闽东沿海秋茄红树林天然林生态学特征及其与人工林的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对闽东沿海(福鼎市)不同起源的秋茄红树林种群结构、生命表、空间分布格局、生物量、碳储量,热值等生态特征进行比较研究,结果表明:
     ①不同起源秋茄林在高度径级别有一定的差异。天然林高度结构主要集中在0~0.5m,而人工林则集中在1.5~2m。不同起源秋茄林在地径径级结构上差异明显,天然林径级主要集中在第Ⅰ级,并呈现随着径级的增大而减少。人工林第Ⅰ级缺失,呈现以第Ⅲ级为中心的正态分布。
     ②秋茄种群在发育和演替过程中,存在2个死亡高峰,即由幼苗转化为幼树阶段出现第1个高峰,成年期出现第2个高峰,第Ⅷ龄级时大多数个体死亡。个体平均生存能力的期望在第Ⅸ龄级最大;存活曲线属于典型的Deevey-Ⅲ型,种群前期存活数随龄级下降较快,而后期存活值波动不大。
     ③采用聚集强度指标法、Iwao M*-χ的回归与Taylor幂法则对不同起源秋茄林空间分布格局进行比较分析,结果表明福鼎秋茄天然林幼苗群呈聚集分布,小树群、大树群、老树群均呈现随机分布。秋茄人工林小树群、大树群呈随机分布。
     ④秋茄天然林生物量为58.305t/hm2,其中地上部分为32.919t/hm2,地下部分为25.386t/hm2;秋茄人工林生物量为25.359t/hm2,其中地上部分为14.711t/hm2,地下部分为10.648t/hm2。根据花、叶、枝、干等生物量数据显示,不同起源秋茄生物量分配均为枝>干>粗根>叶>中根>墩>细根>花。
     ⑤闽东沿海秋茄林碳储蓄量主要由灌木层、死地被物层、土壤层组成的。按其碳库大小顺序排列为:土壤层>灌木层>死地被物层。结果表明:秋茄天然林生态系统碳储量为221.505t?hm-2,其中地上部分为28.732t?hm-2,地下部分为192.782t?hm-2;秋茄人工林碳储量为154.739t?hm-2,其中地上部分为10.271t?hm-2,地下部分为144.468t?hm-2。
     ⑥秋茄天然林的各组分热值大小顺序为叶>花>枝>干>墩>粗根>中根>细根。各组分干重热值波动范围为12kJ/g~18kJ/g;人工林的各组分热值大小顺序为叶>干>枝>墩>花>粗根>细根>中根。不同起源秋茄林都以叶的热值最高,大于17kJ/g。根的热值最低,小于13kJ/g。不同树龄的秋茄叶片热值也有差异,表现为随着树龄不断增高,其叶片热值随之下降的趋势。秋茄叶热值还随纬度不同而异,叶片的热值呈现随纬度升高而下降。
The Kandelia candel in east part of Fujian provience(Fuding),which locate in the northernmost part of china,plays an important role in the mangrove study. The structure characteristics,life table,species spatial distribution,biomass,carbon stock,calorie value etc.of the Kandelia candel were studied in this paper,the results showed that:
     (1)Height structure indicated that there was variation existed in different origin plantation and natural forest .The height of individual of natural forest distributed at the range of 0~0.5m,which of plantation scattered in 1.5~2m.The difference of diameter structure in different origin plantation and natural forest were obvious. The diameter structure was focused on 0~2cm.When the diameter structure grew,the number of individual dropped.For short of 0~2cm,the plantation assumed highly basically being scattered very much.
     (2)The Kandelia candel had two deaths peak during its development and succession,that is one in the stage of seedings into young seedings,and the other of adult stage. The most of Kandelia candel died at the age ofⅧ.The survival curve of population trended to typical type of deevey-Ⅲ.The population survives drop fast in the earlier stage.In the later stage,the survivals did not fluctuate largely.
