毛竹蔓延过程中林内光环境变化对其他树种的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹林是中国南方地区重要的森林类型,具有重要的经济价值,因此,目前对于竹林的研究主要集中在丰产栽培技术和丰产栽培模式等方面。但目前有研究表明,毛竹因其强大的分生能力,扩张情况明显,并不断纯林化,导致生物多样性的减少,景观结构单一。但关于其纯林形成的原因尚鲜见报道,而林木的生长、更新与光因子具有密切的关系,因此,研究毛竹林在蔓延过程中光环境的改变对其他木本植物的影响对于揭示毛竹纯林化具有重要的理论意义。同时对毛竹林的合理经营和保护区物种多样性的保护具有实践指导意义。
     本研究在天目山自然保护区内设置样地,利用照度计、无线传感器网络等手段监测了针阔混交林、针阔—毛竹混交林以及毛竹纯林内的光照强度的变化,并且利用Li-6400型光合速率仪测定三种林分类型的样地内主要的几种乔灌木的光补偿点,分析了光照强度的变化对主要几种乔灌木的光合作用的影响;同时利用UV-2550型分光光度计测定主要几种乔灌木叶绿色的吸光度,对比分析了它们与毛竹叶片的光谱吸收情况。
     研究结果表明:
     1.在光照强度的变化上,表现为以下三个特点:(1)单日内的光照强度变化在晴天表现为双峰曲线,峰值出现于下午14点和16点;(2)随着月份改变,到监测结束时,针阔混交林内光照强度下降了10μmol·m~(-2.)·s~(-1),针阔—毛竹混交林内下降了37.6μmol·m~(-2.)·s~(-1),毛竹纯林内下降了35μmol·m~(-2.)·s~(-1);(3)不同林分内光照强度的结果为毛竹林>针阔—毛竹混交林>针阔混交林,针阔混交林内晴天日平均最低光照强度为9.8μmol·m~(-2.)·s~(-1)。
     2.在光补偿点方面,毛竹最高,其次为枫香、杉木、杉木幼苗、杜仲和油茶,分别为19.6μmol·m~(-2.)·s~(-1)、14.3μmol·m~(-2.)·s~(-1)、9.77μmol·m~(-2.)·s~(-1)、9.76μmol·m~(-2.)·s~(-1)、8.94μmol·m~(-2.)·s~(-1)、3.07μmol·m~(-2.)·s~(-1)。
     3.对比光照强度与主要乔灌木的光补偿点发现,在毛竹林蔓延过程中的光照强度并没有降至主要乔灌木的光补偿点之下,因此,它们的光合作用依然大于其呼吸作用,可以持续的补充有机物。光照强度的变化可能不会影响主要乔灌木的正常生长。然而,由于杉木幼苗独特的喜荫特性,光照的增强可能会影响到杉木的更新。
     4.光谱的吸收结果看出,由于所有植物对于可见光部分的吸收基本都集中在相同的波段范围内,且峰值也处于同样的665nm以及435nm处。但峰值的吸收程度不同,在两个峰值处均表现为杜仲>毛竹>枫香>杉木幼苗>杉木>油茶。这样毛竹蔓延可能会影响到吸收能力不及它的几种树种的生长,但是油茶能够吸收利用紫外部分的光,可能受到影响较小。
Phyllostachys edulis is an important part of forest in southen area of China, and it has an imporantan economic value, so the reasrch focuses on high yield cultivation techniques and high yield mode and so on. But some study showed that phyllostachys edulis kept expansion and pure because of its strong proliferation, and this leaded to a reduction of biological diversity, and the single of landscape structure. But the study of the reasons of its pure is still rare, and the tree growth and renewal have a close relationship with light factors, so the influence of the changes of light environment on the woody plant in phyllostachys edulis stands is an important theoretical significance for the study of pure of phyllostachys edulis stands. It has practical significance for reasonable management of phyllostachys edulis forest and protection of species diversity in reserves.
