沙质海岸带防护林的恢复生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木麻黄(Casuarina equisetifolia)是我国滨海沙地的重要防护树种,在缓解沿海地区生态环境恶化,弥补海岸带生态脆弱性,抵御自然灾害方面发挥了重要的作用。但由于长期的纯林经营和严重的人为干扰,林带破碎、土壤养分失调和病虫害频发等问题逐渐出现,严重影响了防护林的稳定性,构建近自然的沿海防护林体系可使群落保持较高的物种多样性与稳定性,使种间关系更和谐,结构更健康,有助于沿海防护林的可持续经营。因此,本研究以东山岛沙质海岸带4种不同干扰方式(A:天然林,B:择伐天然林补植木麻黄,C:皆伐天然林种植木麻黄后实施保护,D:皆伐天然林种植木麻黄后对林下植被频繁干扰)影响下的植物群落为实验材料,系统研究了不同干扰方式对各群落物种组成、关键植物资源的种群动态、群落物种多样性和主要种群的生态位以及土壤理化性质的影响,揭示了各植物种群对不同干扰方式的响应和滨海沙地特定环境中植被的自然演替规律,为海岸带防护林的近自然恢复提供了基础资料,研究结果表明:
     1.随着干扰强度和频率的增大,群落的科、属、种数均表现出先升高后下降的趋势,说明适度干扰可增加物种多样性,支持中度干扰假说。不同干扰方式使植物群落处于不同的自然恢复演替阶段,群落受干扰强度越大,距离演替顶级就越远。随着时间的进行,植物群落在恢复演替上向着科、属、种组成更为丰富、复杂的方向发展;不同干扰方式下各林分的植物组成和重要值差别较大,天然次生林的乔木层和灌木层中,乡土植物潺槁木姜子(Litsea glutinosa)均是第一优势种,重要值分别为98和137,群落结构稳定;择伐干扰群落中,潺槁木姜子变为乔木层第三优势种,重要值为33,灌木层中仍为第一优势种,重要值为128;皆伐干扰后实施保护的群落,乔木层已无潺槁木姜子的分布,但灌木层中仍为第一优势种,重要值为64.12;皆伐干扰后频繁干扰的群落物种组成简单,各层次发育均较差;在植被的天然演替中,潺槁木姜子表现出较强的自然恢复能力,是对防护林进行近自然恢复的关键植物资源。
     2.不同干扰方式群落中潺槁木姜子种群的年龄结构均呈明显的反J型分布;样地A中潺槁木姜子种群各龄级间的个体数量变化动态指数V_1—V_6皆>0,V_7= V_8=0,整个种群年龄结构的数量变化动态指数V_(pi)=73.78%,考虑到种群的外部干扰时V_(pi)=8.18%>0;样地B中潺槁木姜子种群各龄级间的个体数量变化动态指数V_1—V_5皆>0,V_6= V_7=0,整个种群年龄结构的数量变化动态指数Vpi=86.93%,考虑到种群的外部干扰时V_(pi)=10.87%>0;样地C中潺槁木姜子种群各龄级间的个体数量变化动态指数V_1—V_2皆>0,V3=0,说明潺槁木姜子种群具有前期增长、后期稳定的特点,种群长远来看表现出增长与稳定的趋势。
     样地A中潺槁木姜子种群存活曲线拟合模型(N_X=N0e-0.7994x,R=0.952、N_X=N0x-3.3025,R=0.945),属于DeeveyⅡ型,样地B中潺槁木姜子种群存活曲线拟合模型(N_X=N0e-0.851x,R=0.8812、N_X=N0x-3.1489,R=0.9854)和样地C中潺槁木姜子种群存活曲线拟合模型(N_X=N0e-1.798x,R=0.8995、N_X=N0x-3.9257,R=0.9295)属于DeeveyⅢ型;4种生存分析函数曲线都表明,潺槁木姜子种群具有前期增长、后期稳定的特点,与种群生命表的存活曲线、死亡率曲线和致死力曲线分析结果相一致。
     3.随着干扰强度和频率的增大,乔木层物种多样性和均匀度随着干扰强度和频率的增大逐渐降低,优势度逐渐上升,样地B的林下物种多样性都不同程度的高于样地A,说明择伐干扰增加了林分的物种多样性;样地C的灌木层和草本层物种多样性最高,说明皆伐干扰虽使乔木层物种多样性大大降低,但实施保护之后,灌木层和草本层的物种多样性逐步得到恢复,群落处于进展演替当中,另一方面也说干扰后自然恢复的初期,物种间的资源利用性竞争相对缓和,较多物种可在群落内共存;皆伐后持续干扰的群落各层次物种多样性均较低,人工种植的木麻黄成为群落的优势种,控制着群落的性质和结构,群落各方面指标与天然植被相差较远。
     4.随着人为干扰强度和频率的增大,群落间物种更替的速率逐渐升高,β多样性指数(CJ和Cs)越来越小,指数值均在50%以下,即随着干扰强度和频率的增大,植被的天然性程度越来越低,距离初始植被原来越远;βWS、βC、βR指数测度结果随着人为干扰强度和频率的增大,B级和C级群落间相异性指数(βWS、βC、βR)最大,说明皆伐干扰使群落物种更替速率最大,群落相似性最低;CN和CMH指数总体变化规律与βWS、βC、βR指数相反,随着人为干扰强度和频率的增大,其值变化规律是先减小后增大,人工纯林间物种组成和个体数最相似,其值最大。
     5.根据不同干扰方式各群落中的种群生态位特征,可将所有种群划分为生态位扩展型、衰退型、敏感型和稳定型4个类型;天然林中的演替优势种在木麻黄林的灌木种群中已有较大数量的分布,且具有较大的生态位宽度值,但由于人工林生态位分化不良,种间竞争相对激烈,群落组成不稳定;天然林中大部分乡土树种生态位宽度较之在木麻黄林中大为增加,但除敏感型种群和潺槁木姜子、雀梅藤以外,天然林中其他种群的生态位重叠值较之在木麻黄林中有所降低,说明经过长期的协同进化,天然林种间生态位分化程度高,竞争相对缓和。总体来看,以乡土树种为优势种的天然林比人工林生态位配置更优化,对维持群落的稳定更有意义,其群落结构可为沿海防护林的近自然恢复提供参考资料。
     6.对不同干扰方式下各群落土壤理化性质测定结果表明:天然次生林的土壤容重较低,孔隙度较高,有利于降水的下渗从而降低降水的径流系数,以减少土壤的侵蚀量,具有较强的水土保持能力,随着干扰强度和频率的增大,土壤的水土保持功能呈现逐渐下降的趋势,人工纯林的土壤孔隙度较低,不利于降水下渗,地表径流大,水土保持能力相对较低。天然林的PH值高于木麻黄林,除全氮外各种养分含量也不同程度的高于木麻黄林,因此,实现沿海防护林的近自然经营,对缓解纯林经营养分不足的缺陷,实现养分平衡,改善立地条件等有一定的启发意义。
Casuarina equisetifolia was the important protective tree on sandy coast in China, played an important role in remedying the environmental deterioration, the ecological vulnerability and resisting the natural disaster of coastal areas. Because of the long-term suffering of pure forest management and serious human disturbance, frequent problems such as woodland crushing, soil nutrient disordering, diseases and pests of forest gradually appeared. The stability of protection forest was affected seriously. Constructing an near-nature coastal protection forest system can keep higher species diversity, community stability and more harmonious relationship between species, which