海岸带木麻黄群落与优势种群数量特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木麻黄林是我国东南沿海最优良的固沙防护林树种,且是四旁绿化的好树种。目前关于木麻黄的研究多集中在生物量、生产力、各组分干重热值、去灰分热值及群落能量分布与结构特征等方面,其群落结构与种群生态学研究较少研究。通过野外调查,分析了长乐市大鹤国有林场木麻黄的生态位、分布格局、种群结构与动态等特征,目的在于了解木麻黄林的自然变化规律,从而为木麻黄防护林的合理经营提供科学依据。
     以400m2为取样水平,运用方差比率法、共同出现百分率、联结系数、点相关系数和卡方检验测定了主要树木种群间联结性。结果表明:
     以调查资料为基础来分析木麻黄种群结构特征以及动态变化,利用“空间代时间”,“横向导纵向”的方法编制木麻黄种群的特定时间生命表,绘制了种群的存活曲线,死亡率曲线,并用4个函数分析种群数量动态变化,最后进行谱分析。结果表明:木麻黄的存活曲线应属于Deevey-Ⅲ型,木麻黄种群早期死亡率极高,曲线斜率较大,环境筛的选择强度极大,只但是此后随着年龄增长,环境筛的选择强度减弱,木麻黄的死亡率较低,幼树阶段向营养阶段过渡相对平衡,存活曲线趋于平缓,木麻黄种群死亡率出现两个高峰,分别出现在第Ⅰ~Ⅱ龄级,第Ⅷ~Ⅸ龄级阶段。种群生存分析表明,木麻黄种群生存率函数单调下降,累积死亡率函数呈单调上升,说明木麻黄种群幼年死亡率极高,长成之后,种群趋于平衡稳定。马尾松种群的存活曲线应属于Deevey-Ⅱ型,表明马尾松种群各年龄死亡率基本相同,第Ⅵ-Ⅶ龄级马尾松种群死亡率为最高峰值。谱分析结果表明:木麻黄种群、马尾松种群的时间系列长度能足够表现出基本周期,且林分已达到成熟阶段,并能表现出明显的固有波动周期长度。
     根据样地实际情况和研究需要,将立地乔木按高度分为10级(0,+∞]来研究种群高度结构和级间失稳率。结果表明:木麻黄种群各个高度级进行数量统计,在所有样地中以第1高度级数量为最多,达到了9578株,占调查总株树的40.70%,以后每高度级呈现递减的趋势,马尾松种群高度结构中第6高度级所占比例为最大,达到38.96%。木麻黄第Ⅱ-Ⅲ高度级失稳率最高,达到69.7450%,马尾松幼龄林至中龄林阶段种群的级间失稳率基本上为负值,这表明马尾松幼龄林的数量相比较其它年龄段的个体数要少很多。
     根据实际调查数据,采用C、I、I&、PAI、Ca 5种聚集度指标以及Iwao方程对海岸带木麻黄种群的空间分布格局进行了系统研究,并比较其在取样尺度下的变化情况。结果表明:木麻黄的空间分布均呈聚集分布,且木麻黄在1600m2取样单元时,聚集度最强,这可能是由于影响种群分布各种因素在某种尺度上容易形成耦合关系,若有利于种群生长,种群个体容易在这种尺度上聚集成长。同时,本文还根据Iwao的M与X的回归方程,计算木麻黄在不同密度和允许误差下的理论抽样面积。本研究调查获得木麻黄的种群密度为3-8株/50m2,按理论抽样面积计算至少应取138个样方,而本研究在实际取样过程中取样样方数达256个,因此,本研究所取样的数量远远大于理论所需的抽样面积,说明本研究所测定木麻黄为聚集分布是可以相信的,取样的数量能够达到精度的需求。
     根据实际调查资料,以树种的重要值作为资源位上的表现特征,定量分析了木麻黄群落中主要树木种群生态位宽度,生态位相似性比例和生态位重叠。结果表明:木麻黄的生态位宽度最大,在群落中处于绝对的优势地位,这主要是由于其广泛的适应性,而马尾松和大叶相思的生态位宽度较小;群落中三个主要种群之间的相似性比例值不太高,生态位虽有一定程度的重叠,但总体仍然较低,群落内种间竞争并不十分激烈。其结果可作为进一步研究海岸带木麻黄群落结构、动态及种间关系的基础。
     以每木检尺所获得的胸径、树高等数值来计算重要值,并且据此来计算木麻黄与马尾松、大叶相思之间的种间关系,结果表明:木麻黄与马尾松表现出强的负联结性,木麻黄与大叶相思、马尾松与大叶相思之间,存在较弱的正联结,总体上来说,3个种间的联结趋势较弱,说明该群落不稳定,尚处于演替阶段。
     应用的描述种群增长改进模型,其具体解析式中共4个参数,K、C、a、θ,在参数的求解时,先给定初值,θ=1,这样转化为种群增长的S以空间单位为径级的时序关系所对应的木麻黄种群的基面积数值,采用改进单纯形法建立木麻黄种群基面积增长的Logistic模型,并对该模型进行参数优化,最后得到了木麻黄种群的内禀增长率为0.5884。
     通过对实测数据,对木麻黄种群进行密度效应和自然稀疏规律的研究,本文选择平均直径、平均木断面积(g)和林分总断面积(G)作为个体大小的指标,来表示林木株树与林木大小的关系。结果表明:木麻黄种群密度与林木大小的关系表明木麻黄种群密度对林分平均胸径、平均木断面积、林分总断面积均存在显著作用。在所拟合的各种模型中,以模型(41)为最优,回归效果及显著。因此,在经营木麻黄林时,必须切实重视林分密度控制管理,同时,这也为人工林的合理经营管理提供依据。
Casuarina forest is the best in China's southeast coastal shelterbelt fixing tree species, and is a good green trees all around. At present the studies focus on Casuarina in biomass, productivity, caloric values of each component, the caloric values and community structure of energy distribution and so on, the community structure and population ecology of small studies. Through field investigation, analysis of state-owned forest farms, Changle City, Cape Casuarina niche, distribution pattern, population structure and dynamics characteristics, the purpose is to understand the natural variation of Casuarina equisetifolia, Casuarina shelterbelt so as to provide scientific basis for rational management .
