Ce和La掺杂KIT-6中孔分子筛负载的Co基催化剂的费-托合成催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
费-托合成反应是一种由气转液的技术,就是在催化剂的作用下将一氧化碳和氢气转化为燃油和化学品的技术。在费-托合成反应的催化剂中(Fe, Co, Ni和Ru),钴基催化剂具有活性高,稳定性好,使用寿命长,不易积碳和中毒,产物以长链正构烷烃为主,产物烃经加氢裂解和异构改质可以得到低硫、低氮含量的优质柴油,以及与铁相比较低的水煤气变化反应,和与钌相比较低廉的价格等优点。
     在本文工作中,采用水热合成法合成一系列不同含量Ce或La掺杂的KIT-6分子筛作为载体。同时采用满孔浸渍法制备了Ce或La负载的载体。将制备好的载体同样采用满孔浸渍法负载15%的钴制成催化剂。采用X-射线粉末衍射(XRD)、透射电子显微镜(TEM)、固体紫外漫反射(DRS-UV-vis)、X-射线光电子能谱(XPS)、固体~(29)Si魔角旋转核磁共振(~(29)Si MAS NMR)、氮气物理吸附-脱附、氢气程序升温还原(H2-TPR)、氢气程序升温脱附-氧滴定(H2-TPD和O_2 titration)等技术对催化剂进行了表征,在固定床反应器上考察了催化剂的费-托合成反应活性和产物选择性。主要结论如下:
     1)KIT-6的结构在掺杂Ce后保持不变。载体xCe-KIT-6的骨架中同时存在Ce~(3+)和Ce~(4+)两种离子。载体xCe-KIT-6和浸渍法制备的载体0.06Ce-KIT-6-I采用满孔浸渍法制备15%的钴基催化剂。催化剂15Co/xCe-KIT-6的还原度在低的Ce含量时呈增加趋势,在高的Ce含量时呈减小趋势。掺杂低含量Ce可以提高催化剂的费-托合成反应活性和C_(5+)的选择性,而掺杂高含量的Ce则使催化剂呈现低的反应活性和C_(5+)的选择性。同时,甲烷选择性呈现和C_(5+)的选择性相反的趋势。催化剂15Co/0.06Ce-KIT-6-I的活性比催化剂15Co/KIT-6低。
     2)KIT-6的结构在掺杂La后保持不变。掺杂少量的La到分子筛骨架中负载催化剂可以增加催化剂的还原度,大量的La的掺入则会降低催化剂的还原度。而催化剂的分散度随着La掺杂量的增加呈现先增加后降低的趋势。少量的La可以增加钴催化剂的活性和C_(5+)的选择性。
     3)同样量的Ce或La做为助剂时,将其掺杂到分子筛骨架中的KIT-6载体负载的催化剂活性比其在KIT-6表面做载体时的活性高。
Fischer-Tropsch synthesis (FTS) is a gas-to-liquid (GTL) technology, which catalytically converts carbon monoxide and hydrogen into transportation fuels and chemicals. Among typical FTS catalysts (Fe, Co, Ni and Ru), the cobalt catalyst is preferred due to its high selectivity for heavy hydrocarbons, lower activity for water-gas shift (WGS) reaction than iron catalysts and lower price than ruthenium.
     In the present work, A series of Ce- or La- incorporated into the structure of KIT-6 mesoporous molecular sieves with different Ce or La contents were synthesized by a direct hydrothermal process. Samples of Ce- or La- loaded KIT-6 material were synthesized by the incipient wetness impregnation technique. Catalysts with 15 wt% Co loading on the above supports were also prepared by the impregnation method. The supports and catalysts were characterized by X-ray diffraction, transmission electron microscopy, diffuse reflectance UV-vis, X-ray photoelectron spectroscopy, solid-state ~(29)Si magic-angle spinning nuclear magnetic resonance, N2 physisorption, H2 temperature-programmed reduction, H2 temperature-programmed desorption and oxygen titration. The catalysts activity and selectivity were evaluated in a fixed-bed reactor under typical hydrocarbon synthesis conditions. The main results are as follows:
     1) The structure of the KIT-6 support was well retained after Ce incorporation. The samples of xCe-KIT-6 have both Ce3+ and Ce4+ sites in the framework. Catalysts with 15 wt % Co loading on the xCe-KIT-6 and 0.06Ce-KIT-6-I were prepared by the impregnation method. The percentage reduction of the 15Co/xCe-KIT-6 increased slightly for catalysts with low Ce content and decreased significantly with high Ce content. Small amounts of Ce were found to improve the activity of cobalt catalysts, and increase the selectivity to C5+ hydrocarbons of the Co catalysts for Fischer–Tropsch synthesis, while larger amounts of Ce had the reverse effect. Meanwhile, methane selectivity shows an opposite trend to C5+ selectivity. Ce-loaded KIT-6 supported Co catalyst presented lower activity than KIT-6 supported Co catalyst.
     2) The structure of the KIT-6 support was well retained after La incorporation. Small amounts of La incorporated into the framework of KIT-6 promoted the percentage reduction of catalysts, and the large amounts of La decreased it. The trend in the catalyst dispersion of the 15Co-yLa-KIT-6 increased and then decreased with increasing La content. Small amounts of La were found to improve the activity of cobalt catalysts, and increase the selectivity to C5+ hydrocarbons of the Co catalysts for Fischer–Tropsch synthesis.
     3) The same amounts of Ce or La as a promoter, Ce or La incorporated into the framework of KIT-6 had a higher activity more than Ce or La loaded at the surface of KIT-6.
