格氏栲天然林林窗微环境特征及幼苗更新动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格氏栲(Castanopsis kawakamii)为壳斗科生长周期长常绿高大乔木,是分布于我国中亚热带地区南缘的第三纪孑遗植物,属国家重点保护珍稀植物,自然分布范围狭窄。象福建三明小湖一带有近700hm~2呈纯林状态的格氏栲林,介于中亚热带与南亚热带的一种常绿阔叶林过渡类型,是较为罕见的天然群落。目前,福建三明格氏栲天然林格氏栲种群已过熟,林冠层破碎化加剧导致林窗数量增多,同时由于物种竞争和人为干扰导致格氏栲林已处于衰退之中,种群数量下降,中一代个体数少,野外格氏栲种子萌发困难且幼苗生长缓慢,如何避免格氏栲种群退化,对其进行有效地科学保护,促进格氏栲种群更新与复壮成为亟待解决的问题。通过开展格氏栲天然林林窗基本特征、微环境特征、群落更新与幼苗更新动态研究,揭示格氏栲幼苗自然更新阈值,提出切实可行的格氏栲人促更新对策与恢复技术。结果表明:
     在所调查的格氏栲天然林林窗中,实际林窗面积(Canopy gap,CG)最小为29.03m~2,最大为98.92m~2,CG平均面积为61.89m~2;扩展林窗(Expanded gap,EG)面积最大为487.42m~2,最小为180.66m~2,EG平均面积为327.83m~2。格氏栲天然林林窗边界木主要组成树种为格氏栲,所占比例为74.75%;林窗边界木胸径结构为尖峰呈左偏,符合正态分布、Weibull分布和β分布;边界木高度级结构呈正态分布,主要集中在15-30m;林窗边界木存在明显的偏冠现象,偏冠率主要在0.5~0.8之间(70.71%)。林窗边界木主要由发育良好的中、高径级树木组成,与非林窗相比林窗边界木大部分已过熟,仅存较少小径级的边界木,表明仅依靠林窗边界木完成林窗更新存在困难,需加强对林窗幼苗和幼树的保护,实现林窗更新。
     格氏栲天然林林窗光照度在春季、夏季、秋季和冬季从林窗中央、实际林窗、扩展林窗到非林窗光照度逐渐下降,林窗中央光照度最高,非林窗最低;不同季节实际林窗和扩展林窗光照度较高值出现的方位不同。春季、夏季、秋季和冬季格氏栲天然林林窗平均光照度日变化呈正态分布曲线。早晚光照度较低,在正午光照度达到最大值。不同面积大小格氏栲天然林林窗光照度存在差异,大林窗光照度最高,其次是中林窗,小林窗太阳光照度最低。
     格氏栲天然林林窗空气温湿度在春、夏、秋、冬季节之间差异极显著(P<0.01)。季节对土温0、土温5和土温10影响极显著(P<0.01)。格氏栲天然林林窗空气与土壤温湿度的日变化呈现单峰型,林窗内空气温度与土壤温度(土温0、土温5、土温10)日变化趋势相同,林窗空气湿度与土壤含水量日变化呈高-低-高变化趋势。不同面积大小格氏栲天然林林窗空气温湿度之间差异极显著。中林窗空气温度最高,空气湿度最低;小林窗空气温度最低,空气湿度最大。不同面积大小格氏栲天然林林窗土壤温度之间差异极显著;小林窗土壤含水量与大林窗、中林窗之间差异极显著。不同位置格氏栲天然林林窗空气温湿度、土壤温度与土壤含水量由林窗中央、实际林窗、扩展林窗变化到非林窗温度逐渐降低。
     不同季节格氏栲天然林林窗风速变化平缓,秋季风速最低,春季、夏季和冬季风速基本趋于一致。秋季风速与春季、夏季和冬季风速之间存在极显著差异(P<0.01)。春季、夏季林窗风速日变化呈单峰凸型曲线;秋季和冬季白天风速变化基本趋于稳定。不同面积大小林林窗风速变化存在差异,中林窗风速变化最高,其次是小林窗,大林窗风速变化最低。不同位置林窗风速变化以实际林窗和扩展林窗较高,林窗中央和非林窗相对较低。
     对不同大小和发育期的格氏栲天然林林窗的土壤理化性质的研究表明:不同面积大小和发育期的林窗提高了土壤的孔隙组成和水分性质,可有效促进植物根系吸水能力和生长发育,在植物更新过程中扮演着重要角色。小林窗对土壤水分和孔隙组成的改善更明显,中林窗其次;林窗发育晚期对土壤水分和孔隙组成的改善较为明显,林窗发育早期其次。不同面积大小与发育期的林窗的水解性N、速效K含量均高于非林窗,全N、全P、有效P、有机质和有机碳含量均低于非林窗。中林窗的全N、水解性N、速效K、有机质、有机碳含量高于大林窗和小林窗。林窗发育早期土壤中全N、水解性N、全P、有效P、有机质和有机碳含量高于林窗发育中期和晚期。
     林窗与非林窗土壤平均呼吸速率分别为1.5211μmol CO2·m-2·s-1和1.5220μmol CO2·m-2·s-1,林窗与非林窗土壤呼吸速率差异不显著。林窗土壤呼吸速率与土壤温湿度之间关系不显著(p>0.05);非林窗土壤呼吸速率与土壤温度之间关系极显著(p<0.01),最优回归方程为y=0.0109e0.2761x。林窗的土壤呼吸速率与土壤全P含量呈显著正相关(p<0.05),最优回归方程为y=17.821x2-7.9157x+2.3536。
     采用改进的M. Godron稳定性法研究林窗干扰对格氏栲自然保护区天然林更新层物种稳定性的影响。结果表明:林窗乔木层植物处于稳定状态,林下乔木层植物不稳定;林窗和林下灌木层植物均处于稳定状态。林窗和林下乔木层树种中以桂北木姜子(Litsea subcoriacea)重要值最高,说明其在森林更新中占有重要地位,可能对格氏栲种群更新产生较大影响。林下乔木层中格氏栲重要值较低,格氏栲更新存在困难,而林窗干扰促进了格氏栲的向上生长和重要值的提升,可有效实现格氏栲种群的更新和恢复。
     采用改进更新生态位宽度和更新生态位重叠模型分析林窗干扰对格氏栲天然林更新层物种生态位的影响。林窗格氏栲的更新生态宽度值显著高于非林窗,林窗和非林窗更新生态位宽度最大的是桂北木姜子,与格氏栲更新生态位重叠值也较大。林窗形成早期可利用资源丰富,格氏栲与更新生态位重叠较大的物种在空间上不是竞争,而是对资源利用存在共享趋势;在林窗晚期由于可利用资源逐渐减少,更新生态位重叠较大的物种间将产生明显的竞争关系,将限制格氏栲在林窗中更新,导致格氏栲优势地位进一步下降。格氏栲天然林未来树种组成中,主要由桂北木姜子、木荷、矩圆叶鼠刺(Itea chinensis)与格氏栲等组成的混交群落,整个群落正向物种组成多样化的复杂方向演变。
     对格氏栲天然林林窗和非林窗格氏栲种子雨、种子库的分布特征与幼苗更新状况研究表明,格氏栲种子雨历时3个月,高峰期在11月中下旬至l2月中旬,林窗和非林窗高峰期种子雨数量分别占种子雨总量的77.13%和74.5%。格氏栲天然林土壤中植物种子种类较少,以格氏栲占绝对优势。林窗和非林窗总的种子数量和格氏栲种子数量的垂直分布均表现为枯落物层(约占2/3)>腐殖质层(0~5cm)(约占1/3)>心土层(5~10cm)(小于1%)。种子雨散布过程中格氏栲种子总量到完好格氏栲种子数量的转化率相对较高,再到土壤种子库中完好格氏栲种子数量和野外幼苗密度其转化率呈急剧下降趋势,格氏栲种子到幼苗转化率极低,应加强对格氏栲种子和幼苗的保护。
     为了提高格氏栲种子萌发,根据不同粒级、不同温度、不同浓度赤霉素、不同种皮处理等对格氏栲种子发芽率、发芽势、发芽指数和平均发芽速度的影响研究表明:大粒和中粒格氏栲种子的萌发率高于小粒种子;40℃和50℃处理有利于格氏栲种子萌发,温度过高会抑制其种子萌发;不同浓度赤霉素处理均能促进格氏栲种子萌发,赤霉素浓度为10、20和50mg/L时格氏栲种子发芽率均高于70%;去除种皮可提高格氏栲种子的发芽率。格氏栲种子野外发芽率在30%以下,其野外发芽主要为小粒种子、虫蛀或被啃食遗留下的尚具活力种子,而室内格氏栲种子发芽率在60%左右,说明格氏栲种子野外发芽率低可能受到自然或人为干扰影响。
     在格氏栲天然林中,依据改进Hegyi单木竞争模型计算林窗和非林窗格氏栲幼苗的竞争强度,林窗和非林窗格氏栲幼苗平均竞争强度随着竞争距离增大而逐步降低,初期下降较快,下降到一定程度后明显变缓,存在一变化幅度的转折点,即为幼苗的竞争范围。林窗和非林窗格氏栲幼苗竞争强度的三次指数平滑值在最佳平滑系数α为0.83和0.79时其均方误差值最小,单一斜率变点分析得出林窗和非林窗格氏栲幼苗最佳竞争范围分别是距对象木1.68m和2.00m。野外调查中可调查距对象木2m样圆内的所有竞争木,既能实际反映格氏栲幼苗的竞争格局,又可提高调查效率。
     采用Hegyi单木竞争指数模型对格氏栲幼苗种内和种间竞争强度进行定量分析表明:格氏栲幼苗种内竞争强度随幼苗高度的增大而逐渐减少。初期格氏栲幼苗种内竞争强度处于中等水平,随着高度的增加,种内竞争强度逐渐减弱,种间竞争强度越来越明显,种群呈衰退趋势。随着对象木高度的增加,林窗和非林窗格氏栲幼苗的种内竞争强度逐渐减少。林窗种间竞争强度的顺序为:梨茶(Camellia octopetala)>褐毛石楠(Photinia hirsuta)>黄润楠(Machilus grijsii)>桂北木姜子(Litsea subcoriacea)>毛鳞省藤(Calamusthysanolepis)>酸味子(Antidesma japonicum)>少叶黄杞(Engelhardtia fenzelii)>矩圆叶鼠刺(Itea chinensis)>小叶赤楠(Syzygium grijsii)>山黄皮(Randia cochinchinensis)>光叶山矾(Syplocos lancifolia)>沿海紫金牛(Ardisia punctata)>丝栗栲(Castanopsis fargesii)>狗骨柴(Diplospora dubia)>木荷(Schima superba)>赤楠(Syzygium buxifolium)>杜茎山(Maesa japonica)。非林窗种间竞争强度的顺序为:桂北木姜子>梨茶>黄润楠>木荷>毛冬青(Ilex pubescens)>狗骨柴>毛鳞省藤>香港新木姜子(Neolitsea cambodiana)>酸味子>沿海紫金牛>山黄皮>光叶山矾>赤楠>小叶赤楠>尖叶水丝梨(Distyliopsis dunnii)>杜茎山>丝栗栲。格氏栲幼苗幼树的竞争主要来自种间竞争,种内竞争对格氏栲影响不大,林窗格氏栲幼苗幼树的种内竞争强度和种间总体竞争强度大于非林窗。在林窗格氏栲幼苗生长初期应加强对其保护,非林窗格氏栲幼苗高度达到100~150cm后适当创造林窗环境以实现其快速生长,从而有效促进林窗和非林窗格氏栲种群保护与更新。
     不同季节格氏栲天然林林窗和非林窗不同龄级格氏栲幼苗净光合速率日变化研究表明:春季、夏季、秋季和冬季格氏栲天然林林窗和非林窗5个不同龄级格氏栲幼苗的净光合速率日变化均呈单峰型。上午由于光合有效辐射强度(PAR)和空气温度相对较低,净光合速率不高。午间,格氏栲幼苗未出现明显“午休”现象。净光合速率(Pn)的峰值皆出现在上午12:00前后,此后净光合速率持续下降,林窗形成对格氏栲幼苗生长有促进作用。
     格氏栲天然林林窗和非林窗不同龄级格氏栲幼苗光响应研究表明:林窗环境下5种不同龄级的格氏栲幼苗光补偿点(Lcp)大小顺序为:3-4龄级>5-6龄级>7-8龄级>9-10龄级>1-2龄级;格氏栲幼苗光饱和点(Lsp)大小顺序为:5-6龄级>7-8龄级>3-4龄级>9-10龄级>1-2龄级。非林窗生境5种不同龄级格氏栲幼苗Lcp的大小顺序为:3-4龄级>5-6龄级>7-8龄级>1-2龄级>9-10龄级;格氏栲幼苗Lsp的大小顺序为:5-6龄级>3-4龄级>7-8龄级>9-10龄级>1-2龄级。非林窗不同龄级格氏栲幼苗光补偿点均小于林窗,表现出较强耐荫能力,但非林窗的弱光生境,格氏栲幼苗生长缓慢,甚至停止生长,其耐荫能力是以牺牲生长为代价。林窗不同龄级格氏栲幼苗光饱和点均大于非林窗,非林窗荫蔽条件不利于格氏栲幼苗的光合作用,非林窗格氏栲幼苗在群落竞争中处于不利地位,对格氏栲种群更新十分不利。林窗生境与非林窗生境相比,格氏栲幼苗具有较好的生长表现和竞争能力,更有利于天然格氏栲林的更新演替。
     格氏栲天然林林窗和非林窗不同龄级格氏栲幼苗CO2响应研究表明:林窗格氏栲幼苗在CO2浓度较低的起始阶段,7-8龄级的表观羧化反应效率大于其他4个龄级,林窗7-8龄级的格氏栲幼苗更有效的利用低浓度的CO2。而当CO2达到饱和时,林窗3-4龄级的格氏栲幼苗的最大净光合速率最大。非林窗格氏栲幼苗在CO2浓度较低的起始阶段,5-6龄级羧化反应效率小于其他4个龄级,当CO2达到饱和时,非林窗5-6龄级格氏栲幼苗的最大净光合速率也最小。除林窗5-6龄级格氏栲幼苗CO2饱和点和补偿点小于非林窗外,其余龄级CO2饱和点和补偿点均为林窗大于非林窗,可能是林窗CO2浓度低于非林窗及林窗中央、实际林窗、扩展林窗到非林窗风速逐渐降低。
     格氏栲成年叶片长×宽和叶面积呈极显著性对数函数模型,为y=4383.232lnx-34519.789;林窗和非林窗格氏栲幼苗叶片长×宽和面积均呈极显著幂函数关系,分别为y=0.255(lnx)1.092和y=0.866(lnx)0.944。林窗与非林窗5种龄级格氏栲叶片叶绿素相对含量均呈先上升后下降趋势。林窗与非林窗5-6龄级格氏栲叶片叶绿素相对含量最高,1-2龄级含量最低。林窗各龄级叶片叶绿素相对含量低于非林窗。叶绿素相对含量在3个部位的分布总体表现为:叶尖<叶中<叶基,以叶中的叶绿素相对含量对平均叶绿素相对含量的解释度最高。
     格氏栲天然林林窗和非林窗格氏栲幼苗生物量及养分分配研究表明:林窗和非林窗不同龄级格氏栲幼苗生物量和养分含量存在差异。幼苗生物量随着年龄增加而增大。林窗1-2龄级、3-4龄级格氏栲幼苗总干重低于非林窗,幼苗生长到5-6龄级后林窗幼苗总干重高于非林窗。由于格氏栲幼苗初期需耐荫,林窗3-6龄格氏栲幼苗全N养分含量小于非林窗,生长放缓。随着幼苗生长对光照要求更高,林窗提供了更适宜其生存的环境,林窗幼苗7-8龄幼苗全N养分含量提高,植物生长加快,在9-10龄格氏栲幼苗养分中得到体现。
     对格氏栲幼苗更新阈值影响因子差异分析表明,由于格氏栲幼苗初期需耐荫,林窗3-6龄幼苗生长不如非林窗,幼苗生长到7-8龄后,林窗格氏栲幼苗总干重、根干重、茎干重、叶干重和全N含量均大于非林窗,林窗9-10龄对格氏栲幼苗更新的影响因子均大于非林窗。采用粗糙集的属性约简算法对评价指标进行重要程度筛选,依据突变级数法对格氏栲幼苗生长评价结果表明,林窗环境中,光照对1-2龄级格氏栲幼苗生长产生存在一定限制作用,其生长速度低于同龄级的非林窗幼苗。由于林窗微环境的异质性,且能提供更多的可利用养分,促进了不同龄级格氏栲幼苗生长且生长速度呈持续增长趋势。非林窗为格氏栲幼苗初期提供较好的郁闭环境,其生长速度较快,而在幼苗5-6龄级后非林窗难以满足幼苗对光照的需求,生长速度逐渐下降。研究表明7-8龄级格氏栲幼苗为幼苗更新的关键阶段,即幼苗更新阈值。对于非林窗格氏栲幼苗,幼苗生长到7-8龄,可在形成的林窗内采取一定抚育措施促进格氏栲幼苗更新。
Castanopsis kawakamii Hayata, a broad-leaved evergreen species of Fagaceae and of long growth periodcycle, is a relic plant of the Territory and endangered plant in the southern edge of mid-subtropics in China, whosedistribution is comparatively narrow. C. kawakamii natural forest, which is almost pure forest above700hm~2areain Fujian province of China, is a transitional type between central and southern subtropical evergreen broadleavedforests. The over mature population,species competition and human disturbance all could affect the dynamicperiodic fluctuations of C. kawakamii populations.Moreover, this forest has entered into a decline stage as a resultof severe fragmentation in the canopy layer, with increasing gaps in the forest canopy, the decreasing quantity ofmiddle age structure of C. kawakamii population, low germination rate of seeds and growth of seedlings in theforest and difficulties in regeneration of forest understory, which makes efficient protection, construct the optimalecological environment for its natural regeneration and improvement in its regeneration an urgent matter at thistime. The research of forest gap basic characteristics, micro-environmental characteristics, populationregeneration characteristics and seedlings regeneration dynamic were studied in this paper. The forest gapregeneration characteristics and restoration technology of C. kawakamii natural forest were firstly conducted andrevealed the C. kawakamii seedlings regeneration threshold, and propose the artificial practical measurements toimprove C. kawakamii regeneration.