     To 400m2 for the sampling level, the use of variance ratio test, the percentage of co-occur, association coefficient, point correlation coefficient and chi-square testing of the main tree populations of association. The results showed that:
     It Was based on survey data to analyze the structural characteristics of Casuarina species dynamics, use "Space instead of Time," "horizontal derive vertical" approach in the preparation of Casuarina species in the specific life table, population survival curve was drawn,mortality rate curve and function analysis with four variable of population dynamics, and finally to spectral analysis. The results showed that: Casuarina survival curve should belong to Deevey-Ⅲtype, the early mortality rate of Casuarina species, the curve slope of the larger environment, the choice of intensity of a great screen, but only then with age, environmental screening of the selection intensity weakened, the lower the mortality rate of Casuarina, sapling stage of the transition phase to the relative balance of nutrition, survival curves tended to be stable, there are two peaks of Casuarina species mortality, respectively, in the first age classⅠ~Ⅱ, the firstⅧ~ⅨAge-class stage. Population viability analysis showed that the monotonic decline of Casuarina species survival function, cumulative mortality function is a monotonous rising, infant mortality rate shows a very high Casuarina species, grow into, the population becomes stable. Pinus species survival curve should belong to Deevey-Ⅱtype, indicating that pine mortality in all age the same population, the firstⅥ~Ⅶpopulation age class pine mortality peak value. Spectral analysis showed that: Casuarina species, Pinus species time series sufficient to show the length of the basic cycle, and the stand has reached a mature stage and can show significant fluctuations inherent cycle length.
     According to the plot of the actual situation and needs, site of tree height divided by 10 (0, +∞] to study the population structure and the high failure rate between stages. The results show that: Casuarina species in all high-level quantitative statistics, to all plots in the number of 1 to a maximum height level, reached 9578, accounting for survey 40.70% of total strain tree, decreases with each subsequent high-level trends, pine population structure of 6 high proportion of high-level the largest, reaching 38.96%. Casuarina sectionⅡ~Ⅲa high degree of instability of the highest level reached 69.7450%, pine forest to young forest stages in the population aged between failure rate level is basically negative, indicating that young pine forest compared the number of individuals of other ages to be a lot less.