     (3)The concerntration class index,Iwao M*- x and Taylor principle were used to research spatial distribution pattern of the Kandelia candel populations at different origin plantation and natural forest in Fuding.With the development of the population of seedlings,young tree,adult tree to old tree,the population distribution pattern changed as followed:(1)natural Kandelia Candel populations: contagious pattern→random pattern→random pattern→random pattern; ( 2 ) plantion: 0→uniform distribution→contagious pattern.Natural regeneration and dispersal of artificial Kandelia candel population had more or less occured,which may increase the structure complexity and stability of the artificial population.
     (4)The total biomass of the natural Kandelia candel forest were 58.305t? hm-2with the aboveground for 32.919t? hm-2and underground part for 25.386t? hm-2;the total biomass of plantation were 25.359 t? hm-2,among which the aboveground part were14.711 t? hm-2and underground part were 10.648t? hm-2respectively.Using the biomass data of of fowers,leaves,stems,twigs,trunk,the biomass allocation were as follows:twigs>stems>macroroots>leaves>mid roots>trunk>micro roots>flowers.
     (5)The carbon stock of the Kandelia candel forest ecosystem were mainly consisted three sections,which were the trees,the litter and soil.The order of those carbon stock could be ranked as followed:the soil> the trees> the litter.The carbon stock of the natural Kandelia candel were 221.505t? hm-2,with the aboveground for 28.732t? hm-2and the underground part for 192.782t? hm2;carbon stock of the Kandelia candel plantation ecosystem were154.739t?hm-2,among which the aboveground part were 10.271t?hm-2and underground part were 144.468t? hm-2respectively.
     (6)The calorie values in various component of the Kandelia candel can be ranked in the decreasing order as follows:leaves>flower>twigs>stems>trunk>macroroots>mid roots>micro roots,for plantation,the order isleaves>stems>twigs>trunk>flower>macro roots>micro roots>mid roots.The calorie values of natural various plant parts rang from12kJ/g~18kJ/g for gross calorie values.The same highest value is leaves,above 17kJ/g,and the lowest one is root,under 13kJ/g.The calorie values increased as the trees growed. The calorie values also varied with latitude of the areas,genenrally.The gross calorie value were the higher in lower latitude.
引文
[1] McGill J T.Coastal classification map[M].//Russell R J Second Coastal Geoghygraphy Conference.Baton Royge:Coastal Studies Institute,Louisinana State University,1959:1-22.
    [2]黄运挺.福建省滨海秋茄红树林栽培技术探讨[J].林业勘察设计,2007,(2):133-135.
    [3]吴桂觉.福鼎滨海湿地及红树林调查研究初报[J].林业查勘设计,2006,(1):142-144.
    [4]郑德璋,李玫,郑松发,等.中国红树林恢复和发展研究进展[J].广西林业科技, 2003,19 (1):10 - 14.
    [5]彭逸生,周炎武,陈桂珠.红树林湿地恢复研究进展[J].生态学报,2008,28(2):786-797.
    [6]陈长平,高亚辉,林鹏,等.福建省福鼎市后屿湾红树林区水体浮游植物群落动态研究[J].厦门大学学报(自然科学版),2005,44(1):118-123.
    [7]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999,14-17.
    [8]张文辉,王延平,康永祥,等.太白红杉种群结构与环境的关系[J].生态学报,2004,24(1):1556—1561.
    [9]洪伟,王新功,吴承祯,等.濒危植物南方红豆杉种群生命表及谱分析[J].应用生态学报,2004,15(6):1109—1112.
    [10]马宇飞,李俊清.湖北七姊妹山珙桐种群结构研究[J].北京林业大学学报,2005,27(3):12-16.
    [11] Frost , Rydin . Size distribution of the animal-dispersed tree Quercus robur in two spruce-dominated forests[J].Ecoscicence,2000,7(1):38-44.
