353
    19. Comparative Toxicogenomics Database. http://ctd.mdibl.org/. 2006-07-12
    20. Tervo A J, Nyr?nen T H, R?nkk? T, et al. A structure-activity relationship study of catechol-O-methyltransferase inhibitors combining molecular docking and 3D QSAR methods[J]. Journal of Computer-Aided Molecular Design, 2003, 17: 797–810
    21. Wolohan P, Reichert D E. CoMFA and docking study of novel estrogen receptor subtype selective ligands[J]. Journal of Computer-Aided Molecular Design, 2003, 17: 313-328
    22. McCann M J, Gill C I R, McGlynn H, et al. Role of mammalian Lignans in the prevention andtreatment of prostate cancer[J]. Nutrition and Cancer, 2005, 52 (1): 1-14
    23. Saarinen N M, Huovinen R, W?rri A, et al. Enterolactone Inhibits the Growth of 7,12-Dimethylbenz(a) anthracene-induced Mammary Carcinomas in the Rat[J]. Molecular Cancer Therapeutics, 2002 1:869-876
    24. Stumpf K. Serum Enterolactone as a Biological Marker and in Breast Cancer: from Laboratory to Epidemiological Studies[D]: [Academic Dissertation], Helsinki: University of Helsinki. 2004
    25. Axelson M, Sj?vall J, Gustafsson B E, et al. Origin of lignans in mammals and identification of a precursor from plants[J]. Nature, 1982, (298): 659-660

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700