     Based on actual survey data, using C, I, I &, PAI, Ca degree index and the Cluster Iwao equation Casuarina coastal population distribution pattern has been systematically studied, and compared the changes in the situation of sampling scales. The results showed that: the spatial distribution of Casuarina showed aggregated distribution, and Casuarina in 1600m2 sampling unit, the strongest aggregation, which may be due to various factors affect the population distribution of a certain scale, easy to form in the coupling, if beneficial population growth, population size of individual easily gathered in this growth. Meanwhile, the article also under Iwao's M and the regression equation to calculate the density of Casuarina and allow different theoretical sampling error of area under. This study investigated the population density was 3~8 Casuarina plants/50m2, according to theoretical calculation of sample size should be taken at least 138 plots, the actual sample of this research plots the course of a few samples up to 256, therefore, this study The number of samples required is far greater than theoretical sampling area, measured in this study shows for the aggregated distribution of Casuarina is to be believed, the number of samples to achieve the accuracy requirements.
     Based on actual survey data, to the important value of species as a resource position on the performance characteristics, quantitative analysis of the main tree species Casuarina communities niche breadth, niche similarity, and niche overlap. The results showed that: Casuarina maximum niche breadth, in the community in an absolutely dominant position, largely because of its wide adaptability, and pine and Acacia auriculiformis smaller niche breadth; community in three major populations similarity between the proportion of value is not too high, although a certain degree of niche overlap, but overall remains low, and competition among species within communities are not very keen. As a result, further research can be used as Casuarina Coastal community structure, dynamics and interspecific relations.
     Scaling per tree diameter at breast height obtained by the tree to calculate the importance of higher numerical value, and accordingly to calculate the Casuarina and Pinus, Acacia auriculiformis relationship between the species, the results show that: Casuarina and Pinus showed strong negative association, Casuarina and Acacia auriculiformis, Pinus and Acacia auriculiformis between the existence of a weak positive association, on the whole, three kinds of coupling between the weak trend, indicating instability of the community, still in successional stages.
     Application of the improved model description of population growth, the specific analytic have four parameters, K, C, a,θ, the solution in the parameter when a predetermined initial value,θ= 1, this translated into population growth. Space units for the diameter of the temporal relationship between Casuarina species corresponding to the base area of values, a modified simplex method to establish population-based area of Casuarina Logistic growth model and the model parameters were optimized, and finally got Casuarina species .The intrinsic growth rate of 0.5884.
     Through the measured data, the density effect on the Casuarina species and natural thinning law, this paper select the average diameter, average tree basal area (g) and total stand basal area (G) as indicators of body size, to represent the tree line the relationship between tree and tree size. The results showed that: Casuarina tree population density and the relationship between the size of population density on the stand of Casuarina that the average diameter at breast height, average tree basal area, total stand basal area were there significant role. Among the various models fitted to model (41) was the best, and a significant regression effect. Therefore, management of Casuarina forest, you must attach proper importance to the stand density control and management, at the same time, this is for the plantation management to provide a reasonable basis.