引文
[1] Anderson R B . Fischer-Tropsch Synthesis. New York: Academic Press, Inc., 1984
    [2]加藤顺,小林博行,村田义夫著,金革等译.碳一化学工业生产技术,北京:化学工业出版社,1990,467-523
    [3] Dry M E. The Fischer-Tropsch Syntesis, in“Catalysis-Science and Technology”, Anderson J.R., Boudart M., ed. Vol. 1, The Netherlands: Springer, 1981, 159-256
    [4] Schulz H. Short history and present trends of Fischer-Tropsch synthesis. Applied Catalysis A: General, 1999,186(1-2): 3-12
    [5] Dry M E. The Fischer-Tropsch process: 1950-2000. Catalysis Today, 2002,71(3-4): 227-241
    [6] Sie S T. Process development and scale upⅣCase history of the development of a Fischer-Tropsch aynthesis process. Reviews in Chemical Engineering, 1998, 14 (2): 109-157
    [7] Wender I. Reactions of synthesis gas. Fuel Processing Technology, 1996, 48: 189-297
    [8]相宏伟,唐宏清,李永旺.煤化工工艺技术评述及展望.燃料化学学报, 2001, 29 (4): 289-297
    [9]周敬来,张志新,张碧江.煤基合成液体燃料的MFT工艺技术.燃料化学学报, 1999, 27 (增刊): 56-64
    [10] Ji Y, Xiang W, Yang L. Effect of reaction conditions on the product distribution during Fischer-Tropsch synthesis over an industrial Fe/Mn Catalysis. Applied Catalysis A: General, 2001, 214 (1): 77-86
    [11] Zhang J, Chen J, Ren J, et al. Chemical treatment ofγ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2003, 243: 121-133
    [12] Zhang J, Chen J, Ren J, et al. Support effect of Co/Al2O3 catalysts for Fischer-Tropsch synthesis. Fuel, 2003, 82(5): 581-586
    [13]马文平,丁云杰,罗洪原等.铁/活性炭催化剂上费-托合成反应产物分布的非Anderson-Schulz-Flory特性.催化学报,2001,22(3): 279-282
    [14]李强,沈师孔.Co-CeO2/SiO2催化剂上的费-托反应性能.催化学报,2002,23(6): 513-516
    [15] Tang Q, Wang Y, Zhang Q, et al. Preparation of metallic cobalt inside NaY zeolite with high catalytic activity in Fischer-Tropsch synthesis. Catalysis Communications, 2003, 4(5): 253-258
    [16]代小平,余长春,沈师孔.费-托合成制液态烃研究进展.化学进展,2000,12 (3): 268-281
    [17] Ruhrchemie E. Phase stability of supported Bimetallic catalysts. Journal of Catalysis, 1974, 35: 441-446
    [18] O'Brien R J, Xu L, Spicer R L, et al. Activation Study of Precipitated Iron Fischer-Tropsch Catalysts. Energy & Fuels, 1996, 10(4): 921-926
    [19] Rao K R P M, Huggins F E, Mahajan V, et al. M?ssbauer spectroscopy study of iron-based catalysts used in Fischer-Tropsch synthesis. Topics in Catalysis, 1995, 2:71-78
    [20] Lox E S, Marin G B, de Graeve E, et al. Characterization of a promoted precipitated iron catalyst for Fischer-Tropsch synthesis. Applied Catalysis A: General, 1988, 40: 197-218
    [21] Shroff M D, Kalakkad D S, Coulter K E, et al. Activation of iron precipitated Fischer-Tropsch catalysts. Journal of Catalysis, 1995, 156: 185-207
    [22] Zhang H B, Schrader G L, Characterisation of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser Raman spectroscopy. Journal of Catalysis, 1985, 95: 325-332
    [23] Bukur D B, Okabe K, Rosynek M P, et al. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: 1. Characterization Studies. Journal of Catalysis, 1994, 148(2): 759-770, 1995, 155(2): 353-365
    [24] Bukur D B, Nowicki L, Manne R K, et al. Activation studies with aprecipitated iron catalyst for Fischer-Tropsch synthesis 2. Reaction studies. Journal of Catalysis, 1995, 155: 366-375
    [25] Jager B, Espinoza R. Advances in low temperature Fischer-Tropsch synthesis. Catalysis Today,1995, 23:17-28
    [26] Ducreux O, Lynch J, Rebours B, Roy M, Chaumette P. In situ characterisation of cobalt based fischer- tropsch catalysts: A new approach to the active phase. Studies in Surface Science and Catalysis, 1998, 119: 125-130
    [27] van Berge P J, van de Loosdrecht J, Barradas S. Oxidation of cobalt based Fischer-Tropsch catalysts as a deactivation mechanism. Catalysis Today, 2000, 58: 321-334
    [28] Zhang Y, Wei D, Hammache S, Goodwin Jr J G. Effect of water vapor on the reduction of Ru-promoted Co/Al2O3. Journal of Catalysis, 1999, 188: 281-290
    [29] Jablonski J M, Wolcyrz M, Krajczyk L. On cobalt silicate formation during high-temperature calcination of impregnated cobalt/silica catalysts. Journal of Catalysis, 1998, 173: 530-534
    [30]徐振刚,罗伟,王乃继,肖翠微.费-托合成催化剂载体的研究进展.煤炭转化,2008, 31:92-95
    [31] Okabe K, Li X, Wei M, Arakawa H. Fischer–Tropsch synthesis over Co–SiO2 catalysts prepared by the sol–gel method. Catalysis Today, 2004, 89: 431-438
    [32] Zhang Y, Liu Y, Yang G, Endo Y, Tsubaki N. The solvent effects during preparation of Fischer–Tropsch synthesis catalysts: Improvement of reducibility, dispersion of supported cobalt and stability of catalyst. Catalysis Today, 2009, 142: 85-89
    [33] Reuel R C, Bartholomew C H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt. Journal of Catalysis, 1984, 85: 78-88