     This study setted the plots in Tianmu mountain nature reserve, monitored the light intensity in needle board leaved mixed forest, needle board leaved-bamboo mixed forest and phyllostachys edulis forest with Quantum Meter and wireless sensor network(WSN), detected the light compensation point (LCP) of the main trees and shrubs in three different plots with Li-6400 to analyse the influence of changes of light intensity on the photosynthesis of trees and shrubs; analysed their respective absorbance with Spectrophotometer UV-2550 to compare them with the absorption spectrum of bamboo leaves.
     The result shows:
     1. There are three characteristics in the Changes in lght intensity as the follow: (1) The variety of light intensity in a single sunny day was bimodal cure, the peak showed at 14:00 and 16:00; (2) The light intensity reduced 10μmol·m~(-2.)·s~(-1) in needle board leaved mixed forest, 37.6μmol·m~(-2.)·s~(-1) in needle board leaved-bamboo mixed forest and 35μmol·m~(-2.)·s~(-1) in phyllostachys edulis forest as the month change; (3) The light intensity in different plots was phyllostachys edulis forest > needle board leaved-bamboo mixed forest > needle board leaved mixed forest, and the minimum of sunny average daily light insity was 9.8μmol m~(-2) s~(-1) in needle board leaved mixed forest.
     2. The light compensation point of Moso bamboo is the highest, followed by Liquidambar formosana, fir, fir seedlings, Eucommia ulmoides Oliver, and Camellia Oleifera. The light compensation point of these plant species are 19.6μmol·m~(-2.)·s~(-1), 14.3μmol·m~(-2.)·s~(-1), 9.77μmol·m~(-2.)·s~(-1), 9.76μmol·m~(-2.)·s~(-1), 8.94μmol·m~(-2.)·s~(-1),and 3.07μmol·m~(-2.)·s~(-1) respectively.
     3. Comparison of the light intensity and light compensation point of main plant species shows the light intensity is not under the light compensation point of main plant species during the process of phyllostachys edulis expansion. Therefore, the photosynthesis of main plant species is still stronger than their respiration, which means there is enough nutrition to sustain their growth. Change in light intensity has no influence on growth of main plant species. However, increase in light intensity will impact on fir regrowth because the fir seedlings are apt to shade condition.
     4. The plant absorbs the same range of visible light, and the peak values locate at 665nm and 435nm.The absorption was different, Eucommia ulmoides > phyllostachys edulis > Chinese sweet gum > China fir sapling > China fir > Camellia oleifera, at both the two peaks. The growth of plants that absorption ability was lower than phyllostachys edulis would be effected by the expansion of phyllostachys edulis. Camellia oleifera can absorb and use ultraviolet radiation, it may get less effect.
引文
[1]施必青,方伟,王学勤.我国毛竹研究文献分析[J].竹子研究汇刊,1998,17(4):71-74.
    [2]祁承经,汤庚国.树木学(南方本)[M].中国林业出版社:452,471.
    [3]刘仕咄,谢乔武.毛竹的生长特性与竹林采伐[J].湖南林业,2009,5:26-27.
    [4]李党寻,廖水成.毛竹生长规律初探[J].湖南林业科技,1998,25(4):28-30
    [5]楼崇,刘成林.毛竹质量生长的研究[J].浙江林学院学报,1994,11(3):269-273.
    [6]张春生,陈建华,朱凡.毛竹生长发育规律的调查分析[J].经济林研究,2007,25(4):74-76.
    [7]施建敏,郭起荣,杨光耀.毛竹光和动态研究[J].林业科学研究,2005,18(5):551-555
    [8]云南毛竹.农村实用技术,1999,2:4-7.
    [9]赵明水,刘亮,陆森.天目山自然保护区毛竹林扩张对植物多样性影响研究[C].第二届中国林业学术大会——S8野生动物、湿地与自然保护区论文集.2009.
    [10]曹永慧,萧江华,陈双林.竹阔混交林中阔叶树对毛竹生长的影响及竞争关系[J].浙江林学院学报,2006,23(1):25-40.
    [11]叶勇恩.毛竹—马尾松—杉木混交林群落学特征研究[J].江西农业大学学报, 2003,25(4): 594-598.