引文
[1]田大伦.高级生态学[M],北京:科学出版社,2008,109~173
    [2]李博.普通生态学[M].呼和浩特:内蒙古大学出版社,1990
    [3]江洪.云杉种群生态学[M].北京:中国林业出版社,1992:1~7
    [4]周继伦,郑师章,阳持.植物种群生态学[M].北京:高等教育出版社,1992
    [5]潘志刚,游应天等,中国主要外来树种栽培[M].北京:北京科学技术出版社,1994,256-263
    [6]徐基全,沿海防护林体系营造技术[M].北京:中国林业出版社,1996
    [7]国家林业局植树造林司,中国林学会,全国沿海防护林体系建设学术研讨会论文集[M].北京:海洋出版社,2007
    [8]洪伟,柳江,吴承祯,红锥种群结构和空间分布格局的研究[J].林业科学,2001,37(专刊):6~10
    [9]洪伟,郑康宏,龚其锦,毛竹在衫木与毛竹混交林中的空间分布型的研究[J].竹子研究汇刊,1990,9(2): 56~64
    [10]蔡小英,范海兰,洪滔,等.福建琅岐风景区景观林朴树种群生命表分析[J].北华大学学报(自然科学版),2006,7(6):545-548
    [11]伍业刚,韩进轩.阔叶红松林红松种群动态的谱分析[J].生态学杂志,1988,7(1):19-23
    [12]刘金福,洪伟,吴则焰,等.孑遗植物水松(Glyptostrobus pensilis)种群生命表和谱分析[J].武汉植物学研究,2008,26(3): 259~263
    [13]刘任涛,毕润成,闫桂琴.山西南部翅果油树种群动态与谱分析[J].植物研究,2007,27(5):549-555
    [14]I Agren and O Zackrission.age and size structure of Pinus sylvestris popularian on mires in central and northem Stveden[J]. Journal of Ecologv,1990,78:1049~1062
    [15]黄玉清,李先琅,苏宗明.元宝山南方红豆杉种群结构-Ⅱ高度结构[J].广西植物,2000, 20(2) :126~130
    [16]Greig Smith P.Quantitative Plant Ecology 3rd edn[M].Oxford :Blackwell Scientific Publication,1983
    [17]Dale MRK. Spatial Pattern Analysis in Plant Ecology [M].Cambridge ,cambridge University Press,1999
    [18]R Y O O.SUZUKI,JUN-ICHIROU SUZUKI,NAOKI KACHI.Chang in spatial distribution patterns of a biennial plant between growth stages and generations in a pathy habitat[J].Annals of botany,2005,96:1009~1017
    [19]阳含熙,李鼎甲,王本楠,等.长白山北波阔叶红松林主要树种的分布格局[J].森林生态系统研究,1985,5:1~4
    [20]杨洪晓,张金屯,吴波,等.毛乌素沙地油蒿种群点格局分析[J].植物生态学报,2006,30(4):563~570
    [21]蔡冰玲,范海兰,宋萍,等.梅花山自然保护区拟赤杨的空间分布格局[J].亚热带农业研究,2007,3(1):44~47
    [22]刘宝,陈存及,陈世品,等.闽南群落优势优势种群结构与空间分布格局[J].福建林学院学报,2006,26(3):210~213
    [23]王海为,游水生,王小明.锥栗林主要种群空间分布格局[J].福建林学院学报,2004,24(3):258~261
    [24]黄云鹏.格氏栲群落的林木组成及其空间分布格局[J].西南林学院学报,2009,29(1 ):17~21
    [25]刘富强,王延平,杨阳,等.黄河三角洲柽柳种群空间分布格局研究[J].西北林学院学报2009,24 (3):7~11
    [26]汪殿蓓,暨淑仪,陈飞鹏.仙湖苏铁群落主要种群的空间分布格局[J].西南师范大学学报(自然科学版),34(1):93~97
    [27]林开敏,郭玉硕.生态位理论及其应用研究进展[J].福建林学院学报,2001,21(3):283~287