    [34] Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis A: General, 1997, 161: 59-78
    [35] Borg ?, Eri S, Blekkan E A, Stosater S, Wigum H, Rytter E, Holmen A. Fischer–Tropsch synthesis overγ-alumina supported cobalt catalysts: Effect of support variables. Journal of Catalysis, 2007, 248: 89-100
    [36] Bechara R, David B, Dominique V. Catalytic properties of Co/Al2O3 system for hydrocarbon synthesis. Applied Catalysis A: General, 2001, 207: 343-353
    [37] Xiong H, Zhang Y, Wang S, Li J. Fischer–Tropsch synthesis: The effect of Al2O3 porosity on the performance of Co/Al2O3 catalyst. Catalysis Communication, 2005, 6: 512-516
    [38] Iglesia E, Reyes S C, Madon R J. Transport-enhancedα-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis. Journal of Catalysis, 1991, 129: 238-256
    [39] Zhang J, Chen J, Ren J, Sun Y. Chemical treatment ofγ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer–Tropsch synthesis. Applied Catalysis A: General, 2003, 243: 121-133
    [40] Li J, Jacobs G, Zhang Y, Das T, Davis B H. Fischer-Tropsch synthesis: effect of small amounts of boron, ruthenium and rhenium on Co/TiO2 catalysts. Applied Catalysis A: General, 2002, 223: 195-203
    [41] Li J, Coville N J. Effect of boron on the sulfur poisoning of Co/TiO2 Fischer-Tropsch catalysts. Applied Catalysis A: General, 2001, 208: 177-184
    [42] Coville N J, Li J. Effect of boron source on the catalyst reducibility andFischer-Tropsch synthesis activity of Co/TiO2 catalysts. Catalysis Today, 2002, 71: 403-410
    [43] Madikizla-Mnqanqeni N N, Coville N J. The effect of cobalt and zinc precursors on Co(10%)/Zn(x%)/TiO2(x=0,5) Fischer-Tropsch catalysts. Journal of Molecular Catalysis A: Chemical, 2005, 225: 137-142
    [44] Morales F, De Smit E, De Groot F M F, Visser T, Weckhuysen B M. Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer-Tropsch catalysts. Jouranl of Catalysis, 2007, 246: 91–99
    [45] Wongsalee T, Jongsomjit B, Praserthdam P. Effect of zirconia-modified titania consisting of different phases on characteristics and catalytic properties of Co/TiO2 catalysts. Catalysis Letters, 2006, 108: 55-61
    [46] Jongsomjit B, Sakdamnuson C, Goodwin Jr J G, Praserthdam P. Co-support compound formation in titania-supported cobalt catalyst. Catalysis Letters, 2004, 94: 209-215
    [47] Li J, Coville N J. The effect of boron on the catalyst reducibility and activity of Co/TiO2 Fischer-Tropsch catalysts. Applied Catalysis A: General, 1999, 181: 201-208
    [48] Martinez A, Lopez C, Marquez F, Diaz I. Fischer–Tropsch synthesis of hydrocarbo ns over mesoporous Co/SBA-15 catalysts: The influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis, 2003, 220: 486-499
    [49] Xiong H, Zhang Y, Liew K Y, Li J. Fischer-Tropsch synthesis: The role of pore size for Co/SBA-15 catalysts. Journal of Molecular Catalysis A: Chemical, 2008, 295: 68-76
    [50] Iwasaki T, Reinikainen M, Onodera Y, Hayshi H, Ebina T, Nagase T, Torii K, Kataja K, Chatterjee A. Use of silicate crystallite mesoporous material as catalyst support for Fischer-Tropsch reaction. Applied Surface Science, 1998, 130-132: 845-850
    [51] Panpranot J, Goodwin Jr J G, Sayari A. Synthesis and characteristics of MCM-41 supported CoRu catalysts. Catalysis Today, 2002, 77: 269-284
    [52] Tavasoli A, Abbaslou R M M, Trepanier M, Dalai A K. Fischer-Tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor. Applied Catalysis A: General, 2008, 345: 134-142
    [53] Bezemer G L, Bitter J H, Kuipers H P C E, Oosterbeek H, Holewijn J E, Xu X, Kapteijn F, van Dillen A J, de Jong K P. Cobalt particle size effects in theFischer-Tropsch reaction studied with carbon nanofiber supported catalysts. Journal of the American Chemical Society, 2006, 128: 3956-3964
    [54] Girardon J S, Constant-Griboval A, Gengembre L, Chernavskii P A, Khodakov A Y. Optimization of the pretreatment procedure in the design of cobalt silica supported Fischer-Tropsch catalysts. Catalysis Today, 2005, 106: 161-165
    [55] Iglesia E, Soled S L, Fiato R A, Via G H. Bimetallic synergy in cobalt ruthenium Fischer-Tropsch synthesis catalysts. Journal of Catalysis, 1993, 143: 345-368
    [56] Tsubaki N, Sun S L, Fujimoto K. Different functions of the noble metals added to cobalt catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 2001, 199: 236-246
    [57] Qiu X, Tsubaki N, Sun S, Fujimoto K. Influence of noble metals on the performance of Co/SiO2 catalyst for 1-hexene hydroformylation. Fuel, 2002, 81: 1625-1630