    [12]庾晋,周洁.物种入侵危害生物安全.甘肃林业,2002,1:33-35.
    [13]丁建清,解焱.中国外来种入侵机制及对策[A].保护中国的生物多样性(二)[C].北京:中国环境科学出版社,1996:107-128.
    [14]蒋志刚,马克平,韩兴国主编.保护生物学[M].浙江科学技术出版社,1997.
    [15]李振宇,解焱主编.中国外来入侵种[M].中国林业出版社,2002.
    [16]OELRICHS PB,CALANSAN CA,MALEOD JK. Isolation of a Compound From Eupatorium adenophorum(Spreng.)Natural Toxins,1995,350-354.
    [17]宋启示,付昀.紫茎泽兰的化学互感潜力.植物生态学报.2000,24(3):362-365.
    [18]B.W.VAN WILGEN, B.REYERS, D.C.LE MAITRE. A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa[J]. Journal of Environmental Management, 2008,89:336-349.
    [19]OU JIAN, LU CHANGYI, DESMOND K.O’TOOLE. A risk assessment system for alien plant bio-invasion in Xiamen,China[J]. Journal of Environmental Sciences, 2008,20:989-997.
    [20]W.H.SUMNERS, O.W.ARCHIBOLD. Exotic plant species in the southern boreal forest of Saskatchewan[J]. Forest Ecology and Management, 2007, 251: 156-163.
    [21]JEFFREY S.WARD, THOMAS E.WORTHLEY, SCOTT C.WILLIAMS. Controlling Japanese barberry (BerbeRis thunbergii DC) in southern New England, USA[J]. Forest Ecology and Management, 2009, 257: 561-566.
    [22]MACKENZIE A, BALL AS, VIRDEE SR. Instant notes in ecology[M].Ox-ford: BIOS Scientific Publishers Ltd.,1998.
    [23]EUGENE P.ODUM, GARY W. BARRETT. Fundamentals of Ecology[M].Higher Education Press, Fifth Edition,2009:260.
    [24]BIH. Competition in mixed stands of Pinus radiate and Eucalyptus obliqa[J]. J Appl Ecol, 1996, 33(1): 87-99
    [25]郑世群,刘金福,吴则焰.屏南水松天然林主要种群的种间竞争[J].福建林学院学报,2008,28 (3):216-219.
    [26]林思祖,黄世国,洪伟.衫阔混交林杉木与其他混交树种种间竞争研究[J].林业科学,2004.40 (2):160-164.
    [27]彭彪,盖新敏.江南油杉林植物种群竞争的研究[J].江西农业学报,2008,20(2):49-47.
    [28]李维炯主编.《生态学基础》.北京邮电大学出版社.
    [29]曲仲湘,吴玉树,王焕校,姜汉桥,唐廷贵编.《植物生态学》(第二版).高等教育出版社.
    [30]田育新,刘浩.三个典型林分光照强度的分布规律研究[J].湖南林业科技,1997,24(1):34-36.
    [31]CHRISTAIN RAMOFAFIA, TIMOTHY.P.F,JOHANN.D.B.Groth of juvenile Actinopyga mauritiana(Holothuroidea) in captivity. Aquaculture, 1997, 152: 119-128.
    [32]WIEDEMEYER.W.L. Biology of small juveniles of the holothurians Actinopyga echinites: Growth, mortality, and habitat preferences. 1994,Mar.Biol. 120:81-93.
    [33]张硕,陈勇,孙满昌.光照对刺参行为特性和人工礁模型集参效果的影响[J].中国水产科学,2006,13(1): 20-27.
    [34]郑洪立,叶春海,王季槐.温度和光照对香蕉组培苗生长和增殖的影响[J].热带作物学报, 2008,29(4): 455-458.
    [35]郑金双.光照强度对长苞铁杉幼苗生物量及主要营养元素含量的影响[J].林业实用技术, 2008,5:11-13.
    [36]张勇哲,邹德林,候立梅.光照强度对刺龙芽生长量及嫩芽品质的影响[J].延边大学农学学报.2008,30(1):12-16.