     The minimum, maximum and average areas of canopy gaps were29.03m~2,98.92m~2and61.89m~2, and themaximum, minimum and average areas of expanded gaps were487.42m~2m~2,180.66m~2and327.83m~2in thecollected C. kawakamii natural forest gaps. The main tree species of gap border trees (GBTs) were C. kawakamiiwhose proportion was74.75%; the structure of DBH of GBTs showed a left-skew distribution, which consistentedwith the normal distribution, Weibull distribution and β distribution; the structure of tree height classes showed anormal distribution and mainly from15to30m; the GBTs’ crown inclination was obvious, which was mainlyfrom0.5to0.8(70.71%). With exception for a few low diameter GBTs,most of GBTs were composed ofwell-developed medium or high diameter trees which were over mature compared with those of non-gaps, whichindicated that it was difficult to accomplish the forest gap regeneration by solely relying on GBTs and it wasindispensable to strengthen the protection of seedlings and young trees.
     Spatial and temporal distribution characteristics of illumination intensity were measured in C. kawakamiinatural forest gaps. The results showed that the illumination intensity in four seasons decreased form the gapcenter, canopy gap, expanded gap to non-gap, and the highest in gap center and lowest in non-gap. The directions of relatively high illumination intensity in canopy gap and expanded gap were different in four seasons. Thediurnal variation of average illumination intensity in C. kawakamii natural forest gaps demonstrated as normaldistribution curve and presented a low-high-low trend. The illumination intensity was low in the morning andevening, whereas reached the peak value in the noon. The illumination intensity was different among the smallgaps, medium gaps and large gaps, which were highest in large gaps, secondly with the medium gaps and thelowest average illumination intensity in small gaps.
     The differences between air temperature and relative humidity in spring, summer, autumn and winter wereextremely significant in forest gaps (P<0.01). The effects of four seasons on soil temperature0, soil temperature5and soil temperature10were highly significant (P<0.01). The diurnal variation of air and soil temperature andhumidity showed a single peak curve. The diurnal variations of relative humidity and soil water content werehigh-low-high trend. The differences between air temperature and relative humidity were extremely significant indifferent gap sizes of forest gaps. The air temperature of medium gaps was the highest, while with the lowestrelative humidity; the air temperature of small gaps was the lowest, while with the highest relative humidity. Thedifferences between soil temperature and moisture were extremely significant in different gap sizes of forest gaps.The difference of soil water content between small gaps and large gaps, moderate gaps were extremely significant.The air temperature, relative humidity, soil temperature and soil water in different locations of forest gaps weregradually decreased form the gap center, canopy gap, expanded gap to non-gaps.
     The results indicated that the wind speed of four seasons changed slowly in different points of C. kawakamiinatural forest gap, while the wind speed was the lowest in autumn and basically the same in spring, summer andwinter. The wind speed in autumn was significantly lower than in spring, summer and winter (P<0.01). Thediurnal variation of wind speed showed as a single convex peak curve in spring and summer of forest gaps, andthe diurnal variation of wind speed tended to be stable in autumn and winter during the daytime. The differencesof wind speed among the small gaps, medium gaps and large gaps were various, and the medium gaps were thehighest, secondly with the small gaps and large gaps the lowest. The wind speed in different locations of forestgaps showed that the canopy gap and expanded gap were relatively high, whereas relatively low in the gap centerand non-gap.
     Forest gaps in various sizes and development stages could improve soil pore space structure and watercharacteristics which may effectively promote water absorbing capacity of plant roots and plant growth, whichplayed an important role in plant regeneration. Soil pore space structure and water characteristics in small gapswere more obvious improvement, followed by the medium gaps. Soil pore space structure and watercharacteristics in late development stage gaps were more relatively improved, followed by the early developmentstage gaps. The contents of hydrolyzable N and available K in various sizes and development stages of forest gapswere higher than those of non-gaps, whereas the contents of total N, total P, available P, organic matter andorganic carbon were lower. The contents of total N, hydrolyzable N, available K, organic matter and organiccarbon in medium gaps were higher than those of large and small gaps. The contents of pH, hydrolyzable N andthe ratio of carbon to nitrogen(C/N) of forest gaps in various development stages were higher than those ofnon-gaps. The contents of total N, hydrolyzable N, total P, available P, organic matter and organic carbon in medium gaps were higher than those of medium and late development stage gaps.
     The average soil respiration rate in forest gaps and non-gaps were1.5211μmol CO2·m-2·s-1and1.5220μmolCO2·m-2·s-1, which had no significance with each other. There was no significant difference between soilrespiration rate with soil temperature and soil water content in forest gaps (p>0.05). There was no significantdifference between soil respiration rate with soil water content in non-gaps (p>0.05), whereas the extremelysignificant difference between soil respiration rate with soil temperature (p<0.01), the optimal regressionequation was y=0.0109e0.2761x. There was significance between soil respiration rate with Total P in forest gaps,whose the optimal regression equation was y=17.821x2-7.9157x+2.3536.
     The effect of forest gap disturbance on the stability of species in the regeneration layers of natural C.kawakamii forest were studied by improved M. Godron’s stability methods in C. kawakamii natural reserve. Theplants in the tree layer of the forest gap were stable, but were unstable in the understory. The plants in the shrublayer of both the forest gap and understory were stable. The importance value of Litsea subcoriacea was thehighest in the tree layer of the forest gap and understory, which occupied an important role in forest regenerationand would likely have a greater impact on the regeneration of C. kawakamii population. The importance value ofC. kawakamii was relatively low in the tree layer of the forest understory, which affected its regeneration.However, forest gap disturbance improved the upward growth and importance value of C. kawakamii, whichcould achieve the regeneration and restoration of the C. kawakamii population effectively.
     The effect of forest gaps on species regeneration niche in regeneration layers was conducted by improvedmodels of regeneration niche width and niche overlap of C. kawakamii natural forest. Regeneration niche width ofC. kawakamii in forest gaps was higher than that of non-gaps. The regeneration niche width of Litsea subcoriaceain forest gaps and non-gaps was the most, while the regeneration niche overlaps between the population of L.subcoriacea and C. kawakamii were relatively high in forest gaps and non-gaps. High regeneration niche overlapsbetween the population of C. kawakamii and other species with sufficient available resources in early phase afterthe formation of forest gaps showed that the relationship of main tree populations in C. kawakamii forest gapswere not competition but a tendency of resource sharing. However, the main species with high regeneration nicheoverlaps may bring an obvious competition with the shortage of available resources in late phase of forest gaps.The further differentiation of niche width lead the species composition of forest gaps were under the situation ofdynamic balance and gradually filled the forest gaps to accomplish the forest regeneration finally. The future treespecies composition in C. kawakamii natural forest was a mixed community which mainly consisted by L.subcoriacea, Schima superba, Itea chinensis and C. kawakamii population. The whole community now ischanging in complex direction with diversity species composition.