was helpful in building the stable and efficient coastal protection forest system. Therefore, this paper took 4 communities (A: secondary forest, B: planting Casuarina after selective cutting the secondary forest, C: planting Casuarina after clear cutting the secondary forest then protect to now, D: planting Casuarina after clear cutting the secondary forest then disturb the undergrowth frequently)under different patterns of disturbance as material, studied the species composition and diversity of each community, the population dynamics of keystone plants and the main population niche, revealed the response of plants to different patterns of disturbance and the natural succession law of vegetation in coastal sandy environment, provided basic materials for building a neat-nature coastal protection forest system, the results showed that:
     1. The number of family and genera in community increased at first and then downward with the increase of intensity and frequency of disturbance, which means moderate disturbance can increase diversity, supporting intermediate disturbance hypothesis. Different ways of disturbance made communities in different stages of natural recovery, which means the succession will further from climax if the intensity of disturbance was greater. With time passed, the recovery towards a direction that the compose of families and genera in community become more abundant and complex. The species composition and importance value in each community were different under different patterns of disturbance, Litsea glutinosa was the first dominant specie in both tree layer and shrub layer of natural secondary forest, the importance value were 98 and 137, the community structure was stable. In selective cutting forest, Litsea glutinosa became the third dominant specie in tree layer which the importance value was 33 but still kept the first dominant position in shrub layer which the importance value was 128. However, the dominant position of Litsea glutinosa gradually decreased in clear cutting forest. There was no Litsea glutinosa existed in tree layer. The community structure was simple and the stability was weak. Litsea glutinosa represented strong ability of natural recovery in succession, which can be taken as the keystone species in the near-nature construction of protection forest
     2. The age structure of Litsea glutinosa under different patterns of disturbance appeared to be inversed J shape. Quantitative analysis showed that: the V_1—V_6 of Litsea glutinosa in sample A were all > 0, V_7 = V8 = 0, the whole dynamic index of quantity change of age structure V_(pi) = 73.78%, when considering external disturbance V_(pi) = 8.18%> 0; the V_1—V_5 of Litsea glutinosa in sample B were all > 0, V_6= V_7=0, the whole dynamic index of quantity change of age structure V_(pi)=86.93%, when considering external disturbance V_(pi)=10.87%>0; the V1—V2 of Litsea glutinosa in sample C were all > 0, V3=0, which indicated the population increased at the early stage, but kept stable at the late stage, the population showed a growth and stable trend.
     The survival curve of Litsea glutinosa in sample A(N_X=N0e-0.7994x,R=0.952、N_X=N0x-3.3025,R=0.945)belonged DeeveyⅡ, The survival curve of Litsea glutinosa in sample B(N_X=N0e-0.851x,R=0.8812、N_X=N0x-3.1489,R=0.9854)and sample C(N_X=N0e-1.798x,R=0.8995、N_X=N0x-3.9257,R=0.9295)belonged DeeveyⅢ, 4 functions all indicated the population increased at the early stage, but kept stable at the late stage, agreed the analysis of survival curve, date rate and lose rate in life table.