    [58] Jacob G, Chaney J A, Patterson P M, Das T K, Davis B H. Fischer–Tropsch synthesis: Study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS. Applied Catalysis A: General, 2004, 264: 203-212
    [59] Guczi L, Schay Z, Stefler G, Mizukami F. Bimetallic catalysis: CO hydrogenation over palladium–cobalt catalysts prepared by sol/gel method. Journal of Molecular Catalysis A: Chemical, 1999, 141: 177-185
    [60] Xiong H, Zhang Y, Liew K Y, Li J. Catalytic performance of zirconium-modified Co/Al2O3 for Fischer–Tropsch synthesis. Journal of Molecular Catalysis A: Chemical, 2005, 231: 145-151
    [61] Feller A, Claeys M, van Steen E. Cobalt cluster effects in zirconium promoted Co/SiO2 Fischer-Tropsch catalysts. Journal of Catalysis, 1999, 185: 120-130
    [62] Rohr F, Lindvag O A, Holmen A, Blekkan E A. Fischer-Tropsch synthesis over cobalt catalysts supported on zirconia-modified alumina. Catalysis Today, 2000, 58: 247-254
    [63] Ledford J S, Houalla M, Proctor A, Hercules D M, Petrakis L. Influence of lanthanum on the surface structure and carbon monoxide hydrogenation activity of supported cobalt catalysts. Journal of Physical Chemistry, 1989, 93: 6770-6777
    [64] Ernst B, Hilaire L, Kiennemann A. Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst. Catalysis Today, 1999, 50: 413-427
    [65] Morales F, de Groot F M F, Gijzeman O L J, Mens A, Stephan O, Weckhusen BM. Mn promotion effects in Co/TiO2 Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS. Journal of Catalysis, 2005, 230: 301-308
    [66]杨霞珍,刘化章,唐浩东,蔡丽萍,吴再国. Fe、Co基费-托合成催化剂助剂研究进展.化工进展,2006, 25(8): 867-870
    [67] van Berge P J,Everson R C. Cobalt as an alternative Fischer-Tropsch catalyst to iron for the production of middle distillates. Studies in Surface Science and Catalysis. 1997, 107: 207-212
    [68] Iglesia E, Soled S L, Fiato R A, et al. Bimetallic synergy in cobalt-ruthenium Fischer-Tropsch synthesis catalysts. Journal of Catalysis, 1993, 143: 345-368
    [69] van Berge P J, van de Loosdrecht J, Barradas S. Oxidation of cobalt based Fischer-Tropsch catalysts as a deactivation mechanism. Catalysis Today, 2000, 58(4): 321-334
    [70] Hilmen A M, Schanke D, Hanssen K F, et al. Study of the effect of water on alumina supported cobalt Fischer-Tropsch catalysts. Applied Catalysis A: General, 1999,186(1-2): 169-188
    [71]舒歌平,史士东,李克健.煤炭液化技术[M ].北京:煤炭工业出版社, 2003
    [72]徐振刚,罗伟,王乃继,肖翠微.费-托合成催化剂载体的研究进展.煤炭转化,2008, 31:92-95
    [73] Okabe K, Li X, Wei M, Arakawa H. Fischer-Tropsch synthesis over Co-SiO2 catalysts prepared by the sol-gel method. Catalysis Today, 2004, 89: 431-438
    [74] Zhang Y, Liu Y, Yang G, Endo Y, Tsubaki N. The solvent effects during preparation of Fischer-Tropsch synthesis catalysts: Improvement of reducibility, dispersion of supported cobalt and stability of catalyst. Catalysis Today, 2009, 142: 85-89
    [75] Reuel R C, Bartholomew C H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt. Journal of Catalysis, 1984, 85: 78-88
    [76] Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis A: General, 1997, 161: 59-78
    [77] Borg ?, Eri S, Blekkan E A, Stosater S, Wigum H, Rytter E, Holmen A. Fischer-Tropsch synthesis overγ-alumina supported cobalt catalysts: Effect of support variables. Journal of Catalysis, 2007, 248: 89-100
    [78] Bechara R, David B, Dominique V. Catalytic properties of Co/Al2O3 system for hydrocarbon synthesis. Applied Catalysis A: General, 2001, 207: 343-353
    [79] Xiong H, Zhang Y, Wang S, Li J. Fischer-Tropsch synthesis: The effect of Al2O3porosity on the performance of Co/Al2O3 catalyst. Catalysis Communication, 2005, 6: 512-516
    [80] Iglesia E, Reyes S C, Madon R J. Transport-enhancedα-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis. Journal of Catalysis, 1991, 129: 238-256
    [81] Zhang J, Chen J, Ren J, Sun Y. Chemical treatment ofγ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2003, 243: 121-133
    [82] Li J, Jacobs G, Zhang Y, Das T, Davis B H. Fischer-Tropsch synthesis: effect of small amounts of boron, ruthenium and rhenium on Co/TiO2 catalysts. Applied Catalysis A: General, 2002, 223: 195-203
    [83] Li J, Coville N J. Effect of boron on the sulfur poisoning of Co/TiO2 Fischer-Tropsch catalysts. Applied Catalysis A: General, 2001, 208: 177-184
    [84] Coville N J, Li J. Effect of boron source on the catalyst reducibility and Fischer-Tropsch synthesis activity of Co/TiO2 catalysts. Catalysis Today, 2002, 71: 403-410
    [85] Morales F, De Smit E, De Groot F M F, Visser T, Weckhuysen B M. Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer-Tropsch catalysts. Journal of Catalysis, 2007, 246: 91-99