     Seed rain, seed bank distribution characteristics and seedlings regeneration status in forest gaps and non-gapswere analyzed in C. kawakamii natural forest. Seed rain continued about2months and peaked at last ten-dayperiod of November to second ten-day of December. The seed rain quantities in the peak period occupied77.13%and74.5%of total seed rain quantities in forest gaps and non-gaps separately. Seed species in soil were low anddominated by C. kawakamii in forest. The vertical distribution of total seed bank quantities and C. kawakamii seedquantities both demonstrated with liter layer (about2/3)>humus layer (about1/3)> subsoil layer (less than1%). Conversion rate from total seed rain quantities to intact seed numbers in seed rain dispersal were relative high, andthen turned to intact seed numbers in seed bank and seedlings density in field practice presented a decreasingtrend. It should strengthen the protection of C. kawakamii seeds and seedlings for its extremely low conventionrate from seeds to seedlings.
     The effects of different treatments (seed sizes, temperatures, concentrations of gibberellins and seed capsules)on germination percentage, germination potential, germination index and average germination rate of C.kawakamii seeds were studied to improve the germination ability. The results showed that germination percentageof the large and medium C. kawakamii seeds were higher than that of small seeds; the favorable temperature were40℃and50℃and extreme temperature restrained the germination; different concentration of gibberellinspromoted the germination and the germination percentage of C. kawakamii seeds were over70%when treatedwith10、20and50mg/L gibberellins solution; removal of the seed capsule could improve the germinationpercentage. The germination rate of C. kawakamii seeds in wild was less than30%, and germinated seeds mainlywere small seeds, worm-eaten seeds and eaten by animals but have vigorous, whereas the germination rate wasabout60%during the indoor experiment, which indicated that low germination rate of C. kawakamii seeds in wildwas possibly affected by natural and human disturbance.
     The competition intensity of C. kawakamii seedlings were calculated by the improved competition model forindividual tree of Hegyi, which were optimized by the exponential smoothing model. The optimum competitionranges were confirmed by using the method of single slope change point. The results showed that: The averagecompetition intensity of C. kawakamii seedlings decreased with the increasing of competition distance withcompetition intensity decreased quickly at early stage while it had a slow down obviously after in a certain extentand existed a turning point in the change range called the seedlings competition zone of C. kawakamii naturalforest gaps and non-gaps. The minimum mean square errors of the third index smooth values of C. kawakamiiseedlings competition intensity in forest gaps and non-gaps were the least when the smoothing coefficient α=0.83and α=0.79respectively. By applying the method of single slope change point,the optimal sampling plotscompetition zone of C. kawakamii seedlings competition intensity were1.68and2.00meters distance from theobjective trees. We could investigated the competition trees around2meters distance from the objective trees tocalculate the competition intensity in field practice, which could demonstrated the competition pattern of C.kawakamii seedlings and improve the survey efficiency.
     The intraspecific and interspecific competitions intensity of C. kawakamii seedlings in C. kawakamii NatureReserve were quantitatively analyzed by using Hegyi’s competition index model. The results showed that theintraspecific competition intensity in C. kawakamii seedlings decreased gradually with the increasing of heightclass. The intraspecific competition intensity of C. kawakamii seedlings at the early growth stage was at a mediumlevel. With the seedlings’ height rising, the intraspecific competition of C. kawakamii seedlings was weakgradually, the interspecific competition of C. kawakamii seedlings was obvious increasingly and the C. kawakamiipopulation has the tendency of deterioration. In C. kawakamii natural forest gaps and non-gaps, the intraspecificcompetition intensity in C. kawakamii seedlings decreased gradually with the increasing of height class indifferent habitats. The order of the interspecific competition intensity in forest gaps was: Camellia octopetala> Photinia hirsute> Machilus grijsii> Litsea subcoriacea> Calamus thysanolepis> Antidesma japonicum>Engelhardtia fenzelii> Itea chinensis> Syzygium grijsii> Randia cochinchinensis> Syplocos lancifolia> Ardisiapunctata> Castanopsis fargesii> Diplospora dubia> Schima superba> Syzygium buxifolium> Maesa japonica.The order of the interspecific competition intensity in non-gaps was: L.subcoriacea>C.octopetala>M. grijsii>S.superba>Ilex pubescens>D. dubia>C.thysanolepis>Neolitsea cambodiana>A. japonicum>A. punctata>C.dentata>S. lancifolia>S. buxifolium>S. grijsii>C. kawakamii>Distyliopsis dunnii>M. japonica>C. fargesii.The competition of C. kawakamii seedlings and samplings was mainly from interspecific competition whileintraspecific competition had little effect on it. Intraspecific competition and overall interspecific competition inforest gaps were higher than those of non-gaps. it should strengthen the protection of C. kawakamii seedlings inthe early stage of forest gaps and the gap environment should be created to accelerate the growth of C. kawakamiiseedlings and samplings after the height up to100~150cm in non-gaps which could effectively improve theconservation and regeneration of C. kawakamii population in forest gaps and non-gaps.
     The diurnal variation of net photosynthetic rate in5age classes of C. kawakamii seedlings of forest gapsand non-gaps in C. kawakamii natural forest showed that:5age classes of C. kawakamii seedlings of forest gapsand non-gaps showed single peak in four seasons. Photosynthetic rate was not high in the morning due to the lowphotosynthetically active radiation (PAR) and air temperature. Moreover, there was no obvious midday depressionat noon. Net photosynthetic rate (Pn) appeared after12:00and decreased gradually thereafter. The seedlingsgrowth rate of C. kawakamii seedlings in forest gaps was faster than that in non-gaps for the improvement oflight-temperature-water in forest gaps could promote the growth of C. kawakamii seedlings.
     The light response in5age classes of C. kawakamii seedlings of forest gaps and non-gaps in C. kawakamiinatural forest showed that: the orders of light compensation point (Lcp) in5age classes of C. kawakamii seedlingsof forest gaps were:3-4age class>5-6age class>7-8age class>9-10age class>1-2age class; the size order of Lspsof C. kawakamii seedlings were:5-6age class>7-8age class>3-4age class>9-10age class>1-2age class. Innon-gaps, the size order of Lcps in5age classes of C. kawakamii seedlings were:3-4age class>5-6age class>7-8age class>1-2age class>9-10age class; the size order of Lsps of C. kawakamii seedlings were:5-6age class>3-4age class>7-8age class>9-10age class>1-2age class. All of Lcps in5age classes of non-gaps were lower thanthose of forest gaps, shade-tolerant performed, however, C. kawakamii seedlings grew slowly in dim light, evenstoped growth, whose shade-tolerant ability cost of its growth. All of light saturation points in5age classes ofnon-gaps were lower than those of gaps, which showed that shading condition was not good for photosynthesis ofC. kawakamii seedlings which could be in disadvantage under community competition and very unfavorable forpopulation regeneration. Hence, C. kawakamii seedlings in forest gaps were more favorable for the regeneration.
     The CO2response in5age classes of C. kawakamii seedlings of forest gaps and non-gaps in C. kawakamiinatural forest showed that: When C. kawakamii seedlings in forest gaps were in initial period of low CO2concentration, apparent carboxylation reaction efficiency of7-8age class seedlings is higher than other four ageclasses, which showed that7-8age class seedlings could make use of low concentration CO2more efficiently. Netphotosynthetic rate of3-4age class seedlings was the highest in forest gaps when CO2saturated. When C.kawakamii seedlings in non-gaps were in initial period of low CO2concentration, apparent carboxylation reaction efficiency of5-6age class seedlings is lower than other four age classes, which indicated that5-6age classseedlings could take use of low concentration CO2for photosynthesis more efficiently. Net photosynthetic rate of5-6age class seedlings was the lowest in non-gaps when CO2saturated. Both of the CO2saturation points and CO2compensation points of C. kawakamii seedlings in forest gaps were higher than those in non-gaps with5-6ageclass seedling contrary, which might due to the decrease of wind speed from gap center, canopy gap and thenexpanded gap gradually and intercellular CO2concentration decreased in forest gaps.
     There was a very significant logarithmic functional relation between the length×width and area of adultleaves, presented as y=4383.232lnx-34519.789. There were extremely significant power functional relationsbetween the length×width and area of C. kawakamii seedlings’ leaves in forest gaps and non-gaps, presented asy=0.255(lnx)1.092and y=0.866(lnx)0.944, respectively. The relative chlorophyll contents of C. kawakamii seedlings’leaves in different age classes of forest gaps and non-gaps both tended to increase firstly and then decrease. Therelative chlorophyll contents in5-6age class of C. kawakamii seedlings’ leaves were the highest, whereas1-2ageclass the lowest in forest gaps and non-gaps. The relative chlorophyll contents of C. kawakamii seedlings’ leavesin same ages of forest gaps were lower than those of non-gaps. The relative chlorophyll contents in three parts ofC. kawakamii seedlings’ leaves generally shower as: leaf apex>leaf middle>leaf base. The explanation of relativechlorophyll contents in leaf middle to the average relative chlorophyll contents were the highest.
     The biomass and nutrition content of C. kawakamii seedlings in different age classes of forest gaps andnon-gaps were different, and the biomass of seedlings increased with the increasing of age. The total dry weight in1-2age class,3-4age class in forest gaps were lower than those of non-gaps, whereas the total dry weight werehigher than those of non-gaps during the5-6age class and thereafter. As a result of the initial stages of C.kawakamii seedlings need to live in shade and humid environment, the total N content of3-6age class of C.kawakamii seedlings in forest gaps was lower than that of non-gaps, while with slow growth rate. With thegrowing of seedlings and the demanding to light increasing, because of forest gaps could provide moreappropriate environment for the survival of seedlings, the total N content of7-8age class and growth rate of C.kawakamii seedlings in forest gaps was developing, which also illustrated in the9-10age class of C. kawakamiiseedlings in forest gaps.
     The difference analysis of regeneration threshold affected factors of C. kawakamii seedlings indicated thatthe growth rate of3-6age class of C. kawakamii seedlings in forest gaps was lower than that of non-gaps due tothe initial stages of C. kawakamii seedlings need to live in shade and humid environment. The Seedlings total dryweight, root dry weight, stem dry weight, leaf dry weight and total N content of7-8age class and growth rate of C.kawakamii seedlings in forest gaps were higher than those of non-gaps. Moreover, the all regeneration impactfactors of9-10age class of C. kawakamii seedlings in forest gaps were higher than those of non-gaps. Using theattribute reduction algorithm method of rough set to screen the degree of importance of evaluation indices, and theevaluation of C. kawakamii seedlings’ growth was studied by using the Catastrophe Progression Method. Theresults showed that the light illumination may have certain limitation to the C. kawakamii seedlings growthduring the1-2age class, which growth rate was lower than that of non-gaps. As a result of micro-habitatheterogeneity of forest gaps, it could provide more sufficient available nutrition which could promote the C. kawakamii seedlings growth and continues increasing of the growth rate. In non-gaps, it could provide betterclosed environment for the initial growth period of C. kawakamii seedlings and had a relatively fast growth rate.However, the growth rate of C. kawakamii seedlings during5-6age class later decreased gradually as a result ofthe light illumination hardly satisfied the demand of seedlings growth. With the growing of seedlings andthe demanding to light and temperature increasing, meanwhile the improvement of light-temperature-water inforest gaps could promote the growth of C. kawakamii seedlings, it indicated that7-8age class of C. kawakamiiseedlings was the critical stage of seedlings regeneration, called as seedlings regeneration threshold. As for7-8age class of C. kawakamii seedlings in non-gaps, it should take certain of tending measures to created a forestgaps to improve the regeneration of C. kawakamii seedlings.
引文
[1]中国植物志编辑委员会.中国植物志(第22卷)[M].北京:科学出版社,1998.
    [2]福建植物志编辑委员会.福建植物志(第1卷)[M].福州:福建科学技术出版社,1982.