     3. With the increase of intensity and frequency of disturbance, the species diversity and evenness in tree layer gradually reduced, and the dominance rise gradually, the diversity of understorey in sample B were higher than sample A, which means selective cutting can increase the species diversity, the diversity of shrub and herb layer were highest in sample C, which means diversity was greatly reduced because of clear cutting in tree layer, but gradually recovered in shrub and herb layer when after protection, succession of community was in progress, it also said that, in the initial period of natural recovery after disturbance, the competition of resource utilize was more relax, more species can coexist in community. Species diversity in every layers were all low in sample D, Casuarina was the dominant species, controls properties and structure of community, the community was more different with natural vegetation.
     4. With the increase of intensity and frequency of disturbance, the speed of species replacement among communities had an increasing trend from low to high, the changes in species were greater and the common species decreased.βdiversity(CJ and Cs)trend from high to low, values were all bellow 50%. The natural degree of vegetation trend from high to low with the increase of intensity and frequency of disturbance, and became further from the initial vegetation.βdiversity(βWS、βC、βR)showed that the dissimilarly value between sample B and sample C was larger than others, which means the speed of species replacement among communities was largest under clear cutting disturbance, CN and CMH value downward at first and then increased with the increase of intensity and frequency of disturbance, the species composition and individual number in pure forest were most similar, the value was largest.
     5. According to the dynamics of niche breadth of each population, the main populations could be divided into 4 groups,niche invasive population,niche declining population,niche stable population and niche sensitive population;The dominant species of nature forest were wide distributing in shrub layer of Casuarina equisetifolia forest,and with wide niche breadth,but the niche differentiation of population were not sound,intersprcific competitions were severe,and community structure was not stable;Niche breadth of most native population in nature forest were wider than that of Casuarina equisetifolia forest,but the niche overlap of most population were lower except Litsea glutinosa,Sageretia thea and some niche sensitive population,which indicated that the niche differentiation of nature forest was greater,and the competitions among populations were not strong;On the whole,niche disposition in nature forest which composed by native species was more rational than that in Casuarina equisetifolia forest,and this was more meaningful on maintain the stability of community,so there was some reference value on the construction of stable coastal protection forest system if we can realize the rational disposition of native species and Casuarina equisetifolia.