    [28]吴承祯,郑群瑞.万木林群落生态学研究Ⅱ:万木林中亚热带常绿阔叶林主要种群生态位研究[J].江西农业大学学报,1996,18(3):292~298
    [29]王刚.青杆林次生林演替的生态位模型[J].生态学报,1988,8(4):371~379
    [30]吴大荣.福建罗卜岩闽楠林中优势树种生态位研究[J].生态学报,2001,21(5):851~855
    [31]黄英姿.生态位理论研究中的数学方法[J].应用生态学报,1994,5(3):331~337
    [32]王刚,赵松林,张鹏云,等.关于生态位定义的探讨及生态位重叠计测公示改进的研究[J].生态学报,1984,4(2):119~127
    [33]尚玉昌.现代生态学中的生态位理论[J].生态学进展,1988,5(2):77~84
    [34]吴承祯,洪伟,蓝斌,等.万木林群落生态学研究一万木林中亚热带常绿阔叶林主要种群生态位研究[J].江西农业大学学报,1996,18(3):292~298
    [35]洪伟,吴承祯,林成来,等.闽北主要阔叶树种生态位相似性研究,闽江流域森林生态研究,厦门:厦门大学出版社,2000
    [36]张忠华,梁士楚,胡刚,桂林岩溶石山阴香群落主要种群生态位研究[J].林业科学研究2009,22(1):63~68
    [37]刘春生,刘鹏,张志祥,等.九龙山濒危植物南方铁杉的生态位研究[J].武汉植物学研究2009,27(1):55~61
    [38]王祥福,郭泉水,巴哈尔古丽,等.崖柏群落优势乔木种群生态位[J].林业科学,2008,44(4):6~13
    [57]何友均,崔国发,邹大林,等.三江源自然保护区玛珂河林区寒温针叶林优势灌木种间联结研究[J].2006,42(12):126~129
    [39]许冬焱.缙云山风灾迹地恢复群落主要乔木树种进种间联结性[J].广西植物,2009,29(3):321~326
    [40]曹培健,丁炳扬,李伟成,等.凤阳山福建柏群落主要种群种间联结性研究[J].浙江大学学报(理学版),2006,33(6):676~687
    [41]闫东锋,何静,郭芳,等.宝天曼栎类天然次生林乔木层种间联结性研究[J].西北林学院学报,2009,24 (1):26~30
    [42]戴小华,余世孝,练琚渝.海南岛霸王岭热带雨林的种间分离[J].植物生态学报,2003 , 27 (3):380~387
    [43]江洪.云杉种群生态学[M].北京:中国林业出版社,1992:7~139
    [44]Rieneke L H. Perfecting a stand-density index for even-aged forests[J]. Agri. Res.,1933,46:627~638
    [45]Yada K,Kira T,Ogawa H,et al.Self-thinning in overcrowed pure stands under culitivated and natural conditions[J].Journal of Biological Osaka City University,1963,14:107~129
    [46]吴承祯,洪伟.杉木人工林自然稀疏规律研究[J].林业科学,2000,36(4):97~101
    [47]刘君然.林分自然稀疏理论及应用[M].北京:中国林业出版社,1995
    [48]叶功富,吴锡麟,张清海,林益明.海岸带不同立地木麻黄群落能量研究[J].林业科学,2003,91(01):34~37
    [49]叶功富,隆学武,潘惠忠,徐俊森,林武星,朱炜,黄传英.木麻黄林的凋落物动态及其分解[J].防护林科技,1996
    [50]叶功富,林银森,吴寿德,徐俊森,林武星,潘惠忠,木麻黄林生产力动态变化的研究[J].防护林科技,1996
    [51]吴寿德,叶功富,潘惠忠,徐俊森,隆学武,郑蓉,黄传英.木麻黄人工林生物产量的结构特征[J].防护林科技,1996
    [52]黄义雄,郑达贤,方祖光,谢皎如,沙济琴.福建滨海木麻黄防护林带的生态经济效益研究[J].林业科学,2003,01:369~374
    [53]徐俊森,罗美娟,叶功富,林武星,许信玲.木麻黄引种与福建省沿海防护林体系建设[J].防护林科技,2001,3:101~106
    [54]黄桂华.短枝木麻黄种质资源遗传多样性的AFLP分析[D]中国林业科学研究院, 2006 .
    [55]陈云征.沿海木麻黄防护林的主要病虫害及其防治对策[J]福建林业科技, 1995, (03)
    [56]何学友.福建省沿海木麻黄衰枯原因的研究[J]福建林业科技, 1998, (03) .