    [3]王献溥,蒋高明.广西青钩栲林分类的研究[J].广西植物,2002,22(2):97-104.
    [4]林鹏,丘喜昭.福建三明瓦坑的赤枝栲林[J].植物生态学与地植物学学报,1986,10(4):241-253.
    [5] Watt AS.Pattern and process in the community [J].Journal of Ecology,1947,35:1-22.
    [6] Runkle JR,Gap regeneration in some old-growth forests of eastern United States[J].Ecology,1981,62(4):1041-1051.
    [7]臧润国,徐化成.林隙(GAP)干扰研究进展[J].林业科学,1998,34(1):90-98.
    [8] Tedersoo L,Gates G,Dunk CW,Lebel T,May TW,K ljalg U,Jairus T.Establishment of ectomycorrhizal fungal communityon isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests:does fruit-bodytype matter?[J].Mycorrhiza,2009,19:403-416.
    [9] Brokaw NVL.The definition of treefall gap and its effect on measures of forest dynamics[J].Biotropica,1982,14:158-160.
    [10] Tyrrell LE,Crow TR.Structural characteristics of old-growth Hemlock Hardwood Forests in relation to age[J].Ecology,1994,75:370-386.
    [11] McNab WH,Greenberg HC,Berg EC.Landscape distribution and characteristics of large hurricane related canopy gaps in asouthern Appalachian watershed[J].Forest Ecology and Management,2004,196:435-447.
    [12]符利勇,唐守正,刘应安.关帝山天然次生针叶林林隙径高比[J].生态学报,2011,31(5):1260-1268.
    [13] Gagnon JL,Jokela EJ,Moser WK,Huber DA.Characteristics of gaps and natural regeneration in mature longleaf pineflatwoods ecosystem[J].Forest Ecology and Management,2004,187:373-380.
    [14] Hu LL, Zhu JJ. Determination of the tridimensional shape of canopy gaps using two hemispherical photographs[J].Agricultural and Forest Meteorology,2009,149:862-872.
    [15] de Lima RAF.Gap size measurement:the proposal of a new field method[J].Forest Ecology and Management,2005,214:413-419.
    [16] Yamamoto K.Estimation of the canopy-gap size using two photographs taken at different heights[J].Ecological Research,2000,15:203-208.
    [17] Nakashizuka T,Katsuki T,Tanaka H.Forest canopy structure analyzed by using aerial photographs[J].Ecological Research,1995,10(1):13-18.
    [18] Zhang KQ.Identification of gaps in mangrove forests with airborne LIDAR [J].Remote Sensing of Environment,2008,112:2309-2325.
    [19]胡理乐,李俊生,吴晓莆,闫伯前,朱教君,罗建武,肖能文.林窗几何特征的测定方法[J].生态学报,2010,30(7):1911-1919.
    [20] Runkle JR.Synchrony of regeneration,gaps and latitudinal differences in tree species diversity[J].Ecology,1989,70:546-547.
    [21] Liu QH,Hytteborn H.Gap structure,disturbance and regeneration in a Primeval Picea-Abies Forest[J].Journal of VegetationScience,1991,2:391-402.
    [22]刘金福,于玲,洪伟,李俊清,许忠实.格氏栲林林窗物种多样性动态规律的研究[J].林业科学,2003,39(6):159-164.
    [23]鲜骏仁,胡庭兴,王开运,张远彬,朱雪梅,徐精文.川西亚高山针叶林林窗边界木特征的研究[J].林业科学研究,2004,17(5):636-640.
    [24] Rentcha JS,Schulerb TM,Nowacki GJ,Beanea NR,Ford WM.Canopy gap dynamics of second-growth red spruce-northernhardwood stands inWest Virginia[J].Forest Ecology and Management,2010,260:1921-1929.
    [25]何中声,刘金福,郑世群,洪伟,吴承祯,徐道炜.格氏栲天然林林窗边界木特征研究[J].福建林学院学报,2011,31(3):207-211.
    [26] Promis A,Schindler D,Reif A,Cruz G.Solar radiation transmission in and around canopy gaps in an uneven-aged Nothofagusbetuloides forest[J].International Journal of Biometeorology,2009,53:355-367.
    [27] Gagnon JL,Jokela EJ,Moser WK,Hubert DA.Dynamics of artificial regeneration in gaps within a longleaf pine flatwoodsecosystem[J].Forest Ecology and Management,2003,172(2-3):133-144.
    [28]刘文杰,李庆军,张光明,施济普,白坤甲.西双版纳望天树林林窗小气候特征研究[J].植物生态学报,2000,24(3):356-361.
    [29]窦军霞,张一平,刘玉洪,马友鑫.西双版纳热带次生林林窗辐射特征初步研究[J].热带气象学报,2005,21(3):293-300.
    [30]张一平,窦军霞,刘玉洪,马友鑫.热带季节雨林林窗辐射特征研究[J].应用生态学报,2004,15(6):929-934.
    [31] Abd LZ,Blackburn GA.The effects of gap size on some microclimate variables during late summer and autumn in a temperatebroadleaved deciduous forest [J].International Journal of Biometeorology,2010,54(2):119-129.
    [32] Arunachalam A,Arunachalam K.Influence of gap size and soil properties on microbial biomass in a tropical humid forest ofnorth-east India [J].Plant and Soil,2000,223:185-193.
    [33] Brown N.The implications of climate and gap microclimate for seedling growth conditions in a Bornean lowland rain forest[J].Journal of Tropical Ecology,1993,9:153-168.
    [34] Carnpanello PI,Gatti MG,Adrian A,Monttia L,Goldsteina G.Tree regeneration and microclimate in a liana andbamboo-dominated semideciduous Atlantic Forest [J].Forest Ecology and Management,2007,252(1-3):108-117.
    [35] Ediriweera S,Singhakumara BMP,Ashton MS.Variation in canopy structure,light and soil nutrition across elevation of a SriLankan tropical rain forest[J].Forest Ecology and Management,2008,256(6):1339-1349.
    [36] Raymond P,Munson AD,Ruel JC,Coates KD.Spatial patterns of soil microclimate,light,regeneration,and growth withinsylvicultural gaps of mixed tolerant hardwood white pine stands [J].Canadian Journal of Forest Research,2006,36:639-651.
    [37]张一平,王进欣,马友鑫,刘玉洪.热带次生林林窗边缘树干表面温度时空分布特征[J].南京林业大学学报.1999,23(6):23-28.
    [38]张一平,王进欣,马友鑫,刘玉洪.西双版纳热带次生林林窗边缘树表温度的时空分布[J].北京林业大学学报.2000,22(3):8-13.
    [39]张一平,王进欣,马友鑫,刘玉洪,李佑荣.西双版纳热带次生林林窗近地层温度时空分布特征[J].林业科学.2002,38(6):1-5.
    [40]张远彬,王开运,鲜骏仁.岷江冷杉林林窗小气候及其对不同龄级岷江冷杉幼苗生长的影响[J].植物生态学报.2006,30(06):941-946.
    [41]李猛,段文标,陈立新.红松阔叶混交林林隙光量子通量密度、气温和空气相对湿度的时空分布格局[J].应用生态学报.2009,20(12):2853-2860.
    [42]朱教君,刘世荣.森林干扰生态研究[M].北京:中国林业出版社,2007.
    [43]朱教君,谭辉,李凤芹,陈梅,胡理乐.辽东山区次生林3种大小林窗夏季近地面气温及土壤温度比较[J].林业科学,2009,45(8):161-165.
    [44] Griffithsa RP,Gray AN,Spies TA.Soil properties in old-growth Douglas-Fir forest gaps in the Western Cascade Mountains ofOregon[J].Northwest Science,2010,84(1):33-45.
    [45]王成,庞学勇,包维楷.低强度林窗式疏伐对云杉人工纯林地表微气候和土壤养分的短期影响[J].应用生态学报,2010,21(3):541-548.
    [46] Scharenbroch BC, Bockheim JG. Impacts of forest gaps on soil properties and processes in old growth northernhardwood-hemlock forests[J].Plant and Soil,2007,(1-2):219-233.
    [47] Zhang CY,Zhao XH.Soil properties in forest gaps and under canopy in broad-leaved Pinus koraiensis forests in ChangbaiMountainous Region,China[J].Frontiers of Forestry in China,2007,2(1):60-65.
    [48]张春雨,高露双,赵秀海.林隙微环境异质性及物种更新响应研究进展[J].河北林果研究,2006,21(2):162-166.
    [49]沙丽清,曹敏西双版纳热带季节雨林林冠下及林窗中土壤养分对比研究[J].东北林业大学学报,1999,27(6):78-80.
    [50]耿玉清,单宏臣,谭笑,孙向阳,王登芝.人工针叶林林冠空隙土壤的研究[J].北京林业大学学报,2002,24(4):16-19.
    [51]刘少冲,段文标.红松阔叶混交林林隙土壤养分的空间异质性[J].水土保持学报,2011,25(3):142-146.
    [52]段文标.阔叶红松林林隙土壤水分微环境变异特征分析[J].自然资源学报,2009,24(5):809-815.
    [53] Duan WB,Wang J,Li Y.Micro-environmental heterogeneity of physical soil properties in a broad-leaved Pinus koraiensisforest gap[J].Frontiers of Forestry in China,2009,4(1):38-45.
    [54]李岩,段文标,陈立新.阔叶红松林林隙土壤物理性质微环境异质性分析[J].中国水土保持科学,2007,5(3):52-58.
    [55]刘聪,朱教君,吴祥云,杨凯.辽东山区次生林不同大小林窗土壤养分特征[J].东北林业大学学报,2011,39(1):79-81.
    [56] Kooch Y,Hosseini SM,Mohammadi J,Hojjati SM.The Effects of Gap Disturbance on Soil Chemical and BiochemicalProperties in a Mixed Beech-Hornbeam Forest of Iran[J].Ecologia Balkanica,2010,2:39-56.
    [57]张余,陈勇,胡云,王鹏程.马尾松人工林林隙内土壤理化性质变化分析[J].湖北林业科技,2011,(3):8-11,61.
    [58]陈爱玲,洪伟.福建中亚热带常绿阔叶林林隙对土壤肥力的影响研究[J].江西农业大学学报,2006,28(5):723-727.
    [59]黄石德.林内和林窗冬季土壤呼吸特征[J].福建林学院学报,2009,29(3):274-279.
    [60]黄石德,潘辉,叶功富,黄传春,赵凯.模拟干湿交替对林内和林窗表土碳释放的影响[J].江西农业大学学报,2010,32(6):75-79.
    [61]孟春,王俭.非主要生长季节白桦人工林林隙内伐根对土壤呼吸速率的影响[J].东北林业大学学报,2010,38(11):65-67,88.
    [62]张春雨,赵秀海,郑景明.长白山阔叶红松林林隙与林下土壤性质对比研究[J].林业科学研究,2006,19(3):347-352.
    [63]臧润国,刘静艳,董大方.林隙动态与森林生物多样性[M].北京:中国林业出版社,1999,73-74.
    [64] Whitmore TC.Canopy gas and the two major groups of forest trees[J].Ecology,1989,70(3):536-538.
    [65] Humber JM,Hermanutz L.Impacts of non-native plant and animal invaders on gap regeneration in a protected borealforest[J].Biological Invasions,2011,13(10):2361-2377.
    [66]龙翠玲,余世孝,熊志斌,魏鲁明.茂兰喀斯特森林林隙的植物多样性与更新[J].生物多样性,2005,13(1):43-50.
    [67]边巴多吉,郭泉水,次柏,罗大庆.西藏冷杉原始林林隙对草本植物和灌木树种多样性的影响[J].应用生态学报,2004,15(2):191-194.
    [68]吴刚.长白山红松阔叶林林冠空隙特征的研究[J].应用生态学报,1997,8(4):360-364.
    [69]齐代华,李旭光,王周平,石胜友,何正明,许文蔚,邓先宝.缙云山针阔混交林更新层物种多样性林隙梯度变化初探[J].生物多样性,2001,9(1):51-55.
    [70]南海龙,韩海荣,马钦彦,伊力塔,康峰峰.太岳山针阔混交林林隙草本和灌木物种多样性研究[J].北京林业大学学报,2006,28(2):52-56.
    [71]龙翠玲.喀斯特森林林隙梯度物种多样性变化规律[J].广西植物,2008,28(1):57-61.
    [72]刘少冲,段文标,冯静,韩生忠.林隙对小兴安岭阔叶红松林树种更新及物种多样性的影响[J].应用生态学报,2011b,22(6):1381-1388.