    [37]施建敏,郭起荣,杨光耀.毛竹光合动态研究[J].林业科学研究,2005,18(5):551-555.
    [38]谢会成,姜志林,尹建道.杉木的光合特性及其对CO2倍增的响应.西北林学院报报,2002, 17(2):1-3.
    [39]陈冠文,余渝.棉叶光补偿点与棉田最大叶面积系数的初步研究[J].中国棉花,2007,27(4): 26-27.
    [40]施建敏,郭起荣,扬光耀,等.毛竹光合作用对环境因子的季节响应[J].广西植物,2007,27(6): 923-928.
    [41]KRARNER G.F, NORMAN H.A, KRIZEK D.T. Influence of UVB radiation on polyamine, lipid peroxidation and membrane lipids of cucumber. Phytochemistry, 1991,30:2101-2108.
    [42]BIGGS R.H, KOSSUTH S.V, TERAMURA A.H. Response of 19 cultivators of soybeans to ultraviolet-B irradiation. Physiol Plant, 1981,53:19-24.
    [43]刘伟,张光伦,余凌帆,等.光质对经济林果的生理生态作用[J].四川林业科技,2007,28 (3):89-92.
    [44]A.ANDREEVA. Photosynthetiea.1953;17:512-515.
    [45]R.AVARMAAETAL. EEBSLett.1984;267:286-190.
    [46]A.S.ANDREEVA. Photosynthetiea.1956;20:9-13.
    [47]T.D.SHARKEY. Photosynthesis Res.,2955;7:163-174.
    [48]郑洁,胡美君,郭延平.光质对植物光合作用的调剂及其机理[J].应用生态学报,2008,19(7):1619-1624.
    [49]刘贵忠,于凌春,于家峰.磁场对银杏叶叶绿素紫外可见吸收光谱的影响[J].安徽农业科学,2008,36(8):3059-3061.
    [50]彭运生,王化琪,何道根.水、旱稻品种叶片光谱的初步研究[J].光谱学与光谱分析,1998,18(3):269-272.
    [51]王殊,阎毓杰,胡富平.无线传感器网络的理论及应用[M].北京:北京航天航空大学出版社, 2007.127-130,170-180,183-200.
    [52]刘航,廖桂平,杨帆.无线传感器网络在农业生产中的应用[J].农业网络信息,2008,11:16-21.
    [53]彭艳,何东健.基于Zigbee技术的果园生态环境监测系统[J].农机化研究,20094:164-167.
    [54]BYUNGRAK SON, YONG-SORK HER, JUNG-GYU KIM. A design and Implementation of Forest-Fires Surveillance System based on Wireless Sensor Networks for South Korea Mountains[J]. InterNational Journal of Computer Science and Network Securtity,2006,VOL.6 No.9B:124-130.
    [55]HILL, J.R. SZEWCZYK, A. WOO, S. HOLLAR, D. CULLER, K. PISTER.2000: System Architecture Directions for Networked Sensors. ACM SIGPLAN Notices, 35,93-104.
    [56]余向阳.无线传感器网络研究综述[J].单片机与嵌入式系统应用,2008,8:8-12.
    [57]赖彦任,邱祈荣,魏聪辉.无线感测网路技术进行森林气温与相对湿度观测之先驱实验[J].大气科学,2007,35(2):119-132.
    [58]艾莉,程家堂.无线传感器网络及其应用概述[J].技术与市场,2009,16(4):48-49.
    [59]杜晓明,陈岩.无线传感器网络在温室农业监测中的应用[J].农机化研究,2009,6(6):142-143.
    [60]李小遐,刘瑞霞.一种无线传感器网络的设计[J].自动化技术与应用,2006,25(4):47-49.
    [61]曹元军,王新忠,杨建全.基于无线传感器网络的农田气象监测系统[J].农机化研究,2008,12 (12):163-165.
    [62]钟新跃,谢完成.无线传感器网络在煤炭环境监测中的应用[J].煤炭技术,2009,28(9):102-103.