    [86] Wongsalee T, Jongsomjit B, Praserthdam P. Effect of zirconia-modified titania consisting of different phases on characteristics and catalytic properties of Co/TiO2 catalysts. Catalysis Letters, 2006, 108: 55-61
    [87] Jongsomjit B, Sakdamnuson C, Goodwin Jr J G, Praserthdam P. Co-support compound formation in titania-supported cobalt catalyst. Catalysis Letters, 2004, 94: 209-215
    [88] Ali S, Chen B, Goodwin J G. Zr promotion of Co/SiO2 for Fischer-Tropsch synthesis. Journal of Catalysis, 1995, 157:35-41
    [89] Feller A, Claeys M, van Steen E. Cobalt cluster effects in zirconium promoted Co/SiO2 Fischer-Tropsch catalysts. Jouranl of Catalysis, 1999, 185: 120-130
    [90] Moradi G R, Basir M M, Taeb A, Kiennemann A. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium. Catalysis Communications, 2003, 4 : 27-32
    [91]程萌,房克功,陈建刚等.由亲水和疏水硅胶制备的Co/Ru/SiO2催化剂的表征及催化性能研究[J ].燃料化学学报,2006, 34(3) : 343-347
    [92] Iglesia E, Soled S L ,Baumgartner J E, et al. Synthesis and Catalytic P ropertiesof Eggshell Cobalt Catalysts for the F-T Synthesis. Jouranl of Catalysis, 1995, 153: 108-122
    [93]张俊岭,陈建刚,任杰等.钴基F-T合成重质烃催化剂载体效应的研究[J ].催化学报, 2001, 22(3) : 275-278
    [94] Li H, Wang S, Ling F, Li J. Studies on MCM-48 supported cobalt for Fischer-Tropsch synthesis. Journal of Molecular Catalysis A: Chemical, 2006, 244: 33-40
    [95] Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D.,Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society, 1998, 120: 6024-6036
    [96] Ohtsuka Y, Takahashi Y, Noguchi M, Arai T, Takasaki S, Tsubouchi N and Wang Y. Novel utilization of mesoporous molecular sieves as supports of cobalt catalysts in Fischer–Tropsch synthesis. Catalysis Today, 2004, 89: 419-429
    [97] Wang Y, Noguchi M, Takahashi Y, Ohtsuka Y. Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysts. Catalysis Today, 2001, 68: 3-9
    [98] Khodakov A Y, Bechara R, Griboval-Constant A. Fischer-Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density. Applied Catalysis A: General, 2003, 254: 273-288
    [99] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemistry Communications, 2003, 17: 2136-2137
    [100] Soni K, Rana B S, Sinha A K, Bhaumik A, Nandi M, Kumar M, Dhar G M. 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization Catalysts. Applied Catalysis B: Environmental, 2009, 90: 55-63
    [101] Gnanamani M K, Jacobs G, Graham U M, Ma W, Pendyala V R R, Ribeiro M, Davis B H. Studies on KIT-6 Supported Cobalt Catalyst for Fischer-Tropsch Synthesis. Catalysis Letters, 2010, 134: 37-44
    [102] Lezanska M, Wloch J, Szymanski G, Szpakowska I, Kornatowski J. Properties of CMK-8 carbon replicas obtained from KIT-6 and pyrrole at various contents of ferric catalyst. Catalysis Today, 2010, 150: 77-83
    [103] Haddad G J, Chen B, Goodwin J G. Effect of La3+ promotion of Co/SiO2 on CO Hydrogenation. Journal of Catalysis, 1996,161(1): 274-281
    [104] Barrault J, Guilleminot A, Achard J C, Paul-Boncour V, Percheron-Guegan A. Hydrogention of carbon monoxide on carbon-supported cobalt rare earthcatalysts. Applied Catalysis, 1986, 21(2) : 307-312
    [105] Zhao L, Liu G, Li J. Effect of La2O3 on a Precipitated Iron Catalyst for Fischer-Tropsch Synthesis. Chinese Journal of Catalysis, 2009, 30(7): 637–642
    [106] Ledford J S, Houalla M, Proctor A, Hercules D M, Petrakis L. Influence of lanthanum on the surface structure and carbon monoxide hydrogenation activity of supported cobalt catalysts. The Journal of Physical Chemistry, 1989, 93: 6770-6777
    [107] Dai X, Yu C, Li R, Shi H, Shen S. Role of CeO2 Promoter in Co/SiO2 Catalyst for Fischer-Tropsch Synthesis. Chinese Journal of Catalysis, 2006, 27(10): 904-910
    [108] Ernst B, Hilaire L, Kiennemann A. Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst. Catalysis Today, 1999, 50(2): 413-427
    [109] Guerrero-Ruiz A, Sepúlveda-Escribano A, Rodríguez-Ramos I. Carbon monoxide hydrogenation over carbon supported cobalt or ruthenium catalysts. Promoting effects of magnesium, vanadium and cerium oxides. Applied Catalysis A: General, 1994, 120(1): 71-83
    [110] Bendahou K, Cherif L, Siffert S, Tidahy H L, Bena?ssa H, Abouka?s A. The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene. Applied Catalysis A: General, 2008, 351: 82–87
    [111] Mu Z, Li J, Hao Z, Qiao S. Direct synthesis of lanthanide-containing SBA-15 under weak acidic conditions and its catalytic study. Microporous and Mesoporous Materials, 2008, 113: 72–80
    [112] Yao W, Chen Y, Min L, Fang H, Yan Z, Wang H, Wang J. Liquid oxidation of cyclohexane to cyclohexanol over cerium-doped MCM-41. Journal of Molecular Catalysis A: Chemical, 2006, 246: 162-166