    [12]王卓,黄荣凤,王林和,等.毛乌素沙地天然臭柏种群生命表分析[J].中国沙漠,2009,29(1):118-124.
    [13]宋萍,洪伟,吴承祯,等.珍稀濒危植物桫椤种群生命过程及谱分析[J].应用生态学报,2008,19(12):2577-2582.
    [14]林勇明,洪滔,吴承祯,等.桂花野生种群生命表及生存分析[J].北京林业大学学报,2007,29(3):185-188.
    [15] Malcolm L,Hunter J R.Maitnaining biodiversity in forest ecosystems[M].Cambirdge:Cambridge University Press,1999:106.
    [16] ShinW S,Jaeho Ha.Analyses of lipid and volatile comopnents in juniper seed(Juniperus rigida Sieh.Et Zucc.) [J].Journal of the Korean Society of Food Science&Nutrition,2003,32(6):795.
    [17] David Carslake,Stuart Townley,David J.Hodgson. Patterns and rules for sensitivity and elasticity in population projection matrices.Ecology,2009,90(11):3258-3267.
    [18]林珥,任坚毅,岳明.太白山红桦种群结构与空间分析[J].植物生态学报,2008,32(6):1335-1345.
    [19]许木正,盖新敏,李大岔,等.甜槠林乔木层主要植物种群的空间分布格局[J].亚热带水土保持,2006,18(1):6-11.
    [20]丁岩钦.昆虫种群数学生态学原理与应用[M].北京:科学出版社,1980:84-124.
    [21]洪伟主编.闽江流域森林生态研究[M].厦门:厦门大学出版社,2000:43-49.
    [22]张潮巨.松毒蛾空间格局及抽样技术[J].福建林学院学报,1994,14(3):205-209.
    [23]李景文.森林生态学[M].北京:中国林业出版社,1994.
    [24]安树青.生态学实验——现代生态学研究方法[M].南京:南京大学出版社,2002.
    [25]林金顺.福建省平潭沿海秋茄人工林群落的生物量研究[J].防护林科技,2005,65(2):6-8.
    [26]吴良欢,陶勤南.植物有机碳改进测定法研究[J],土壤通报,1993,24(6):286-287.
    [27]昝启杰,王勇军,廖宝文.深圳福田无瓣海桑+海桑一秋茄人工林结构的研究[J].林业科学研究,2001,14(6):610-615.
    [28]马建伟,张宋智,李安民,等.小陇山林区秦岭冷杉生命表分析[J].甘肃林业科技,2008,33(1):2-8.
    [29]胡喜生,洪伟,吴承祯,等.木荷天然种群生命表分析[J].广西植物,2007,27(3):469-474.
    [30]陈辉,刘玉宝,吴承祯,等.闽北次生常绿阔叶林主要树种空间分布格局及其应用研究[J].应用与环境生物学报,1999,5(6):561-565.
    [31]梁士楚.贵阳喀斯特山地云贵鹅耳枥种群结构与动态研究[J].植物生态学与地植物学学报,1992,16(2):108-117.
    [32]钟章成.常绿阔叶林生态学研究[M].重庆:西南师范大学出版社,1992,87-116.
    [33]许木正,盖新敏,李大岔,等.甜槠林乔木层主要植物种群的空间分布格局[J].亚热带水土保持,2006,18(1):6-11.
    [34]洪志猛,崔丽娟,张建生,等.泉州湾湿地桐花树种群空间分布格局的研究[J].湿地科学,2(4):285-289.
    [35]吴则焰,刘金福,洪伟,等.孑遗植物屏南水松种群空间分布格局[J].亚热带农业研究,2008,4(1):36-39.
    [36]梁士楚.广西红树植物群落特征的初步研究[J].广西科学,2000,7(3):210-216.
    [37]林鹏,尹毅,卢昌义.广西红海榄群落的生物量和生力[J].厦门大学学报(自然科学版),1990,31(2):199-202.