    [73]李峰,王孝安,郭华,雷利平.黄土高原森林林隙特征及植物多样性[J].干旱区研究,2009,26(3):377-383.
    [74] Zhao XH,Zhang CY,Zheng JM.Correlations between canopy gaps and species diversity in broad-leaved and Korean pinemixed forests[J].Frontiers of Forestry in China,2006,1(4):372-378.
    [75]张象君,王庆成,郝龙飞,王石磊.长白落叶松人工林林隙间伐对林下更新及植物多样性的影响[J].林业科学,2011,47(8):7-13.
    [76]江国华,吴泽民.安徽查湾自然保护区甜槠林林隙森林物种多样性研究[J].林业资源管理,2011,(4):94-101.
    [77] Hart JL,Kupfer JA.Sapling richness and composition in canopy gaps of a southern Appalachian mixed Quercusforest[J].Journal of The Torrey Botanical Society,2011,138(2):207-219.
    [78]秦晓威,李刚,王得祥,杨改河,任学敏,赵双喜,白宇,刘振学.林隙对太白山牛皮桦-巴山冷杉混交林内草本植物多样性的影响[J].应用生态学报,2010,21(10):2494-2500.
    [79]龙翠玲.茂兰喀斯特森林林隙物种多样性的动态规律[J].山地学报,2009,27(3):278-284.
    [80]赵秀海,张春雨,郑景明.阔叶红松林林隙结构与树种多样性关系研究[J].应用生态学报,2005,16(12):2236-2240.
    [81]闫淑君,洪伟,吴承祯,毕晓丽,范海兰.中亚热带常绿阔叶林林隙与物种多样性的关系研究[J].中国生态农业学报,2005,13(1):44-47.
    [82]臧润国,王伯荪,刘静艳.南亚热带常绿阔叶林不同大小和发育阶段林隙的树种多样性研究[J].应用生态学报,2000,12(4):485-488.
    [83]何国生,林思祖,曹子林,赵大洲,来端.武夷山天然常绿阔叶林林隙物种多样性比较研究[J].中国生态农业学报,2004,12(1):75-78.
    [84]袁春明,刘文耀,杨国平.哀牢山湿性常绿阔叶林林窗木质藤本植物的物种组成与多样性[J].山地学报,2008,26(1):29-35.
    [85]梁晓东,叶万辉.林窗研究进展[J].热带亚热带植物学报,2001,9(4):355-364.
    [86] Leck MA,Parker V T,Simpson R L.Ecology of Soil Seed Bank [M].San Diego:Academic Press,1989:1-21.
    [87] Nathan R,Muller-Landau HC.Spatial patterns of seed dispersal,their determinants and consequences for recruitment[J].Trends in Ecology and Evolution,2000,15:278-285.
    [88]李宁,白冰,鲁长虎.植物种群更新限制-从种子生产到幼树建成[J].生态学报,2011,31(21):6624-6632.
    [89]文彬.试论种子顽拗性的复合数量性状特征[J].云南植物研究,2008,30(1):76-88.
    [90] Hubbell S P,Foster R B,O’brien S T,Harms KE,Condit R,Wechsler B,Wright SJ,de Lao SL.Light-gap disturbances,recruitment limitation,and tree diversity in a neotropical forest [J].Science,1999,283:554-557.
    [91] Auffret AG,Cousins SAO.Past and present management influences the seed bank and seed rain in a rural landscape mosaic[J].Journal of Applied Ecology,2011,48(5):1278-1285.
    [92] Norghauer JM,Newbery DM.Seed fate and seedling dynamics after masting in two African rain forest trees [J].EcologicalMonograph,2011,81:443-469.
    [93]刘足根,朱教君,袁小兰,王贺新,谭辉.辽东山区长白落叶松(Larix olgensis)种子雨和种子库[J].生态学报,2007,27(2):579-587.
    [94]龙翠玲,余世孝.茂兰喀斯特森林林隙种子雨、种子库空间变异[J].云南植物研究,2007a,29(3):327-332.
    [95] Kennedy PG,Schouboe JL,Rogers RH,Weber MG,Nadkarni NM.Frankia and Alnus rubra canopy roots:an assessmentof genetic diversity,propagule availability,and effects on soil nitrogen [J].Microbial Ecology,2010,59(2):214-220.
    [96] Dupuy JM,Chazdon RL.Interacting effects of canopy gap,understory vegetation and leaf litter on tree seedling recruitmentand composition in tropical secondary forests [J].Forest Ecology and Management,2008,255:3716-3725.
    [97]张智婷,宋新章,肖文发,高宝嘉,郭忠玲.长白山森林不同演替阶段采伐林隙土壤种子库特征[J].应用生态学报,2009,20(6):1293-1298.
    [98] Yan QL,Zhu JJ,Zhang JP,Yu LZ,Hu ZB.Spatial distribution pattern of soil seed bank in canopy gaps of various sizes intemperate secondary forests,Northeast China[J].Plant and Soil,2009,329(1-2):469-480.
    [99]宋新章,张慧玲,肖文发,郭忠玲,黄志霖,雷静品.长白山区阔叶红松林采伐林隙种子库研究[J].北京林业大学学报,2009,31(2):17-24.
    [100]张智婷,宋新章,肖文发,高宝嘉,张慧玲,胡雁林,国立红.长白山杨桦次生林采伐林隙种子库特征[J].林业科学,2009,45(1):21-26.
    [101]宋新章,肖文发.林隙微生境及更新研究进展[J].林业科学,2006,42(5):114-119.
    [102]刘庆,吴彦.滇西北亚高山针叶林林窗大小与更新的初步分析[J].应用与环境生物学报,2002,8(5):453-459.
    [103]陈波,达良俊,宋永昌.常绿阔叶林内和林窗中栲树的种子萌发和幼苗生长[J].热带亚热带植物学报,2002,10(3):207-214.
    [104] Dalling JW,Hubbell SP.Seed size,growth rate and gap microsite conditions as determinants of recruitment success for pioneerspecies[J].Journal of Ecology,2002,90:557-568.
    [105] Dalling JW,Brown TA.Long-Term Persistence of Pioneer Species in Tropical Rain Forest Soil Seed Banks[J].AmericanNaturalist,2009,173(4):531-535.
    [106] Dalling JW,Hubbell SP,Silvera K.Seed dispersal,seedling establishment and gap partitioning among tropical pioneertrees.Journal of Ecology,1998,86:674-689.
    [107] Daws MI,Crabtree LM,Dalling JW,Mullins CE,Burslem DFRP.Germination Responses to Water Potential in NeotropicalPioneers Suggest Large-seeded Species Take More Risks[J].Annals of Botany,2008,102(6):945-951.
    [108]吴刚,尹若波,周永斌,郝占庆,梁秀英.长白山红松阔叶林林隙动态变化对早春草本的影响[J].生态学报,1999,19(5):659-663.
    [109] Toledo AT,Swaine MD.Biomass allocation and photosynthetic responses of lianas and pioneer tree seedlings to light[J].ActaOecologica,2008,34(1):38-49.
    [110] Robson TM,Rodriguez-Calcerrada J,Sanchez-Gomez D,Aranda I.Summer drought impedes beech seedling performancemore in a sub-Mediterranean forest understory than in small gaps[J].Tree Physiology,2009,29(2):249-259.
    [111] Zhang QS,Zak JC.Effects of gap size on litter decomposition and microbial activity in a subtropical forest[J].Ecology,1995a,76(7):2196-2204.
    [112]周丹卉,贺红士,孙国臣,李秀珍.林窗模型及其在全球变化研究中的应用[J].生态学杂志,2007,26(8):1303-1310.
    [113] Botkin DB,Janak JF,Wallis JR.Some ecological consequences of a computer model of forest growth [J].Journal of Ecology,1972,60(3):849-872.
    [114] Shugart HH,West DC.Development of an Appalachian Deciduous Forest Succession Model and its application to assessmentof the impact of the chestnut blight[J].Journal of Environmental Management,1977,5:161-179.
    [115]霍常富,程根伟,鲁旭阳,范继辉,程根伟.林窗模型研究进展[J].世界林业研究,2009,22(6):43-48.
    [116] Schliemanna SA,Bockheimb JG.Methods for studying treefall gaps:A review[J].Forest Ecology and Management,2011(261):1143-1151.
    [117] Leemans R,Prentice IC.FORSKA:a general forest succession model[M].Uppsala Institute of Ecological Botany Press,1989.
    [118] Lindner M.Developing adaptive forest management strategies to cope with climate change[J].Tree Physiology,2000,20:299-307.
    [119] Pabst RJ,Goslin MN,Garman SL,Spies TA.Calibrating and testing a gap model for simulating forest management in theOregon Coast Range[J].Forest Ecology and Management,2008,256:958-972.
    [120]吴泽民,黄成林,韦朝领.黄山松群落林隙光能效应与黄山松的更新[J].应用生态学报,2000,11(1):13-18.
    [121] Shugrat HH.A theory of forest dynamics the ecological implications of forest succession models[M].Caldwell New JerseyBlackburn Press,2003.
    [122] Pastor J, Post WM. Influence of climate, soil moisture, and succession on forest carbon and nitrogencycles[J].Biogeochemistry,1986,2:3-27.
    [123] Bugmann H.A review of forest gap models[J].Climatic Change,2001,51:259-305.
    [124] Friend AD,Stevens AK,Knox RG,Cannell MGR.A process-based,terrestrial biosphere model of ecosystem dynamics(HYBRID v3.0)[J].Ecological Modelling,1997,95:249-287.
    [125] Hine D,Hall JW.Information gap analysis of flood model uncertainties and regional frequency analysis[J].Water ResourceResearch,2010,46:W01514,19.
    [126] Miller C,Urban DL.A model of surface fire,climate,and forest pattern in the Sierra Nevada California[J].EcologicalModelling,1999,114(2):113-135.
    [127] Keane RE,Hardy CC,Ryan KC,Finney MA.Simulating effects of fire on gaseous emissions and atmospheric carbon fluxesfrom coniferous forest landscapes[J].World Resource Review,1997,9:177-205.
    [128] Kercher JR,Axelrod MC.A process model of fire ecology and succession in a mixed-conifer forest[J].Ecology,1984,65:1725-1742.
    [129] Lexer MJ,H nninger K.Simulated effects of bark beetle infestations on stand dynamics in Picea abies stands:coupling a patchmodel and a stand risk model in Beniston M and Innes JL[A].The impacts of climate variability on forests,Lecture Notes inEarth Sciences,1998,74:289-308.
    [130] Liira J,Sepp T,Kohv K.The ecology of tree regeneration in mature and old forests:combined knowledge for sustainable forestmanagement[J].Journal of Forest Research,2011,16(3):184-193.
    [131] Mou P,Jones RH,Guo DL,Lister A.Regeneration strategies,disturbance and plant interactions as organizers of vegetationspatial patterns in a pine forest[J].Landscape Ecology,2005,20:971-987.
    [132] Price DT,Zimermann NE,van derMeer,Lexer MJ,Leadley P,Jorritsma ITM,Schaber J,Clark DF,Lasch P,McNultyS,Wu J,Smith B.Regeneration in gap models priority issues for studying forest response to climate change[J].ClimaticChange,2001,51(4):475-508.
    [133] Wehrli A,Weisberg P,Sch nenberger W,Brang P,Bugmann H.Improving the establishment submodel of a forest patch modelto assess the long term protective effect of mountain forest[J].European Journal of Forest Research,2007,126(1):131-145.
    [134] McCarthy J.Gap dynamics of forest trees:A review with particular attention to boreal forests[J].Environmental Reviews,2001,9:1-59.
    [135] Zhu JJ,Tan H,Li FQ,Zhang JX.Microclimate regimes following gap formation in a montane secondary forest of easternLiaoning Province,China[J].Journal of Forestry research,2007,18(3):167-173.
    [136] Gálhidy L,Mihók B,Hagyó A,Rajkai K,Standovár T.Effects of gap size and associated changes in light and soil moistureon the understorey vegetation of Hungarian beech forest[J].Plant Ecology,2006,183:133-145.
    [137]胡蓉,林波,刘庆.林窗与凋落物对人工云杉林早期更新的影响[J].林业科学,2011,47(6):23-29.