    [63]李光辉,赵军,王智.基于无线传感器网络的森林火灾检测预警系统[J].传感技术学报,2006,19(6):2760-2764.
    [64]陆志平,秦会斌,王春芳.无线传感器巫昂罗在森林火灾检测中的应用[J].杭州电子科技大学学报,2006,26(5):48-51.
    [65]张军国,李文彬,韩宁.基于ZigBee无线传感器网络的森林火灾检测系统的研究[J].北京林业大学学报,2007,29(4):41-45.
    [66]GILMAN TOLLE, JOSEPH POLASTRE, ROBERT SZEWCZYK. A macroscope in the redwoods[R]. Proceedings of the 3rd international conference on Embedded networked sensor systems, 2005: 51-63.
    [67]ALAN MAINWARING, DAVID CULLER, JOSEPH POLASTRE. Wireless sensor networks for habitat monitoring[R]. In WSNA’02:Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, 2002:88-97.
    [68]CERPA. A., J. ELSON, D. ESTRIN. Habitat Monitoring: Application Driver for Wireless Communications Technology[R]. In proceedings of the First ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean,2001.
    [69]MARTINEZ. K., J. K. HART AND R. ONG. Environmental Sensor Networks[R]. IEEE Computer,2004:50-56.
    [70]CARDELL-OLIVER. R., K. SMETTEM, M. KRANZ. Field Testing a Wireless Sensor Network for Reactive Environmental Monitoring[R]. In Proceedings of the International Conference on Intelligent Sensors, Sensor networks and Information Processing.
    [71]BATALIN. M. A., M. RAHIMI, Y. YU. Call and Response: Experiments in Sampling the Environment. In Proceedings of the Second ACM Conference on Embedded Networked Sensor Systems, 2004.
    [72]施必青,方伟,王学勤.我国毛竹研究文献分析[J].竹子研究汇刊,1998,17(4):71-74.
    [73]MAARTEN DE GROOT, DAVID KLEIJN, NEJC JOGAN. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis[J]. Biological conservation, 2007, I36:612-617.
    [74]陈建新,徐良,刘亮.天目山自然保护区毛竹林扩张及调控对策[C].浙江省第三届生物多样性保护与可持续发展研讨会会议论文摘要集,2006.
    [75]丁丽霞,王祖良,周国模,杜晴洲.天目山国家级自然保护区毛竹林扩张遥感监测[J].浙江林学院学报,2006,23(3): 297-30.
    [76]蔡亮,张瑞霖,李春福等.基于竹鞭状态分析的抑制毛竹林扩散的方法[J].东北林业大学学报,2003,31(5):68-70.
    [77]LUFENG MO, YUAN HE, YUNHAO LIU. Canopy Closure Estimates with GreenOrbs: Long-Term Large-Scale Sensing in the Forest[C]. SenSys’09,2009.
    [78]Technical Datasheet. Interface to the Sensirion○R SHT11~(TM).
    [79]Questions about engineering units for PAR, TSR and Internal Temperature of Telos motes. https://www.millennium.berkeley.edu/pipermail/tinyos-help/2008-July/035149.html
    [80] http://wenwen.soso.com/z/ q155444702.html
    [81]张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化[J].林业科学,2000,36(3):19-26.
    [82]龚垒.树木的光合作用与物质生产[M].北京:北京科学技术出版社,1989.
    [83]baike.baidu.com/view/414285.htm
    [84]李维炯主编.生态学基础.北京邮电大学出版社.2002.
    [85]何科奭 ,马正华.无线传感器网络在环境监测中的应用[J].环境监测管理与技术,2009,21(2):60-62.
    [86]TRIPATHI R S , SINGH R S , RAI J P N. Allelopathic Potential of Eupatorinum adenophorum:A Dominant Ruderal Weed of Meghalaya India[J]. Proc Natl Sci Acad PartB Biol Sci,1981,47(3):458-456.
    [87]楼一平,吴良如,邵大方.毛竹纯林长期经营对林地土壤肥力的影响[J].林业科学研究,1997,10(2):125-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700