    [57]黄舒静.木麻黄单宁对盐胁迫的响应和化感作用的研究[D]厦门大学, 2007
    [58]仲崇禄.木麻黄遗传变异规律的研究[D].中国林业科学研究院,2000
    [59]林考焕.滨海沙地木麻黄人工林生态系统结构与稳定性机制研究[D].福建农林大学, 2009
    [60]陈羽,张勇,仲崇禄,陈珍.滨海木麻黄菌根菌的筛选及其接种效应[J].中南林学院学报, 2006,(02):83~86
    [61]肖胜生.滨海沙地木麻黄人工林生态系统的土壤呼吸与碳平衡研究[D].福建农林大学, 2007
    [62]李裕红.木麻黄质膜转运系统对酸雨胁迫的响应及调控[D].厦门大学,2004
    [63]林喜金.几个木麻黄优良无性系在平潭县育苗造林中的评价[J].防护林科技, 2008,(04):145~149
    [64]张清海.海岸沙地木麻黄人工林能量生态学研究[D].福建农林大学,2004
    [65]张立华.海岸沙地木麻黄人工林细根生态学研究[D].福建农林大学,2006
    [66]王亨.不同海岸梯度下木麻黄防护林的光合作用研究[D].福建农林大学,2009
    [67]徐伟强.东南沿海木麻黄人工林生物量及生产力生态学研究[D].福建农林大学,2009
    [68]殷亮.不同海岸梯度下木麻黄防护林的蒸腾效应研究[D].福建农林大学,2009
    [69]吴锡麟,福建海岸带木麻黄防护林水分生态的初步研究[D].福建农林大学,2002
    [70]马万里,罗菊春,荆涛,Joni Kujansuu,长白山林区核桃楸种群数量动态变化的研究[J].植物研究,2008,2:76~81
    [71]刘瑀,马龙,李颖,杨洋,海岸带生态系统及其主要研究内容[J].海洋环境科学,2008,5:146~153
    [72]庄树宏,初洋,卞福花,刘雪梅,庙岛群岛海岸带人工林生态系统服务价值的评估[M].2008年中国植物学会七十五周年年会论文摘要汇编(1933-2008),2008
    [73]衣华鹏,张鹏宴,毕继胜,仲少云.烟台海岸带防护林的生态环境效应与景观生态建设[J].海洋科学,2008,22 (02):851~855
    [74]吴筠.福建漳江口红树林数量特征及其退化机制研究[D].福建农林大学,2008
    [75]郭妍.马尾松人工林的老龄林优势种群数量特征研究[D].福建农林大学,2008
    [76]刘昉勋,蔡守坤,黄致远.江苏海岸带植被的特征、分布及利用植物生态学报[J].1983,5(02):331~337
    [77]彭方仁,李杰,黄宝龙,张纪林.海岸带复合农林业系统植物种群光环境特征研究[J].生态科学,2002,01
    [78]王栋,孙娟,玉永雄.我国海岸带生态现状研究进展[J],北京水产,2007,04
    [79]汪永华,胡玉佳.,南岛东南海岸带植被景观动态分析[J].信阳师范学院学报(自然科学版)2006,60(01):161~177
    [80]邓慧华,沿海马尾松、相思次生林群落生态学特征研究[D].福建农林大学,2008
    [81]吴承祯,洪伟,陈辉,刘金福,何东进,林成来.珍稀濒危植物青钩栲种群数量特征研究[J].应用生态学报,2000,02
    [82]Stewart G H,Rose A B.The significance of life history strategies in the developmental history of mixed beech forest,New Zealand [J].Vegetation,1990,87: 101~114
    [83]Skoglund J,Verwijst T .Age structure of woody species population in relation toseed rain,germination and establishment along the river Dalaven,Sweden[J]. Vegetation,1989,82:25~34
    [84]A rmesto J J, Casassa I ,Dollenx O. Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park,Chile[J].Vegetation,1992,98:13~22
    [85]刘金福,洪伟,樊后保,等.中国珍稀格氏栲林的数量特征[J].应用与环境生物学报,2002, 8(1):247~253
    [86]洪伟,吴承祯,何东进,等.森林生态系统经营研究[M].北京:中国林业出版社
    [87]梁士楚.贵州喀斯山地鹅耳栎种群结构和动态研究初探[J].植物生态学与地植物学学报,1992,16(2):108~117
    [88]彭少麟.森林群落波动的初探[J].应用生态学报,1993,4(2):120~125
    [89]洪伟,柳江,吴承祯.红锥种群结构和空间分布格局的研究[J].林业科学,2001,37(专刊):6~10