    [138] Montti L,Campanello P,Gattia GM,Blundob C,Austinb AT,Sala AE,Goldsteina G.Understory bamboo flowering providesa very narrow light window of opportunity for canopy-tree recruitment in a neotropical forest of Misiones,Argentina[J].ForestEcology and Management,2011.262(8):1360-1369.
    [139] Lusk CH,Sendall K,Kooyman R.Latitude,solar elevation angles and gap-regenerating rain forest pioneers[J].Journal ofEcology,2011,99(2):491-502.
    [140] Gravel D,Beaudet M,Messier C.Large-scale synchrony of gap dynamics and the distribution of understory tree species inmaple-beech forests[J].Acta Oecoogia,2010,162(1):153-161.
    [141]龙翠玲,余世孝.茂兰喀斯特森林的林隙物种组成动态及更新模式[J].林业科学,2007,9:7-12.
    [142] Nagel T A,Svoboda M,Rugani T,Diaci J.Gap regeneration and replacement patterns in an old-growth Fagus-Abies forestof Bosnia-Herzegovina [J].Plant Ecology,2010,208(2):307-318.
    [143]丁易,陶建平,张炜银,杨东华,林瑞昌,王进强.海南岛热带山地雨林林隙体系和阶段更新(英文)[J].自然资源学报,2008,23(6):1022-1034.
    [144] Schnitzer SA,Carson WP.Lianas suppress tree regeneration and diversity in treefall gaps[J].Ecology Letters,2010,13(7):849-857.
    [145]吴敏,张文辉,周建云,马闯,马莉薇.秦岭北坡不同生境栓皮栎种子雨和土壤种子库动态[J].应用生态学报,2011,22(11):2807-2814.
    [146] Zang RG,Ding Y,Zhang WY.Seed dynamics in relation to gaps in a tropical montane rainforest of Hainan Island,SouthChina:(II) seed bank [J].Journal of Integrative Plant Biology,2008,50(5):513-521.
    [147]闫兴富,曹敏.林窗对热带雨林冠层树种绒毛番龙眼幼苗生长的影响[J].应用生态学报,2008,19(2):238-244.
    [148]鲜骏仁,胡庭兴,张远彬,王开运.林窗对川西亚高山岷江冷杉幼苗生物量及其分配格局的影响[J].应用生态学报,2007,18(4):721-727.
    [149] Mitamura M,Yamamura Y,Nakano T.Large-scale canopy opening causes decreased photosynthesis in the saplings ofshade-tolerant conifer,Abies veitchii[J].Tree Physiology,2009,29:137-145.
    [150] Powers MD, Pregitzer KS, Palik BJ. Physiological performance of three pine species provides evidence for gappartitioning[J].Forest Ecology and Management,2008,256:2127-2135.
    [151] D' Oliveira MVN,Ribas LA.Forest regeneration in artificial gaps twelve years after canopy opening in Acre State WesternAmazon[J].Forest Ecology and Management,2011,261(11):1722-1731.
    [152] Kathke S,Bruelheide H.Interaction of gap age and microsite type for the regeneration of Picea abies[J].Forest Ecology andManagement,2010,259(8):1597-1605.
    [153] Wagner S,Collet C,Madsen P,Nakashizuka T,Nyland RD,Sagheb-Talebi K.Beech regeneration research:From ecologicalto silvicultural aspects[J].Forest Ecology and Management,2010,259(11):2172-2182.
    [154] Vehmas M,Packalen P,Maltamo M,Eerik inen K.Using airborne laser scanning data for detecting canopy gaps and theirunderstory type in mature boreal forest[J].Annals of Forest Science,2011,68(4):825-835.
    [155] Vepakomma U,St-Onge B,Kneeshaw D.Spatially explicit characterization of boreal forest gap dynamics using Spatiallyexplicit characterization of boreal forest gap dynamics using multi-temporal lidar data[J].Remote Sensing of Environment,2008,112(5):2326-2340.
    [156] Larocque GR,Archambault L,Delisle C.Development of the gap model ZELIG-CFS to predict the dynamics of NorthAmerican mixed forest types with complex structures[J].Ecological Modeling,2011,222(14):2570-2583.
    [157] Fyllasa NM,Politib PI,Galanidisc A,Dimitrakopoulosc PG,Arianoutsou M.Simulating regeneration and vegetation dynamicsin Mediterranean coniferous forests[J].Ecological Modelling,2010,221(11):1494-1504.
    [158]刘金福,何中声,洪伟,郑世群,王兆杰.濒危植物格氏栲保护生态学研究进展[J].北京林业大学学报,2011a,33(5):136-143.
    [159]林金国,许春锦,陈慈禄.格氏栲人工林和天然林木材物理力学性质的比较[J].浙江林学院学报,1999,16(4):397-400.
    [160]吴若菁,郑清芳.壳斗科格氏栲和栲树的核型分析[J].福建林学院学报,1991,11(4):428-432.
    [161]郑郁善,郑盛培.格氏栲等树种种发芽率的射线检验[J].福建林学院学报,1994,14(1):23-26.
    [162]郑郁善.ABA对米槠和格氏栲种子发育的影响[J].应用与环境生物学报,1999,5(5):444-449.
    [163]何中声,刘金福,洪伟,郑世群,吴承祯,吴则焰,林义君,苏松锦.不同处理对格氏栲种子发芽的影响[J].北京林业大学学报,2011,34(2):66-70.
    [164]宋育红,陈夜江,吴新强,等.濒危植物格氏栲叶片基因组DNA提取方法研究[J].三明学院学报,2008,25(2):193-196.
    [165]林义君,刘金福,潘东明,等.濒危树种格氏栲ISSR-PCR反应体系的建立[J].福建林学院学报,2011,31(2):115-119.
    [166]刘金福,林义君,潘东明,洪伟,何中声,吴则焰,郑世群.孑遗植物格氏栲居群遗传多样性[J].中国科技论文在线,2011.
    [167]朱小龙,张宜辉,邹娟,等.赤枝栲(Castanopsis kawakamii)叶绿体DNA的提纯方法研究[J].厦门大学学报(自然科学版),2003,42(2):257-260.
    [168]刘金福,洪伟,林升学.格氏栲天然林主要种群直径分布结构特征的研究[J].福建林学院学报,2001,21(4):325-328.
    [169]何东进,洪伟,吴承祯.格氏栲种群个体年龄确定方法的研究[J].内蒙古林学院报,1999,21(2):35-38.
    [170]刘金福,洪伟.格氏栲种群个体年龄与胸径的时间序列模型研究[J].植物生态学报,1999,23(3):283-288.
    [171] Liu JF,Hong W,Pan D M,Li JQ,Wu CZ.A study on multidimensional time series of individual age’s measurement inCastanopsis kawakamii population[J].Acta Ecological Sinica,2009,29(4):232-236.
    [172]刘金福,洪伟.格氏栲种群数量动态的谱分析研究[J].生物数学学报,2003,18(3):357-363.
    [173]刘金福,洪伟,李茂瑾.格氏栲种群调节模型研究[J].热带亚热带植物学报,1998,6(4):309-314.
    [174]刘金福,洪伟.格氏栲种群优势度增长改进模型研究[J].植物生态学报,2001,25(2):225-229.
    [175]刘金福.格氏栲种群优势度增长动态改进模型新在何处研究[J].植物生态学报.2001,25(2):255-256
    [176]刘金福,洪伟.格氏栲种群增长动态预测研究[J].应用与环境生物学报,1999b,5(3):247-253.
    [177]刘金福,洪伟,李家和,郑燕明.格氏栲种群生态学研究.Ⅲ.格氏栲种群优势度增长动态规律研究[J].应用生态学报,1998,9(5):453-457.
    [178]林竞成.三明小湖地区格氏栲天然林起源与演替发展趋势的分析[J].福建林学院学报,1980(1):29-35.
    [179]林竞成.小湖格氏栲天然林生长的生态环境[J].福建林业科技,1982(2):36-39.
    [180]阳含熙,卢泽愚,杨周南.植物群落数量分类的研究[J].林业科学,1979,15(4):245-255.
    [181]游水生,郭振庭.用模糊聚类探讨福建三明格氏栲自然保护区植被类型的划分[J].武汉植物学研究,1994,12(4):333-340.
    [182]游水生,何宗明,郑燕明,张春能.天然格氏栲林皆伐火烧后栽建柏林区系组成变化研究[J].福建林学院学报,1996,16(1):20-23.
    [183]宋育红,张君诚,刘希华.格氏栲自然保护区常绿阔叶林群落的数量分类[J].生态科学,2006,25(5):390-394.
    [184]樊后保.福建三明格氏栲群落的结构特征[J].福建林学院学报,1996,16(1):14-19.
    [185]樊后保.格氏栲群落的结构特征[J].林业科学,2000,36(2):6-12.
    [186]胡可喜,丁莉萍,李家和,黄克鼎.三明格氏栲保护区生物多样性调查[J].福建林业科技1999,26(1):46-51.
    [187]朱大前,陈立栋.格氏栲群落物种多样性研究[J].福建林业科技,2000,27(1):10-13.
    [188]张宜辉,洪宁,阙德海,连玉武.福建三明小湖赤枝栲群落组成结构及物种多样性分析[J].厦门大学学报(自然科学版),2002,41(2):251-257.
    [189]陈辉.33年生格氏栲人工林与天然林群落特征比较[J].福建林学院学报,2009,29(2):97-102.
    [190]宋晓英,杨嵘.三明格氏栲自然保护区常绿阔叶林物种多样性分析[J].三明师专学报,1999(3):30-33.
    [191]宋育红,阮训清,李家和,邱瑾.格氏栲自然保护区常绿阔叶林类型及其群落物种多样性分析[J].三明学院学报,2005a,22(2):167-171.
    [192]宋育红,阮训清,李家和.格氏栲自然保护区米槠群落物种多样性研究[J].三明学院学报,2005,22(4):411-415.
    [193]宋育红,张新文,周斌.格氏栲自然保护区常绿阔叶林群落特征[J].生态科学,2005,24(3):228-232.
    [194]刘金福,洪伟.福建三明格氏栲林物种多度分布格局研究[J].林业科学,2001,37(Z1):200-204.
    [195]刘金福,洪伟,樊后保,赖世文.中国珍稀格氏栲林的数量特征[J].应用与环境生物学报,2002,8(1):14-19.
    [196]刘金福,洪伟,李俊清.格氏栲天然林物种多度分布的核估计研究[J].北京林业大学学报,2002,24(5/6):120-124.
    [197]黄川腾,庄雪影,姜斌,刘兆祥,李荣喜,张粤.广东象头山吊皮锥种群及其群落结构研究[J].广东林业科技,2010,26(1):71-76.
    [198]刘金福,洪伟.格氏栲群落生态学研究-格氏栲林主要种群生态位的研究[J].生态学报,1999,19(3):347-352.
    [199]刘金福,洪伟,李家和.格氏栲群落生态学研究Ⅱ.格氏栲林主要种群的竞争研究[J].福建林学院学报,1998,18(1):24-27.
    [200]刘金福,洪伟,樊后保,林荣福.天然格氏栲林乔木层种群种间关联性研究[J].林业科学,2001e,37(4):117-123.
    [201]刘金福,洪伟,李俊清,林家良.格氏栲林优势种竞争关系及其预测动态的研究[J].热带亚热带植物学报,2003,11(3):211-216.
    [202]何中声,刘金福,洪伟,郑世群,吴承祯,吴则焰,牛杰,林义君.中亚热带格氏栲天然林幼苗竞争强度研究[J].热带亚热带植物学报,2011,19(3):230-236.
    [203]黄健儿,吕月良,施友文.格氏栲空间格局的初步研究[J].福建林学院报,1991,11(3):266-271.
    [204]黄云鹏.格氏栲群落的林木组成及其空间分布格局[J].西南林学院学报,2009,29(1):17-21.
    [205]郑燕明,樊后保,陈祖松.格氏栲种群及其主要伴生树种的空间格局[J].福建林学院学报,1995,15(2):97-102.
    [206]吴大荣,苏志尧,李秉滔,纪祥敏,李家和.福建三明莘口青钩栲种群结构和空间分布格局动态初步研究[J].林业科学,2000,36(3):27-32.
    [207]刘金福,洪伟,陈清林.格氏栲种群生态学研究V.格氏栲种群空间格局及其动态的研究[J].福建林学院学报,1999,19(2):118-123.
    [208]刘金福,洪伟.格氏栲种群生态学研究Ⅶ.格氏栲种群分布格局的强度与纹理分析研究[J].中南林学院学报,1999,19(1):59-63.