    [113] Mu Z, Li J, Tian H, Hao Z, Qiao S. Synthsis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. Materials Research Bulletin, 2008, 43: 2599-2606
    [114] Davis B H. Fischer-Tropsch synthesis: Current mechanism and futuristic needs. Fuel Processing Technology, 2001, 71: 157-166
    [115] Chisholm M H. A molecular model for the reductive cleavage of carbon monoxide to carbide and oxide on reduced metal oxides. Journal of Organometallic Chemistry, 1987, 334: 77-84
    [116] Ekstrom A, Lapszewicz J. On the role of metal carbides in the mechanism of theFischer-Tropsch reaction. Journal of Physical Chemistry, 1984, 88: 4577-4580
    [117] Henrich-Olive G, Olive S. The“carbide theory”of the Fischer-Tropsch synthesis in the light of the homogeneoys coordination chemistry. Journal of Molecular Catalysis, 1983, 18: 367-373
    [118] Osterloh W T, Cornell M E, Pettit R. On the mechanism of hydrogenolysis of linear hydrocarbons and its relationship to the Fischer-Tropsch reaction. Journal of the American Chemical Society, 1982, 104: 3759-3761
    [119] Bolder F H A, Mulder H. Dehydration of alcohols in the presence of carbonyl compounds and carboxylic acids in a Fischer-Tropsch hydrocarbons matrix. Applied Catalysis A: General, 2006, 300: 36-40
    [120] Tau L M, Dabbagh H A, Davis B H. Fischer-Tropsch synthesis: Comparison of carbon-14 distributions when labeled alcohol is added to the synthesis gas. Energy & Fuels, 1991, 5: 174-179
    [121] Ballard D G H. Mechanism of Fischer-Tropsch synthesis: CH2 polymerisation ersus CO insertion. Journal of Molecular Catalysis, 1983, 19: 393-397
    [122] Henrich-Olive G, Olive S. Mechanism of Fischer--Tropsch synthesis: CH2- polymerization versus CO insertion. Journal of Molecular Catalysis, 1982, 16: 111-115
    [123] Long H C, Turner M L, Fornasiero P, et al. Vinylic Initiation of the Fischer-Tropsch reaction over ruthenium on silica catalysts. Journal of Catalysis, 1997, 167: 172-179
    [124] Michael L T, Peter K B, Peter M M. Cyclopropane formation during carbon monoxide hydrogenation over rhodium-ceria-silica in the presence of tetravinylsilane as probe. Catalysis Letters, 1994, 26: 55-60
    [125] Turner M L, Byers P K, Long H C, et al. Vinyl initiation of Fischer-Tropsch polymerization over rhodium. Journal of the American Chemical Society, 1993, 115: 4417-4418
    [126] Friedel R A, Anderson R B. Composition of synthetic liquid fuels. I. Product distribution and analysis of C5-C8 paraffin isomers from cobalt catalyst. Journal of the American Chemical Society, 1950, 72: 1212-1215
    [1] Cullity B D. Elements of X-Ray Diffraction. Addision-Wesley, London, 1978
    [2] Schanke D, Vada S, Blekkan E A, et al. Study of Pt-promoted cobalt CO hydrogenation catalysts. Journal of Catalysis, 1995, 156(1): 85-95
    [3] Reuel R C, Bartholomew C H. The stoichiometries of H2 and CO adsorptions onCobalt: effects of support and preparation. Journal of Catalysis, 1984, 85(1): 63-77
    [4] Jacobs G, Li J L, Davis B H, et al. Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Applied Catalysis A: General, 2002, 233(1-2): 263-281
    [1] Dry M E. The Fischer-Tropsch process:1950-2000. Catalysis Today, 2002, 71: 227-241
    [2] Schulz H. Short history and present trends of Fischer-Tropsch synthesis. Applied Catalysis A: General, 1999, 186: 3-12
    [3] Goodwin Jr J G. Current directions in Fischer-Tropsch catalysis. Preparative- American Chemical Society, Division of Petroleum Chemistry, 1991, 36 (1) : 156-159
    [4] Madon R J, Iglesia E. The Importance of Olefin Readsorption and H2/CO Reactant Ratio for Hydrocarbon Chain Growth on Ruthenium Catalysts. Journal of Catalysis, 1993, 139: 576-590
    [5] Li H, Wang S, Ling F, Li J. Studies on MCM-48 supported cobalt for Fischer-Tropsch synthesis. Journal of Molecular Catalysis A: Chemical, 2006, 244: 33-40
    [6] Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D.,Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society, 1998, 120: 6024-6036
    [7] Ohtsuka Y, Takahashi Y, Noguchi M, Arai T, Takasaki S, Tsubouchi N and Wang Y. Novel utilization of mesoporous molecular sieves as supports of cobalt catalysts in Fischer-Tropsch synthesis. Catalysis Today, 2004, 89: 419-429
    [8] Wang Y, Noguchi M, Takahashi Y, Ohtsuka Y. Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysts. Catalysis Today, 2001, 68: 3-9
    [9] Khodakov A Y, Bechara R, Griboval-Constant A. Fischer-Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density. Applied Catalysis A: General, 2003, 254: 273-288