    [38]林鹏,卢昌义,王恭礼,等.海南东寨港海莲群落的生物量和生力[J].厦门大学学报(自然科学版),1990,29(2):209-213.
    [39]林鹏,卢昌义,林光辉.九龙江口红树林研究秋茄群落的生物量和生产力[J].厦门大学学报(自然科学版),1985,24(4):508-513.
    [40] LugoAE,SnedarkerSC.The ecology of mangrove [J].Annual Review of Ecology and Systematics,1974,5:39-64.
    [41]陈明义.红树林之特性[J].中华林学季刊,1982,75:17-25.
    [42]杨昆,管东升.林下植被的生物量分布特征及其作用[J].生态学杂志,2006,25(10):1252-1256.
    [43]李国雷,刘勇,于海群,等.油松人工林林下植被发育对油松生长节律的响应[J].生态学报,2009,29(3):1264-1275.
    [44]陈民生,赵京岚,刘杰,等.人工林林下植被研究进展[J].山东农业大学学报(自然科学版),2008,39(2):321-325.
    [45]林开敏,洪伟,俞新妥,等.杉木成熟林林下植物生物量及其取样技术研究[J].福建林学院学报,2001,21(1):28-31.
    [46] George LO,Bazzaz F.The fern understory as an ecological filter:Emergence and establishment of canopy tree seedings[J].Ecology,1999,80:833-845.
    [47]韩维栋,高秀梅.无瓣海桑、海桑人工林的生物量及生产力研究[J].广西科学,2004,11(4):243-248.
    [48]钱国钦.枫香人工林净生产量动态变化研究[J].江西农业大学学报,2000,9(3):399-402.
    [49]罗辑.贡嘎山森林生物量和生产力的研究[J].植物生态学报,2000,4(2):191-196.
    [50]温远光.广西合浦窿缘桉海防林生物量和生产力的研究[J].广西农业生物科学,2000,3(19):1-5.
    [51]陈婷.连栽桉树人工林生物量和生产力的初步研究[J].广西林业科学.2005,34(1):8-11.
    [52]胥辉.两种生物量模型的比较[J].西南林学院学报,2003,23(2):36-38.
    [53]殷财,赵眷辉,郑秀梅.森林生物量的估测方法[J].林业勘查设计,2000,3:53-54.
    [54]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    [55]陈国奖,李林.福鼎市耕地土壤养分现状与对策[J].农业科技通讯,2008,12:96-97.
    [56]段晓男,王效科,尹弢,等.湿地生态系统固碳潜力研究进展[J].生态环境,2006,15(5):1091-1095.
    [57]汤景明,翟明普.木荷幼苗在林窗不同生境中的形态响应与生物量分配[J].华中农业大学学报,2006,25(5):559- 563.
    [58] Li CP,Xiao CW.Above and below ground biomass of Artem isia ordosica communities in three contrasting habitats of the Mu Us desert,northern China [J].Journal of Arid Environments,2007,70:195- 207.
    [59]罗大庆,郑维列,王景生.西藏米拉山白桦种群生物量和生长量研究[J].应用生态学报,2004,15(8) :1329- 1333 .
    [60]黄宇,冯宗炜,汪思龙,等.杉木、火力楠纯林及其混交林生态系统碳、氮贮量[J].生态学报,2005,25(12):3146-3154.
    [61]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究——含量与分布规律[J].生态学杂志,1997,16(6):17-21.
    [62]王百群,吴金水,吴振海.子午岭次生林区植被中有机碳的储量[J].西北植物学报,2004,24(10):1870-1876.
    [63]胡会峰,王志恒,刘国华,等.中国主要灌丛植被碳储量[J].植物生态学报,2006,30(4):539-544.
    [64]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54.
    [65]谭忠奇,冷艳,周涵韬,等.10种棕榈科植物的PAPD分析[J].厦门大学学报(自然科学版),2003,42(6):805-809.