     6. The density of soil in secondary forest was lower than other communities, but the porosity was higher, which was significant for the infiltration of rainfall and the reduce of surface water runoff,that can reduce the soil erosion with strong ability of soil and water conservation. With the increase of the intensity and frequency of disturbance, the function of water and soil conservation of community declined gradually, the porosity of soil in pure forest was lowest, and lacking in the function of water and soil conservation. PH value in secondary forest in higher than other communities, the nutrient was also higher except total N, so there was enlightening significance in reliving nutrient shortage, realizing nutrient balance and improving the site condition if we construct an near-nature coastal protection forest system.
引文
[1]赵凌泉,肖立国,王立刚,等.防护林科学研究动态及发展趋势[J].防护林科技,2000(4):85-87
    [2]黄义雄,郑达贤,方祖光,等.福建滨海木麻黄防护林带的生态经济效益研究[J].林业科学,2003,39(1):31-36
    [3]曾焕生.福建沿海地区木麻黄迹地更新问题研究[J].防护林科技,2001(3):34-36
    [4]吴清泉.东山县生态环境保护与可持续发展[J].福建地理,2002,17(2):45-47
    [5]林銮勇.福建省沿海防护林建设与保护问题的探讨[J].林业勘察设计,2006(2):171-173
    [6]许新桥.近自然林业理论概述[J].世界林业研究,2006,19(1):10-13
    [7]吴锡麟,叶功富.滨海沙地木麻黄人工林土壤水分动态及有效性[J].海峡科学,2008(10):46-50
    [8]吴锡麟,叶功富.海岸沙地木麻黄人工林土壤水分动态及其有效性[J].海峡科学,2008(10):46-50
    [9]吴锡麟,许冰峰,叶功富,等.木麻黄苗期水肥交互效应模型及边际生物量的研究[J].江西农业大学学报,2005,27(3):335-339
    [10]吴锡麟,叶功富,李保福,等.木麻黄苗期生物量的水肥耦合效应[J].中南林学院学报,2005,25(1):21-25
    [11]徐燕千等,木麻黄栽培[M].北京:中国林业出版社,1984
    [12]Yadan N S P.Soil limitations for successful establishment and growth of Casuarina plantation[J].In Casuarina ecology,management and utilization CSIRO,1981:138-157
    [13]Gupta S K.Energy structure of standing crop in certain grasslands at Gyanpur[J].Tropical Ecology,1972,13:147-155
    [14]Falcelli M,Pickett S T A.Plant litter:its dynamics and effects on plant community structure [J].The Botanical Review,1991.57(1):1-32
    [15]Steinke T D,Ward C J.Litter production by mangroves. II. St Lucia and Richards Bay [J].South African Forest of Botany,1988,54( 5) :445- 454
    [16]Silva C A R,Lacerda L D,Rezende C E.Metals reservior in a red mangrove forest[J].Biotropica,1990,22( 4):339- 345
    [17]Srivastava A K.Biomass and energy production in Casuarina equisetifolia plantation stands in the degraded dry tropics of the Vindhyan plateau,India[J].Biomass and Bioenergy,1995,9(6):465-471
    [18]Rajendran K,Devaraj P.Biomass and nutrient distribution and their return of Casuarina equisetifolia inoculated with biofertilizers in farm land[J].Biomass and Bioenergy,2004,26(3):235-249
    [19]昝启杰,王伯荪,王勇军.深圳福田无瓣海桑一海桑林能量的研究[J].应用生态学报,2003,14(2):170-174
    [20]林益明,郭启荣,叶功富,等.福建东山几种木麻黄的物质和能力特征[J].生态学报,2004,24(10):2217-2224
    [21]张清海,叶功富,林益明.海岸沙地木麻黄人工林凋落物归还量及其热值动态研究[J].林业科学研究,2006,19(5):600-605
    [22]张清海,叶功富,林益明.海岸退化沙地木麻黄人工林能量的研究[J].林业科学,2006,42(8):1-8
    [23]许涵,李意德,骆土寿,等.达维台风对海南尖峰岭热带山地雨林群落的影响[J].植物生态学报,2008,32(6)1323-1334
    [24]周光益,吴仲民.台风和强热带风暴对尖峰岭热带山地雨林生态系统的水文影响研究[J].生态学报,1996,16(5):555-558
    [25]仝川,杨玉盛.飓风和台风对沿海地区森林生态系统的影响[J].生态学报,2007,27(12):5337-5344
    [26]Foster D R,Boose E R.Patterns of forest damage resulting from catastrophic wind in central New England,USA[J].Journal of Ecology,1992,80:79- 98.