    [10] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemistry Communications, 2003, 17: 2136-2137
    [11] Li J L, Zhan X D, Zhang Y Q, Jacobs G, Das T, Davis B H. Fischer–Tropsch synthesis: effect of water on the deactivation of Pt promoted Co/Al2O3 catalysts. Applied Catalysis A: General, 2002, 228: 203-212
    [12] Ledford J S, Houalla M, Proctor A, Hercules D M, Petrakis L. Influence of lanthanum on the surface structure and carbon monoxide hydrogenation activity of supported cobalt catalysts. The Journal of Physical Chemistry, 1989, 93: 6770-6777
    [13] Zhang Y H, Xiong H F, Liew K Y, Li J L. Effect of magnesia on alumina-supported cobalt Fischer-Tropsch synthesis catalysts. Journal of Molecular Catalysis A: Chemical, 2005, 237: 172-181
    [14] Dai X, Yu C, Li R, Shi H, Shen S. Role of CeO2 Promoter in Co/SiO2 Catalyst for Fischer-Tropsch Synthesis. Chinese Journal of Catalysis, 2006, 27(10): 904-910
    [15] Ernst B, Hilaire L, Kiennemann A. Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst. Catalysis Today, 1999, 50(2): 413-427
    [16] Molander G A. Application of lanthanide reagents in organic synthesis. Chemical Reviews, 1992, 92: 29-68
    [17] Yao W, Chen Y, Min L, Fang H, Yan Z, Wang H, Wang J. Liquid oxidation of cyclohexane to cyclohexanol over ceriun-doped MCM-41. Journal of Molecular Catalysis A: Chemical, 2006, 246: 162-166
    [18] Mu Z, Li J, Tian H, Hao Z, Qiao S. Synthsis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. Materials Research Bulletin, 2008, 43: 2599-2606
    [19] Zhan W, Lu G, Guo Y, Guo Y, Wang Y, Wang Y, Zhang Z, Liu X. Synthesis of cerium-doped MCM-48 molecular sieves and its catalytic performance for selective oxidation of cyclohexane. Journal of Rare Earths, 2008, 26: 515-522
    [20] Wang H, Wang B, Liu C, Dong W. Oxidative carbonylation of methanol over copper ion-containing ionic liquids immobilized on SBA-15. Microporous and Mesoporous Materials, 2010, 134: 51-57
    [21] Cullity B D. Elements of X-ray Diffraction, 3rd ed., Addison/Wesley, Reading, MA, 1967
    [22] Bensalem A, Muller J C, Verduraz F B. Faraday communications, From bulk CeO2 to supported cerium-oxygen clusters: a diffuse reflectance approach. Journal of the Chemical Society, Faraday Transactions, 1992, 88: 153–154
    [23] Li Z, Flytzani-Stephanopoulos M. On the Promotion of Ag–ZSM-5 by Ceriumfor the SCR of NO by Methane. Journal of Catalysis, 1999, 182: 313-327
    [24] Prabhu A, Kumaresan L, Palanichamy M, Murugesan V. Cerium-incorporated cage-type mesoporous KIT-6 materials: Synthesis, characterization and catalytic applications. Applied Catalysis A: General, 2010, 374: 11–17
    [25] Hu L, Ji S, Xiao T, Guo C, Wu P, Nie P. Preparation and Characterization of Tungsten Carbide Confined in the Channels of SBA-15 Mesoporous Silica. Journal of Physical Chemistry B, 2007, 111: 3599-3608
    [26] Zhang W H, Shi J L, Zhang L Z, Yan D S. Preparation and Characterization of ZnO Clusters inside Mesoporous Silica. Chemistry of Materials, 2000, 12: 1408–1413
    [27] Bao A, Liew K Y, Li J. Fischer-Tropsch synthesis on CaO-promoted Co/Al2O3 catalysts. Journal of Molecular Catalysis A: Chemical, 2009, 304: 47-51
    [28] Jacobs G, Ji Y, Davis B H, Cronauer D, Kropf A J, Maeshall C L. Fischer-Tropsch synthesis: Temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading,and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Applied Catalysis A: General, 2007, 333: 177–191
    [29] Ming H, Baker B G. Characterization of cobalt Fischer-Tropsch catalysts I. Unpromoted cobalt-silica gel catalysts. Applied Catalysis A: General, 1995, 123: 23-26
    [30] Mu S, Li D, Hou B, Chen J, Sun Y. Influence of Support Preparation Methods on Structure and Catalytic Activity of Co/TiO2-SiO2 for Fischer-Tropsch Synthesis. Catalysis Letters, 2009, 133: 341-345
    [31] Chen G, Zhang Y, Cai G, Zhong Y, Xiao Y, Wei K. Preparation of Promoted Pt/SBA-15 and Effect of Cerium on the Catalytic Activity over Carbon Monoxide Conversion Reaction. Catalysis Letters, 2009, 133: 354-361
    [32] Martinez A, Lopez C, Marquez F, Diaz I. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis, 2003, 220: 486-499
    [33] Belambe A R, Oukaci R, Goodwin Jr J G. Effect of Pretreatment on the Activity of a Ru-Promoted Co/Al2O3 Fischer-Tropsch Catalyst. Journal of Catalysis, 1997, 166: 8-15
    [34] Tao C, Li J, Zhang Y, Liew K Y. Effect of isomorphic substitution of zirconium on mesoporous silica as support for cobalt Fischer-Tropsch synthesis catalysts. Journal of Molecular Catalysis A: Chemical, 2010, 331: 50–57