    [66] Long FL.Application of calorimetric methods to ecological research[J].Plant physiol,1934,9(2):323-327.
    [67] Adamandiadous S.1978,Caloric content plant dominanting phryganic(east mediterranean)ecosystem in Greece[J].Flora,167:514-584.
    [68] Wielgolaski FE.Kjevikc S,(杨福囤译).芬兰斯堪的纳维亚冻原植物能量含量及太阳辐射能的利用[J].国外畜牧学一草原,1982,(3):27-31.
    [69] Olson JS. Energy storage and the balance of producers and decomposers in ecological systems[J].Ecology,1963,44:322-331.
    [70] Bliss LC. Caloric and lipid content in Alpine Tundra plants[J].Ecology,1962,43(4):753-757.
    [71] Golley FG.Energy values of ecological materials[J].Ecology,1961,42(3):581-584.
    [72] James TDW,Smith DW.Seasonal changes in the caloric values of the leaves and wigs of Papulus remuloides[J].Can.J.Bot,1978,56:1804-1805.
    [73] Singh AK , Misrakn , Ambasht RS . Energy dynamics in a savanna ecosystem in India[J].Jap.J.Ecol,1980,(3):295-305.
    [74]孙国夫,郑志明,王兆骞.水稻热值的动态变化[J].生态学杂志,1993.12(1):1-4.
    [75]杨福囤,何海菊.高寒草甸地区常见植物热值的初步研究[J].植物生态学与地植物学丛刊,1983,7(4):280-288.
    [76]祖元刚,张宏一.植物热值测定的若干技术问题[J].生态学杂志,1986,5(4):53-56.
    [77]陈佐忠,张鸿芳.内蒙古典型草原地带118种植物的热值[J].草原生态系统研究,1992,4:41-48.
    [78]龙瑞军.徐长林,胡自治,等.天祝高山草原l5种饲用灌木的热值及季节动态[J].生态学杂志,1993,12(5):13-l6.
    [79]刘世荣,王文章,王明启.落叶松人工林生态系统净初级生产力形成过程中的能量特征[J].植物生态学与地植物学学报,1992,16(3):209-218.
    [80]李意德,吴仲民,曾庆波,等.尖峰林山地雨林主要种类能量背景值测定分析植物生态学报,1996,2(1):1-l0.
    [81]林光辉,林鹏.红树植物秋茄热值及其变化的研究[J].生态学报,1991,11(1):44-48.
    [82] Bidwell RGS(刘富林译).植物生理学[M].北京:高等教育出版社,1982,173-181.
    [83]任海,彭少麟,刘鸿先,等.鼎湖山植物群落及其主要植物的热值研究[J].植物生态学报,1999,23(2):l48-154.
    [84]孙雪峰,陈灵芝,徐瑞成.暖温带落叶阔叶林林内能量的分配组合特征[A].见:陈灵芝,黄建辉,暖温带生态系统结构与功能的研究[C].北京:科学出版社,1997,163-172.
    [85]赵廷宁,杨维西,王冬梅,等.木本植物热值与树龄关系的研究[J].北京林业大学,1992,14(3):47-53.
    [86] Golley FG.Caloric value of wet tropical forest vegetation[J].Ecology,1968,50(3):5l7-519.
    [87]林鹏,林光辉.几种红树植物的热值和灰分含量研究[J].植物生态学与地植物学学报,1991,15(2):114-120.
    [88]龙瑞军,徐长林,胡自治,等.天祝高山草原15种饲用灌木的热值及季节动态[J].生态学杂志,1993,12(5):13-16.
    [89] Neeln L,Lodhiyal LS.Biomass and net primary productity of Bhabar shisham foersts in cental Himalaya[J].India.For Ecol&Manag,2003,176:217-235.
    [90] S. Liodakis,T. Kakardakis.Measuring the relative particle foliar combustibility of WUI forest species located near athens[J].Journal of Thermal Analysis and Calorimetry,2008,93:1572-6150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700