    [27]Brokaw N V , Walker L , Lawrence R . Summary of the effects of Caribbean hurricanes on vegetation[J].Biotropica,1991,23(4a):442-4 7.
    [28]Foster D R.Species and stand response to catastrophic wind in central New England,USA[J].Journal of Ecology,1998,76(1):135-151.
    [29]张纪林,康立新.日本海岸林环境机能的研究进展[J].世界林业研究,1996(1):43-46
    [30]胡海波,康立新.国外沿海防护林生态及其效益研究进展[J].世界林业研究,1998(2):18-24
    [31]吴志华,李天会,张华林,等.沿海防护林树种木麻黄和相思生长和抗风性状比较研究[J].草业学报,2010,19(4):166-175
    [32]王小云,叶功富,卢昌义,等.不同生长发育阶段木麻黄农田防护林的防风效应[J].海峡科学,2008(10):87-89
    [33]叶功富,王小云,卢昌义,等.闽南沿海木麻黄基干林带的防风效应[J].海峡科学,2008(10):77-79
    [34]谭芳林,叶功富,张水松,等.木麻黄基干林带小气候效应及梯度变化的研究[J].防护林科技,2000,8(专刊1):108-110
    [35]徐俊森,姚庆端,叶功富,等.木麻黄基干林带多树种混交造林及防风效能研究[J].防护林科技,2000,8(专刊1):111-115
    [36]Mailly D.Margolis H A.Forest floor and mineral soil development in casuarina equisetifolia plantations on the coastal sand dunes of Senegal[J].Forest Ecology and Management,1992,55( 1-4) :9-278
    [37]谭芳林,李志真,叶功富,等.木麻黄连栽对沿海沙地土壤养分含量及酶活性的影响[J].林业科学,2003,39(sp1):32-37
    [38]叶功富,侯杰,张立华,等.不同年龄木麻黄林地根际土壤养分含量和酶活性动态[J].水土保持学报,2006,20(4):86-89
    [39]胡海波,康立新,粱珍海,等.泥质海岸带防护林土壤酶活性与理化性质关系的研究[J].东北林业大学学报,1995,23(5):37-45
    [40]李克让.全球气候变化及其影响的研究进展和未来展望[J].地理学报,1996,51(增刊):1-4
    [41]郭瑞红,叶功富,卢昌义,等.木麻黄与湿地松混交林乔木层的碳储量及其分配[J].海峡科学,2008(10):24-25
    [42]郭瑞红,叶功富,卢昌义,等.木麻黄与湿地松混交林的土壤碳储量动态[J].海峡科学,2008(10):29-31
    [43]S S Xiao,G F Ye,L H Zhang,et al.Soil heterotrophic respiration in Casuarina equisetifolia plantation at different stand ages[J].Journal of forest research,2009,20(4):301-306
    [44]肖胜生,叶功富,董云社.木麻黄沿海防护林土壤呼吸动态及其关键影响因子[J].中国环境科学,2009(5):531-537
    [45]肖胜.SPOT和Landsat ETM +卫星影像结合下的平潭岛防护林资源遥感研究[ J].福州大学学报:自然科学版,2006,34( 5):669- 673
    [46]李伟,崔丽娟,张曼胤,等.遥感技术在红树林湿地研究中的应用述评[J].林业调查规划,2008,33(5):1-6
    [47]刘亚龙,王庆,毕景芝.基于Mann-Kendall方法的胶东半岛海岸带归一化植被指数趋势分析[J].海洋学报,2010,32(3):79-87
    [48]丁晶晶,王磊,季永华,等.江苏省盐城海岸带湿地景观格局变化研究[J].湿地科学,2009,7(3):202-207
    [49]叶功富,谭芳林,罗彩莲,等.泉州湾河口湿地景观格局变化研究[J].湿地科学,2010,8(4):360-365
    [50]林承超,魏守珍,肖海燕.从琅岐岛滨海沙丘朴树群落特征探讨福建沿海防护林更新与改造问题[J].生态学报,1995,15(1):54-60