    [35] Trovarelli A, Dolcetti G, de Leitenburg C, Kaspar J. CO2 Hydrogenation Over Platinum Group Metals Supported on CeO2: Evidence for a Transient Metal-Support Interacti. Studies in Surface Science and Catalysis, 1993, 75: 2781-2784
    [36] Jin T, Zhou Y, Mains G J, White J M. Infrared and x-ray photoelectron spectroscopy study of carbon monoxide and carbon dioxide on platinum/ceria. Journal of Physical Chemistry, 1987, 91: 5931-5937
    [37] Fu L, Bartholomew C H. Structure sensitivity and its effects on product distribution in CO hydrogenation on cobalt/alumina. Journal of Catalysis, 1985, 92: 376-387
    [38] Tavasoli A, Abbaslou R M M, Trepanier M, Dalai A K. Fischer-Tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor. Applied Catalysis A: General, 2008, 345: 134-142
    [1] Dry M E. The Fischer-Tropsch process:1950-2000. Catalysis Today, 2002, 71: 227-241
    [2] Schulz H. Short history and present trends of Fischer–Tropsch synthesis. Applied Catalysis,1999,186(1-2): 3-12
    [3] Anderson R B. Fischer-Tropsch Synthesis. New York: Academic Press, Inc., 1984
    [4] Espinoza R L, Steynberg A P, Jager B. Low temperature Fischer-Tropsch synthesis from a Sasol perspective. Applied Catalysis A: General, 1999, 186: 13-26
    [5] Goodwin Jr J G. Current directions in Fischer-Tropsch catalysis. Preparative -American Chemical Society, Division of Petroleum Chemistry, 1991, 36 (1) : 156-159
    [6] Madon R J, Reyes S C, Iglesia E. Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis. Journal of Physical Chemistry, 1991, 95(20): 7795-7804
    [7] Madon R J, Iglesia E. The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium. Journal of Catalysis, 1993, 139(2):576-590
    [8] Wang Z, Cheng P, Huang E. Role of rare-earth oxides and thoria as promoters in precipitated iron-based catalysts for Fischer-Tropsch synthesis. Applied Catalysis A: General, 1991, 77: 109-122
    [9] Haddad G J, Chen B, Goodwin J G. Characterization of La3+-Promoted Co/SiO2 Catalysts. Jouranl of Catalysis, 1996, 160: 43-51
    [10] Adachi M, Yoshii K, Han Y Z, Fujimoto K. Fischer-Tropsch synthesis with supported cobalt catalyst, promoting effects of lanthanum oxide for cobalt/silica catalyst. Bulletion of the Chemical Society of Japan, 1996, 69: 1509-1516
    [11] Vada S, Chen B, Goodwin J G. Isotopic transient study of La promotin of Co/Al2O3 for CO hydrogenation. Journal of Catalysis, 1995, 153: 224-231
    [12] Wang T, Ding Y, Lu Y, Zhu H, Lin L. Influence of lanthanum on the performance of Zr-Co/activated carbon catalysts in Fischer-Tropsch synthesis. Jounal of Natural Gas Chemistry, 2008, 17: 153-158
    [13] Zhao L, Liu G, Li J. Effect of La2O3 on a Precipitated Iron Catalyst for Fischer-Tropsch Synthesis. Chinese Journal of Catalysis, 2009, 30(7): 637-642
    [14] Barrault J, Guilleminot A, Achard J, Paul-Boncour V, Percheron-Guegan A. Hydrogenation of carbon monoxide on carbon-supported cobalt rare earth catalysts. Applied Catalysis, 1986, 21: 307-312
    [15] Ledford J S, Houalla M, Proctor A, Hercules D M, Petrakis L. Influence of lanthanum on the surface structure and carbon monoxide hydrogenation activity of supported cobalt catalysts. The Journal of Physical Chemistry, 1989, 93: 6770-6777
    [16] Bendahou K, Cherif L, Siffert S, Tidahy H L, Bena?ssa H, Abouka?s A. The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene. Applied Catalysis A: General, 2008, 351:82-87
    [17] Mu Z, Li J, Hao Z, Qiao S. Direct synthesis of lanthanide-containing SBA-15 under weak acidic conditions and its catalytic study. Microporous and Mesoporous Materials, 2008, 113: 72-80
    [18] Zhan W, Lu G, Guo Y, Guo Y, Wang Y, Wang Y, Zhang Z, Liu X. Synthesis of cerium-doped MCM-48 molecular sieves and its catalytic performance for selective oxidation of cyclohexane. Journal of Rare Earths. 2008, 26: 515-522
    [19] Wagner C D,. Riggs W M, Davis L E, Moulder J F, Muilenberg G E. Handbook of X-ray Photoelectron Spectroscopy, PerkinElmer Coorporation, Eden Prairie, 1978, p. 46, 76, 132.
    [20] Gaare K. Effects of La Exchange on NaY and NaX Zeolites As Characterized by 29Si NMR. Journal of Physical Chemistry B, 1997, 101: 48-54
    [21] Zhang W H, Shi J L, Zhang L Z, Yan D S. Preparation and Characterization of ZnO Clusters inside Mesoporous Silica. Chemistry of Materials, 2000, 12: 1408-1413
    [22] Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesiscatalysts. Applied Catalysis A: General, 1997, 161: 59-78
    [23] Fan L, Yokota K, Fujimoto K. Supercritical phase fischer-tropsch synthesis: Catalyst pore-size effect. AIChE Journal, 1992, 38: 1639-1648

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700