    [209]刘金福,洪伟.格氏栲种群生态学研究Ⅵ.格氏栲种群空间格局分布的Weibull模型研究[J].福建林学院学报,1999,19(3):212-215.
    [210]刘金福,洪伟,李俊清,林荣福.格氏栲群落林窗边缘效应研究[J].应用生态学报,2003,14(9):1421-1426.
    [211]刘金福,洪伟,李俊清,杨文晖.格氏栲林林窗自然干扰规律[J].生态学报,2003,23(10):1991-1999.
    [212]刘金福,洪伟,李俊清.格氏栲林林窗更新特征的研究[J].北京林业大学学报,2006,28(3):14-19.
    [213]杨玉盛,陈光水,董彬,王小国,谢锦升,李灵,卢豪.格氏栲天然林和人工林土壤呼吸对干湿交替的响应[J].生态学报,2004,24(5):953-958.
    [214]杨玉盛,郭剑芬,林鹏,陈光水,何宗明,谢锦升.格氏栲天然林与人工林凋落叶分解过程中养分动态[J].生态学报,2004,24(2):201-208.
    [215]杨玉盛,郭剑芬,林鹏,何宗明,陈光水.格氏栲天然林与人工林粗木质残体碳库及养分库[J].林业科学,2005,41(3):7-11.
    [216]杨玉盛,陈光水,王义祥,杨少红,钟羡芳.格氏栲人工林和杉木人工林碳库及分配[J].林业科学,2006,42(10):43-47.
    [217]陈光水,杨玉盛,钱伟,高人,牛志鹏,韩永刚,张有利.格氏栲和杉木人工林地下碳分配[J].生态学报,2005,25(11):2824-2829.
    [218]陈光水,杨玉盛,王小国,谢锦升,高人,李震.格氏栲天然林与人工林根系呼吸季节动态及影响因素[J].生态学报,2005,25(8):1941-1947.
    [219]杨玉盛,郭剑芬,林鹏,何宗明,谢锦升,陈光水.格氏栲天然林与人工林枯枝落叶层碳库及养分库[J].生态学报,2004,24(2):359-367.
    [220]杨玉盛,陈光水,谢锦升,王小国,牛志鹏,韩永刚,张有利.格氏栲天然林与人工林土壤异养呼吸特性及动态[J].土壤学报,2006,43(1):53-61.
    [221]杨玉盛,陈光水,王义祥,谢锦升,杨少红,钟羡芳.格氏栲人工林和杉木人工林碳吸存与碳平衡[J].林业科学,2007,43(3):113-117.
    [222]杨玉盛,何宗明,邹双全,俞新妥.格氏栲天然林与人工林根际土壤微生物及其生化特性的研究[J].生态学报,1998,18(2):198-202.
    [223]杨玉盛,李振问,刘爱琴,张春能,邸道生.人工阔叶林取代格氏栲天然林后土壤肥力变化的研究[J].东北林业大学学报,1993,21(5):14-21.
    [224] Yang YS,Guo JF,Chen GS,Yin YF,Gao R,Lin CF.Effects of forest conversion on soil labile organic carbon fractions andaggregate stability in subtropical China [J].Plant and Soil,2009,323:153-162.
    [225] Zhang JS,Guo JF,Chen GS,Qian W.Concentrations and seasonal dynamics of dissolved organic carbon in forest floors oftwo plantations(Castanopsis kawakamii and Cunninghamia lanceolata)in subtropical China[J].Journal of Forestry Research,2005,16(3):205-208.
    [226]刘金福,苏松锦,何中声,洪伟,吴彩婷,董金相,黎丽珍.格氏栲天然林土壤有机碳空间分布及其影响因素[J].山地学报,2011c,29(6):641-648.
    [227]杨玉盛,陈光水,林鹏,黄荣珍,陈银秀,何宗明.格氏栲天然林与人工林细根生物量,季节动态及净生产力[J].生态学报,2003,23(9):1719-1730.
    [228]杨玉盛,林鹏,郭剑芬,林瑞余,陈光水,何宗明,谢锦升.格氏栲天然林与人工林凋落物数量,养分归还及凋落叶分解[J].生态学报,2003,23(7):1278-1289.
    [229]杨玉盛,刘艳丽,陈光水,李灵,谢锦升,林鹏.格氏栲天然林与人工林土壤非保护性有机C含量及分配[J].生态学报,2004,24(1):1-8.
    [230]郭剑芬,林鹏,杨玉盛.格氏栲天然林与人工林枯枝落叶层能量现存量[J].福建林学院学报,2006,26(1):41-44.
    [231]郭剑芬,杨玉盛,陈光水,杨智杰.格氏栲天然林与人工林枯枝落叶层和粗木质残体有机化学组成研究[J].亚热带资源与环境学报,2008,3(3):40-45.
    [232] Zhang QS,Liang YW.Effects of gap size on nutrient release from plant litter decomposition in a natural forestecosystem[J].Canadian Journal of Forest Research,1995,25(10):1627-1638.
    [233]连玉武,朱小龙,李利峰.三明小湖赤枝栲林地部分矿质元素及土壤理化性质研究[J].福建林业科技,2002,29(3):10-13.
    [234]刘金福,洪伟.不同起源格氏栲林地的土壤分形特征研究[J].山地学报,2001,19(6):565-570.
    [235]李家和,李金锋.不同起源格氏栲林分下土壤微生物生态分布的初步研究[J].亚热带植物通讯,1991,20(1):18-23.
    [236]范繁荣,阙德海,龚素莲.格氏栲自然保护区土壤种子库的初步研究[J].林业科技,1998,23(1):12-13,16.
    [237]张其水,李家和,陈雪娇.天然赤枝栲林下几种植物的生理生态特性研究[J].福建林学院学报,1991,11(1):98-104.
    [238]连玉武,苏祖荣.赤枝栲的蒸腾特性与生态因子相关性[J].厦门大学学报(自然科学版),1997,36(5):781-786.
    [239]黄菊胜.吊皮锥育苗技术[J].广东林业科技,2009,25(4):91-92.
    [240]连玉武,张其水.福建小湖赤枝栲苗期生物产量的研究[J].厦门大学学报(自然科学版),1993,32(5):664-667.
    [241]陈勇.格氏栲等3种珍贵用材树种栽培模式研究[J].江西林业科技,2006(3):6-9.
    [242]黄云鹏.杉木格氏栲混交林试验研究[J].江西林业科技,2005(5):9-10.
    [243]廖涵宗,邸道生,张春能.青钩栲人工林生态系统生产力的研究[J].林业科学,1992,28(5):439-443.
    [244]蔡秋锦.格氏栲苗褐斑病的研究[J].林业科技通讯,1984(2):28-29.
    [245]蔡秋锦.格氏栲新病害的初步研究[J].热带林业科技,1984(3):31-35.
    [246]吴大荣,丁莉萍,李家和.三明格氏栲自然保护区野生观赏植物资源[J].林业科技开发,1992(4):14-16.
    [247]陈国瑞,黄金荣,叶卢宗.福建省三明格氏栲自然保护区森林旅游[J].华东森林经理,1998,12(3):68-71.
    [248]陈国瑞,陈永芳,卓秋萍.三明格氏栲自然保护区森林生态旅游评价探讨[J].林业勘察设计,2000(1):24-26.
    [249]黄金荣.格氏栲自然保护区建设森林公园总体布局研究[J].林业勘察设计,1999(1):87-91.
    [250]刘金福,洪伟.福建三明格氏栲自然保护区评价[J].吉林林学院学报,1999,15(2):70-73.
    [251]王兆杰,刘金福,洪伟,洪伟,阮训清,李英豪.格氏栲自然保护区景观格局分析及破碎化评价[J].福建林学院学报,2007,27(1):30-34.
    [252]台湾植物志编辑委员会.台湾植物志:第2卷[M].台北:现代关系出版社,1976.
    [253]刘金福.格氏栲(C.kawakamii Hayata)种群结构与动态规律研究[D].北京:北京林业大学博士学位论文,2004.
    [254]朱守林,李文彬,华丽,戚春华.森林环境近地表自然风的动态特性[J].北京林业大学学报,2004,26(6):90-93.
    [255]国家林业局.森林土壤分析方法[M].北京:中国林业出版社,1999.
    [256] Muscolo A,Sidari M,Mercurio M.Influence of gap size on organic matter decomposition,microbial biomass and nutrientcycle in Calabrian pine (Pinus laricio,Poiret) stands[J].Forest Ecology and Management,2007,242(2-3):412-418.
    [257]常宗强,冯起,吴雨霞,苏永红.祁连山亚高山灌丛林土壤呼吸速率的时空变化及其影响分析[J].冰川冻土,2005,27(5):666-672.
    [258]周存宇,周国逸,张德强,王迎红,刘世忠.鼎湖山森林地表CO2通量及其影响因子的研究[J].中国科学·D辑,2004,34(supp l.Ⅱ):175-182.
    [259]王淼,姬兰柱,李秋荣,刘延秋.土壤温度和水分对长白山不同森林类型土壤呼吸的影响[J].应用生态学报,2003,14(8):1234-1238.
    [260] Sjêgersten S,Wookey P A.Climatic and resource quality controls on soil respiration across a forest tundra ecotone in SwedishLap land[J].Soil Biology and Biochemistry,2002,34:1633-1646.
    [261] Canham CD.Different responses to gaps among shade tolerant tree species[J].Ecology,1989,70(3):548-550.
    [262] Sefidi K,Mohadjer M R,Mosandl R,Copenheaver C A.Canopy gaps and regeneration in old-growth Oriental beech (Fagusorientalis Lipsky) stands,northern Iran [J].Forest Ecology and Management,2011,262(6):1094-1099.
    [263] Wang G L,Liu F.The influence of gap creation on the regeneration of Pinus tabuliformis planted forest and its role in thenear-natural cultivation strategy for planted forest management [J].Forest Ecology and Management,2011,262(3):413-423.
    [264] Munoz A A,Gonzalez M E.Tree regeneration patterns in canopy gaps after a decade of Chusquea quila (Poaceae) diebackin an old-growth remnant forest in the lake district of south-central Chile [J].Revista Chilena de Historia Natural,2009,82(2):185-198.
    [265] Didion M,Kupferschmid A D,Lexer M J,Rammer W,Seidl R,Bugmann H.Potentials and limitations of using large-scaleforest inventory data for evaluating forest succession models [J].Ecological Modelling,2009,220(2):133-147.
    [266] Kitaoka S,Watanabe M,Watanabe Y,Kayama M,Nomura M,Sasa K.Growth of regenerated tree seedlings associated withmicroclimatic change in a mature larch plantation after harvesting [J].Landscape and Ecological Engineering,2009,5(2):137-145.
    [267] Swift K,Ran SK.Successional responses to natural disturbance,forest management and climate change in British Columbiaforests [J].BC Journal of Ecosystems and Management,2012,13(1):1-23.
    [268] Godron M.Some aspects of heterogeneity in grasslands of Cantal [J].Statistical Ecology,1972,3:397-415.
    [269]郑元润.森林群落稳定性研究方法初探[J].林业科学,2000,36(5):28-32.
    [270]张立敏,陈斌,李正跃.应用中性理论分析局域群落中的物质多样性及稳定性[J].生态学报,2010,30(6):1556-1563.
    [271] Tilman D.Causes,consequences and ethics of biodiversity [J].Nature,2000,405:208-211.
    [272]张继义,赵哈林.植被(植物群落)稳定性研究评述[J].生态学杂志,2003,22(4):42-48.
    [273]唐诚,刘彤,刘学录,刘超.古尔班通古特沙漠西南缘梭梭群落多样性和稳定性研究[J].干旱区资源与环境,2010,24(8):148-153.
    [274] Grubb P J.The maintenance of species richness in plant communities:importance of the regeneration niche [J].BiologicalReview,1977,52:107-145.
    [275] Philips DL,Shure D.Patch-size effects on early succession in southern Appalachian forests [J].Ecology,1990,71:204-212.
    [276] Pearson TRH,Burslem DF,Goeriz RE,Dalling JW.Regeneration niche partitioning in neotropical pioneers:effects of gapsize,seasonal drought and herbivory on growth and survival[J].Oecologia,2003,137(3):456-465.
    [277]臧润国,蒋有绪,杨彦.海南岛霸王岭热带山地雨林林隙更新生态位的研究[J].林业科学研究,2001,14(1):17-22.