    [51]游水生,叶功富,徐俊森,等.福建东山岛海岸带潺槁树种群生命表分析[J].广西植物,2009,29(1):96-102
    [52]陆元昌,甘敬.21世纪的森林经理发展动态[J].世界林业研究,2002,15(1):l-11
    [53]Tiefenbacher E.Measuring and controlling the degree of naturalness of forest stands[J].Schweizerische Zeitschrift for Forstwesen,1999,150(7):246- 248
    [54]叶功富,郑仁华,冯泽幸.木麻黄专题文献研究[J].福建林业科技,1994,21(1):57-61.
    [55]贺庆棠,陆鼎煌.我国沿海防护林体系建设的构想[J].世界林业研究,1999,4(4):77-82
    [56]彭少麟.热带亚热带恢复生态学研究与实践[M].科学出版社,2003:21-22
    [57]Connell J H.Diversity in tropical rain forests and coral reefs [J].Science,1978,199:1302-1310
    [58]朱教君,刘世荣.森林干扰生态研究[M].北京:中国林业出版社,2007:8-9
    [59]Paine R T.Foodweb complexity and species diverslty[J].American Naturalist,1966,100:65-75
    [60]Paine R T.A note on trophic complexity and community stability[J].American Naturalist,1969;103:91- 93
    [61]Menge B A.The keystone species concept :variation in in teraction strength in a rocky intertidal habitat[J].Ecological Monograph,1994,64(3):249-286
    [62]Mills L S,M.E.Soule,D.F.Doak.The keystone species concept in ecology and conservation[J].Bio. Science,1993,43(2) :219-224
    [63]张志东,臧润国.海南岛霸王岭热带天然林景观中主要木本植物关键种潜在分布[J].植物生态学报,2007,31(6):1079-1091
    [64]王伯荪,张志权,蓝崇钰,等.南亚热带常绿阔叶林取样技术研究[J].植物生态学与地植物丛刊,1982,6(1):51-60
    [65]游水生,王小明,王海为.中亚热带常绿阔叶林最小面积的确定[J].武汉植物学研究,2002,20(6):438-442
    [66]陈晓德.植物种群与群落结构动态量化分析方法研究[J].生态学报,1999,18(2):214-217
    [67]彭少麟,王伯荪.鼎湖山森林群落植物优势种群生态位重叠的研究[J].热带亚热带森林生态系统研究,1990(6):19-27
    [68]Levins R.Evolution in changing environments: some theoretical exploration[M].New Jersey:Princeton University Press,1968:116-121
    [69]游水生,叶功富,徐俊森,等.福建东山岛海岸带潺槁树种群生命表分析[J].广西植物,2009,27(1):96-102
    [70]李博,杨持,林鹏.生态学[M].北京:高等教育出版社,2000:47-49
    [71]Sapkota I P,Tigabu M,Odén P C.Changes in tree species diversity and dominance across a disturbance gradient in Nepalese Sal (Shorea robusta Gaertn. f.) forests[J].Journal of Forestry Research,2010,21(1):25-32
    [72]高远,慈海鑫,邱振鲁,等.山东蒙山植物多样性及其海拔梯度格局[J].生态学报,2009,29(12):6377-6384
    [73]高贤明,马克平,黄建辉,等.北京东灵山地区植物群落多样性的研究Ⅺ.山地草甸β多样性[J].生态学报,1998,18(1):24-32.