    [90]洪伟,郑康宏,龚其锦.毛竹在衫木与毛竹混交林中的空间分布型的研究[J].竹子研究汇刊,1990,9(2):56~64
    [91] Brodie C, Howle C, Fortin M J. Development of a populus balsamifera clone in subarctic Quebe reconstructed from spatial analyses.J Ecol,1995,83:309~320
    [92]李先馄,向悟生,唐润琴.濒危植物元宝山冷杉种群生命表分析[J].热带亚热带植物学报,2002,10(1):9~14
    [93]丁岩钦.昆虫种群数学生态学原理与应用[M].科学出版社,1986:20~84
    [94]毕晓丽,洪伟,吴承祯,闰淑君,等.黄山松种群统计分析[J].林业科学,2002,38(1): 61~67
    [95]吴承祯,洪伟,谢金寿,吴继林.珍稀濒危植物长苞铁衫种群生命表分析[J].应用生态学报,2000,11(3):333~336
    [96]冯士雍.生存分析Ⅰ,数学的认识与实践,1982(3):72~90
    [97]冯上雍.生存分析Ⅱ,数学的认识与实践,1982(4):64~74
    [98]冯士雍.生存分析Ⅲ,数学的认识与实践,1983(1):70~76
    [99]毕晓丽,洪伟,昊承祯,闰淑君.武夷山米储种群生命表分析[J].热带亚热带植物学报,2001,9(3):243~247
    [100]吴明作,刘萃,栓皮栎种群数量动态的谱分析与稳定性[J].生态学杂志,2000,19(4):23~26
    [101]Lehtila K,Tumoi J,Sulkinoja M.Bud demography of the mountain birch Betula pubescens ssp.ortuosa near tree line. Ecology,1994,75(4):945~955
    [102]吴承祯,洪伟,谢金寿,吴继林.稀濒危植物长苞铁衫种群生命表分析[J].应用生态学报,2000,11(3):333~336
    [103]臧润国,杨彦承,蒋有绪.海南岛霸王岭热带山地雨林群落结构及树种多样性特征的研究[J].植物生态学报,2001,25(3):270~275
    [104]陈晓德,李旭光,王金锡.绵阳官司河流域长江防护林的群落高度级分析[J].植物生态学报,1997,21(4):376~385
    [105]洪伟,罗顺跃,陈顺立,等.油茶主要病虫害生态空间分布规律的研究[J].应用生态学报,1992,3(4):308~312
    [106]付荣恕,刘林德.生态学实验教程[M].北京:科学出版社,2004,44~52
    [107]丁岩钦.昆虫种群数学生态学原理与应用[M].北京:科学出版社,1980,113~125
    [108]Pielou E C .Mathematical ecology[M].New York:Wiley Interscience,1985:84~193
    [109]洪伟,郑康宏,龚其锦.毛竹在杉木与毛竹混交林中的空间分布型的研究[J].竹子研究汇刊,1990,9(2):400~405
    [110]吴承祯,洪伟,吴继林,等.珍稀濒危植物长苞铁杉的分布格局[J].植物资源与环境学,2000,9(1):31~34
    [111]吴承祯,洪伟,谢金寿,吴继林.稀濒危植物长苞铁衫种群生命表分析[J].应用生态学报,2000,11(3):333~336
    [112]方精云,沈泽昊,唐志尧,等.中国山地植物物种多样性调查计划及若干技术规范[J].生物多样性,2004,12(1):5~9
    [113]《福建森林》编辑委员会.福建森林[M].北京:中国林业出版社,1984:307~312
    [114]任青山.天然次生林群落生态位结构的研究[M].北京:北京林业大学出版社,2002,36~38
    [115]何友均,崔国发,邹大林,等.三江源自然保护区玛珂河林区寒温针叶林优势灌木种间联结研究[J].2006,42(12):126~129
    [116]欧祖兰,李先琨,苏宗明,等.元宝山冷杉群落主要树木种群间联结关系的研究[J].生态学杂志,2002,21(1):14~18
    [117]Schulter D .A variance test far detecting species association, with some example application[J].Ecology, 1984,65:998~1005
    [118]王伯荪,彭少娜.南亚热带常绿阔叶林种间联结侧定技术研究I:种间联结测定的探讨修正[J].植物生态学与地植物学从刊,1985,9(4):274~285
    [119]刘金福,洪伟,樊后保,林荣福.天然格氏拷林乔木层种群种间关联性研究[J].林业科学,2001,37(4):117~123