    [278]龙翠玲.茂兰喀斯特森林林隙更新生态位的研究[J].山地农业生物学报,2006,25(4):302-306.
    [279]闫淑君,洪伟,吴承祯,毕晓丽,范海兰,陈睿.万木林中亚热带常绿阔叶林林隙主要树种的高度生态位[J].应用与环境生物学报,2002,8(6):578-582.
    [280]李永兵,王辉,付菁.子午岭辽东栎林林窗主要树种更新生态位[J].生态学杂志,2008,27(12):2062-2066.
    [281]王莹莹,左金淼,刘家冈.以态势理论为基础的更新生态位测度研究[J].林业科学,2005,41(4):20-24.
    [282]尹华军,程新颖,赖挺,林波,刘庆.川西亚高山65年人工云杉林种子雨、种子库和幼苗定居研究[J].植物生态学报,2011,35(1):35-44.
    [283] Du X J,Guo Q F,Gao X M,Ma KP.Seed rain soil seed bank seed loss and regeneration of Castanopsis fargesii (Fagaceae)in a subtropical evergreen broad-leaved forest [J].Forest Ecology and Management,2007,238(1-3):212-219.
    [284] Du YJ,Mi XC,Ma KP.Comparison of seed rain and seed limitation between community understory and gaps in a subtropicalevergreen forest [J/OL].Acta Oecologica,2011,doi:10.1016/j.actao.2011.06.001.
    [285]肖治术,张知彬,王玉山.啮齿动物鉴别虫蛀种子的能力及其对坚果植物更新的潜在影响[J].兽类学报,2003,23(4):312-320.
    [286]苏文华,张光飞.昆明西山滇青冈林内滇青冈种子库动态的研究[J].云南植物研究,2002,24(3):289-294.
    [287]费世民,彭镇华,杨冬生,周金星,何亚平,王鹏,陈秀明,蒋俊明.川西南山地高山栲种群种子雨和地表种子库研究[J].林业科学,2006,42(2):49-55.
    [288]刘彤,周志强.蒙古栎种群种子雨与地表种子库[J].东北林业大学学报,2007,35(5):22-23.
    [289]黄雍容,马祥庆,庄凯,刘明新,黄丹丹.福建闽清福建青冈天然林种子雨和种子库[J].热带亚热带植物学报,2010,18(1):68-74.
    [290] Nonogaki H,Bassel GW,Bewley JD.Germination-still a mystery[J].Plant Science,2010,179:574-581.
    [291]黄先忠,蒋才富,廖立力.赤霉素作用机理的分子基础与调控模式研究进展[J].植物学通报,2006,23(5):499-510.
    [292] Easton L C,Kleindorfer S.Interaction effects of seed mass and temperature on germination in Australian species of Frankenia(Frankeniaceae)[J].Folia Geobot,2008,43(4):383-396.
    [293] Geissler K, Gzik A. Germination ecology of three endangered river corridor plants in relation to their preferredoccurrence[J].Flora,2010,205(9):590-598.
    [294]文彬,何惠英,王如玲,等.濒危植物多毛坡垒种子萌发的生理生态特性[J].云南植物研究,2009,31(1):42-48.
    [295]卢杰,郑维列,张建新.温度对长鞭红景天种子发芽的影响[J].西北林学院学报,2010,25(3):101-106.
    [296] Hu X W,Wang Y R,Wu Y P.Effects of the pericarp on imbibition,seed germination,and seedling establishment in seedsof Hedysarum scoparium Fisch.et Mey[J].Ecological Research,2009,24(3):559-564.
    [297]陈发菊,梁宏伟,王旭,何正权,李凤兰.濒危植物巴东木莲种子休眠与萌发特性的研究[J].生物多样性,2007,15(5):492-499.
    [298] Susko D J,Lesely L D.Patterns of seed mass variation and their effects on seedlings traits in Alliaria petiolata(Brassicaceae)[J].American Journal of Botany,2000,88(3):429-437.
    [299] Pérez-Ramos I M,Gómez-Aparicio L,Villar R,García L,Mara ón T.Seedling growth and morphology of three oak speciesalong field resource gradients and seed mass variation:a seedling age-dependent response[J].Journal of Vegetable Science,2011,21(3):419-437.
    [300] Maraghni M,Gorai M,Neffati M.Seed germination at different temperatures and water stress levels,and seedling emergencefrom different depths of Ziziphus lotus[J].South African Journal of Botany,2010,76(3):453-459.
    [301] Kumar B,Verma S K,Singh H P.Effect of temperature on seed germination parameters in Kalmegh(Andrographis paniculataWall.ex Nees.)[J].Industrial Crops and Products,2011,34(1):1241-1244.
    [302] Toh S,Imamura A,Watanabe A,Nakabayashi K,Okamoto M,Jikumaru Y,Hanada A,Aso Y,Ishiyama K,Tamura N,Iuchi S,Kobayashi M,Yamaguchi S,KamiyaY,Nambara E,Kawakami N.High temperature-induced abscisic acidbiosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds[J].Plant Physiology,2008,146:1368-1385.
    [303]付婷婷,程红焱,宋松泉.种子休眠的研究进展[J].植物学报,2009,44(5):629-641.
    [304] Fenkelstein R,Reeves W,Ariizumi T,Steber C.Molecular aspects of seed dormancy[J].Annual Review of Plant Biology,2008,59:387-415.
    [305]郭晔红,蔺海明.赤霉素和细胞激动素对白刺种子萌发的调控研究[J].中国生态农业学报,2009,17(6):1196-1199.
    [306]吴震,王广东,翁忙玲.山葵(Wasabi japonica)种子发芽特性的研究[J].园艺学报,2003,30(3):287-290.
    [307]王伟青,程红焱.拟南芥突变体种子休眠与萌发的研究进展[J].植物学通报,2006,23(6):625-633.
    [308]李博,陈家宽,Watkinson AR.植物竞争研究进展[J].植物学通报,1998,15(4):18-29.
    [309] Lewis SL,Tanner Evj.Effects of above and below ground competition on growth and survival of rain forest treeseedlings[J].Ecology,2000,81:2525-2538.
    [310] Poorter L.Resource capture and use by tropical forest tree seedlings and their consequences for competition//Burslem DFRP,Pinard MA,Hartley SE.Biotic Interactions in the Tropics:Their Role in the Maintenance of Species Diversity[M].Cambridge:Cambridge University Press,2005
    [311]段仁燕,王孝安.太白红杉种群邻体范围与邻体竞争强度的研究[J].西北植物学报,2004,24(12):2335-2340.
    [312]韩路,王海珍,周正立,李志军.塔里木荒漠优势植物——胡杨种内、种间竞争研究[J].西北植物学报,2006,26(12):2547-2552.
    [313] Hegyi F.A simulation model for managing jack-pine stands//Fries,G.(Ed.) Growth Models for Tree and StandSimulation[A].Royal College of Forestry,Stockholm,Sweden,1974,74-90.
    [314]张卫中,尹光志,唐建新,康钦容.指数平滑技术在重庆市煤炭需求预测中的应用[J].重庆大学学报(自然科学版),2006,29(1):110-111,116
    [315] Cs rg M,Horváth L.Limit Theorems in Change-Point Analysis.New York:Wiley Series in Probability and Statistics,1997.
    [316] Goldblum D.The effects of treefall gaps on understory vegetation in New York State.Journal of Vegetable Science,1997,8(1):125-132.
    [317] Harper J L.Population Biology of Plants[M].London:Academic Press,1982:432-460.
    [318] Weiner J E,Kenned Y C.Growth and variability incrowded and uncrowded populations of dwarf marigolds (Tagetes patula)[J].Annals of Botany,1990,65:513-524.
    [319]张跃西.邻体干扰模型的改进及其在营林中的应用[J].植物生态学报,1993,17(4):352-357.
    [320]邹春静,徐文铎.沙地云杉种内、种间竞争的研究[J].植物生态学报,1998,22(3):269-274.
    [321]向言词,彭少麟,蔡锡安,任海,周厚诚.林窗中植物竞争强度随林窗发育的变化[J].植物生态学报,2003,27(1):99-102
    [322]唐毅,蒋德明,陈卓,押田敏雄.地上竞争与地下竞争对科尔沁沙地榆树幼苗生长的影响[J].应用生态学报,2011,22(8):1955-1960
    [323]向言词,彭少麟,彭秀花,蔡锡安,饶兴权.植物竞争对3种移植树苗生长的影响[J].植物生态学报,2005,29(5):724-729.
    [324] Latham P E.Co-occurring tree species change rank in seedling performance with resource varied experimentally [J].Ecology,1992,73:2119-2144.
    [325]程武学,潘开志,杨存建.叶面积指数(LAI)测定方法研究进展[J].四川林业科技,2010,31(3):51-54,78.
    [326] Romme P,Melkozernov A,Jordan P,Krauss N.Structure andfunction of photosystemI:Interactionwithits soluble electroncarriers and external antenna systems [J].FEBS Letters,2003,555(1):40-44.
    [327]王平荣,张帆涛,高家旭,孙小秋,邓晓建.高等植物叶绿素生物合成的研究进展[J].西北植物学报,2009,29(3):629-636.
    [328]苏云松,郭华春,陈伊里.马铃薯叶片SPAD值与叶绿素含量及产量的相关性研究[J].西南农业学报,2007,20(4):690-693.
    [329]胡昊,白由路,杨俐苹,卢艳丽,王磊,王贺,王志勇.基于SPAD-502与GreenSeeker的冬小麦氮营养诊断研究[J].中国生态农业学报,2010,18(4):748-752.
    [330]李刚华,丁艳锋,薛利红,王绍华.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展[J].植物营养与肥料学报,2005,11(3):412-416.
    [331]柯娴氡,贺立静,苏志尧.南方4种木本植物相对叶绿素指标及其分布[J].中南林业科技大学学报,2010,30(8):82-86.
    [332]于贵瑞,王秋凤.植物光合、蒸腾与水分利用的生理生态学[M].北京:中国科学出版社,2010.
    [333]许大全.光合作用效率[M].上海:上海科学技术出版社,2002:86-95.
    [334]许大全,丁勇,武海.田间小麦光合效率日变化与光合“午睡”的关系[J].植物生理学报,1992(3):279-284.
    [335] Manabe S,Tang W,Fu L.Scale effects of increased atmospheric CO2on the ocea-atmosphere system [J].Nature,1993,364:215-218.
    [336]侯智勇,洪伟,李键,林晗,范海兰,陈灿,吴承祯.不同桉树无性系光响应曲线研究[J].福建林学院学报,2009,29(2):114-119.
    [337] Thornley JHM.Mathematical models in plant physiology[M].London,Academic Press,1976,86-110.
    [338]叶子飘,于强,光合作用光响应模型的比较[J].植物生态学报,2008,32(6):1356-1361.
    [339]叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):727-740.
    [340]陈辉.福建三明33a生格氏栲人工林生长与生物量[J].亚热带资源与环境学报,2009,4(3):22-25.
    [341]田雪琴,谭家得,陆耀东,张学平,赵鸿杰.6种阔叶树幼苗养分分布格局[J].广东林业科技,2010,26(3)::23-28.
    [342]李俊清,李景文,崔国发.保护生物学[M].北京:中国林业出版社,2002.
    [343]邓祖新.数据分析方法和SAS系统[M].上海:上海财经大学出版社,2006.
    [344]黄宝荣,欧阳志云,张慧智,郑华,徐卫华,王效科.中国省级行政区生态环境可持续性评价[J].生态学报,2008,28(1):327-337.
    [345] Pawlak Z.Rough sets [J].International journal of computer and Information Science,1982,11(5):341-356.
    [346] Pawlak Z.Rough classification[J].International Journal of Man-Machine Studies,1984,20(5):469-483.
    [347] Polkowski L,Skowron A. Rough sets in knowledge discovery1: methodology and applications[M]. Heidelberg:Physica-Verlag,1998.
    [348]徐明德,宁志红,南洋.基于粗糙集和突变级数法的生态经济区划[J].绿色科技,2011(4):11-15.
    [349]徐道炜,刘金福,洪伟.基于突变级数法的福建省自然保护区与森林公园生态服务功能综合评价[J].福建农林大学学报(自然科学版),2011,40(3):276-279.
    [350]李艳,陈晓宏,张鹏飞.突变级数法在区域生态系统健康评价中的应用[J].中国人口资源与环境,2007,17(3):50-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700