    [74]郝占庆,于德永,吴钢,等.长白山北坡植物群落β多样性分析[J].生态学报,2001,21(12):2018-2022
    [75]钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学出版社,1994:141-165
    [76]李德生,周树军,侯新勇,等.泰山侧柏、麻栎林森林群落的β多样性研究[J].山东农业大学学报,1997,28(3):331-336
    [77]Whittaker R H,Levin S A,Root R B.Niche,habit and ecotope[J].American Naturalist,1973,107:321-338
    [78]李德志,李广祥,孙淑艳.东北东部山区天然次生林群落中主要树木种群生态位的测度与分析[J].吉林林学院学报,1995,11(2):69-74
    [79]Herlbert S H.The measurement of niche overlap and some relatives[J].Ecology,1978,59(1):67-77
    [80]彭少麟,王伯荪.鼎湖山森林群落植物优势种群生态位宽度的研究[J].中山大学学报,1989,28(3):16-24
    [81]王刚.生态位理论若干问题探讨[J].兰州大学学报:自然科学版,1990,26(2):109-113
    [82]王刚,杜国祯.鼢鼠土丘植被演替过程中的种的生态位分析[J].生态学杂志,1990,9(1):1-6
    [83]郝云庆,李旭光,何丙辉.生态恢复过程中华山松林与天然林主要种群的生态位特征比较—以巫溪县红池坝为例[J].应用与环境生物学报,2004,10(5):591-595
    [84]余树全,李翠环.千岛湖水源涵养林优势树种生态位研究[J].北京林业大学学报,2003,25(2):18-23
    [85]刘金福,洪伟.格氏栲群落生态学研究—格氏栲林主要种群生态位的研究[J].生态学报,1999,19(3):347-352
    [86]柳江,洪伟,吴承祯,等.退化红壤区植被恢复过程中灌木层主要种群的生态位特征[J].植物资源与环境学报,2002,11(2):11-16
    [87]Collins S L,Glenn S M,Gibson D J.Experimental analysis of intermediate disturbance and initial floristic composition: decoupling cause and effect[J].Ecology,1995,76(2),486-492
    [88]Mackey R L,Currie D J.The diversity-disturbance relationship:is it generally strong and peaked? [J].Ecology,2001,82(12),3479–3492
    [89]邓志平,卢毅军.不同干扰强度对杭州西湖山区植被物种多样性的影响[J].江西林业科技,2007(2):15-17
    [90]凌云,张光富,王锐.南京老山国家森林公园朴树种群动态[J].生态与农村环境学报,2011,27(2):28-34
    [91]吴承祯,洪伟,谢金寿,等.珍稀濒危植物长苞铁杉种群生命表分析[J].应用生态学报,2000,11(3):333-336
    [92]张钦弟,张金屯,苏日古嘎,等.庞泉沟自然保护区华北落叶松种群生命表与谱分析[J].应用与环境生物学报,2010,16(1):1-6
    [93]刘金福,洪伟,吴则焰,等.孑遗植物水松(Glyptostrobus pensilis)种群生命表和谱分析[J].武汉植物学研究,2008,26(3):259-263
    [94]陈远征,马详庆,冯丽贞,等.濒危植物沉水樟的种群生命表和谱分析[J].生态学报,2006,26(12):4267-4272
    [95]郭其强,方江平,边多,等.不同干扰方式对砂生槐群落结构特征的影响[J].西北植物学报,2009,29(8):1670-1677
    [96]Bond W J,Midgley J J.Ecology of sproutingin woody plants:The persistence niche[J].Trends in Ecology & Evolution,2001,16(1):45-51
    [97]Pausas J G,Carbo E,Caturla R N,et al.Post-fire regeneration patterns in the eastern Iberian Peninsula[J].Acta Oecologica,1999,20(5):499-508
    [98]Bellingham P J , Sparrow A D . Resprouting as a life history strategy in woody plant communities[J].Oikos,.2000,89(2)409-416
    [99]王希华,严晓,闫恩荣,等.天童几种常绿阔叶林优势种在砍伐后萌枝更新的初步研究[J].武汉植物学研究,2004,22(1):52-57
    [100]Bond W J,Midgley J J.The evolutionary ecology of sprouting in woody plants[J].International journal of plant sciences,2003,164(supp.):103-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700