    [120]郭逍宇,张金屯,高洪文.白羊草群落优势种种间联结性的分析[J].草业学报,2003,12(12):14~19
    [121]洪伟,柳江,吴承祯.红锥种群结构和空间分布格局的研究[J].林业科学,2001,37(专刊):6~10
    [122]阳小成,钟章成.绵阳官司河流域防护林优势种群间的联结性研究[J].西南师范大学学报(自然科学版),1994,(03)
    [123]朱丽君,苏智先,胡进耀,等.珙桐群落种间关系的研究[J].广西植物,2006,26(1):32~37
    [124]苏小青.不同演替阶段中焦茹拷种群的大小结构与分布格局[J].应用与环境生物学报,2000,6(6):499~504
    [125]Pielou E C .Mathematical ecology[M].New York:Wiley Interscience,1985:84~193
    [126]洪伟.随机分布偏离度检验方法的研究[J].植物保护学报,1989,(2):107~112
    [127]李先联,黄玉清,苏宗明,元宝山.南方红豆杉种群分布格局及动态[J].应用生态学报,2000,11(2):169~172
    [128]刘金福,洪伟.格氏拷种群优势度增长动态改进摸型的研究[J].植物生态学报,2001,25 (2):225~229
    [129]Smith, E E Population Dynamic in Daphina magna and a new model for population growth Ecology,1963,44:651~663
    [130]崔启武,lawson G.一种新的种群增长数学模型——对经典的Logistic方程和指数方程的扩充[J].生态学报,1992,2(4):403~414
    [131]张大勇,赵松龄.森林自过程中密度变化规律的研究[J].林业科学,1985,21(4):369~373
    [132]刘金福,洪伟,李家和,等.格氏拷种群生态学研究Ⅲ,格氏拷种群优势度增长动态规律研究[J].应用生态学报,1998,9(5):453~467
    [133]刘金福,洪伟.格式栲种群优势度增长改进模型的研究[J].植物生态学报,2001,25(2):225~229
    [134]吴承祯,洪伟.运用改进单纯型法拟合Logistic曲线的研究[J].生物数学学报,1999,14(1):117~121
    [135]陈辉,何宗明,洪伟.杉木人工林密度效应模型的研究[J].福建林学院学报,1992,12(3):277~282
    [136]吴承祯,洪伟.杉木林自疏过程密度调节规律的研究[J].热带亚热带植物学报,2000,8(1):28~34
    [137]程煜,洪伟,吴承祯,等.闽北马尾松人工林密度及立地效应[J].福建林学院学报,2002,38(4):157~161
    [138]吴承祯,洪伟.运用改进单纯型法拟合Logistic曲线的研究[J].生物数学学报,1999,14(1):117~121
    [139]Noble 1. C. The population biology of plants with clonal growth. 1. The morphology and structure demography of Carex arenaria. J.Ecol.1979,67:983~1008
    [140]张文辉,许晓波,周建云,等.濒危植物秦岭冷杉种群空间分布格局与动态[J].西北植物学报,2005,25(9):1840~1847
    [141]郑元润,大青沟森林植物群落主要木本植物生态位研究[J].植物生态学报,1999,23(5):475~479
    [142]胡理乐,江明喜,党海山.从种间联结分析濒危植物毛柄小勾儿茶在群落中的地位[J].植物生态学报,2005,29(2):258~265
    [143]姜凤岐,曾德慧,等.固沙林的经营基础与技术对策[J].中国沙漠,1997,17(3):250~254
    [144]欧祖来,李先醌.元宝山冷杉群落主要树木种群间联结关系的研究[J].生态学杂志,2002,18(3):10~14
    [145]郭志华,卓正大.庐山常绿阔叶林、落叶阔叶混交林乔木种群间联结性研究[J].植物生态学报,1997,21:429~432
    [146]杜道林,刘玉成.缙云山亚热带栲树林优势种群间联结性研究[J].植物生态学报,1995,19(2):149~157
    [147]林存炎.沿海马尾松相思次生林优势种群生态学研究[D].福建农林大学,2008
    [148]蔡小英.武夷山黄山松种群结构与动态研究[D].福建农林大学,2008
    [149]李根前,唐德瑞,等.陕南马尾松种群结构与动态的初步研究[J].西北植物学报,1994,14(4):307~313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700