数控系统功能安全关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高档数控系统已成为新兴高新技术产业和尖端工业的使能技术和最基本装备。针对高档数控系统中高速、高精、复合化、网络化和多轴联动等发展方向对安全性的特殊需求,本文对数控系统功能安全展开了深入的研究。
     功能安全涉及到安全相关的机电控制系统、安全相关技术和其它风险降低策略,其目的是保证安全功能的正确执行。根据相关国际标准,功能安全的具体实现包括风险评估和风险降低两个过程,其所涉及的核心技术主要包括风险评估方法和风险降低策略。基于此,本文重点解决相对应的风险评估方法、总线安全通信技术以及系统安全监控方法等关键技术。
     本文主要工作及研究成果包括:
     1.提出了一种递阶式风险评估方法。
     为有效识别风险因素,评估系统安全性能,本文提出了一种递阶式风险评估方法。首先给出了递阶式层次结构模型将复杂系统逐级分解简化,构建了评估序列集矩阵以融合各层级专家经验,并且设计出序列集模糊映射方法将专家经验进行量化,从而获取各层级中因素权重;然后针对所获取递阶式层次结构模型,从顶层开始将各层级因素权重进行逐层传播扩散直至底层,从而定位关键风险因素:同时辅以水平分片法,与安全等级匹配规则集相结合,确定数控系统风险程度等级;最后采用实际案例对所提出方法和有向图矩阵法进行性能对比,结果证明该方法能够有效减少评估结果相似度,降低评估时间,适合于数控系统风险评估过程的应用,具有很好的应用前景。
     2.提出了一种基于双环现场总线的安全通信方法。
     针对数控系统中安全信息对传输安全性及实时性的需求,本文提出一种在数控系统双环现场总线上对所传输消息进行环形编码的消息安全通信方法。该方法充分利用了两条通信环路,其中一条环路用于传输各从站点的原始消息,另一条环路采用环形编码算法生成了用于从站点进行自我修复的关联消息,在增强信息冗余度的同时,保证了主站点对应答消息的及时获取。论文中还给出了数控双环现场总线安全报文结构,并设计出相应的数据恢复算法,最后采用数学手段及实验测试对所提出方法与传统的双通道通信方法进行性能比较,证明所提安全通信方法在未增加报文长度和算法复杂度的前提下,能够有效增强冗余性,降低重传概率,同时满足通信实时性要求,结果表明该方法适合于数控现场总线消息安全通信的应用,具有很好的应用前景。
     3.提出了一种基于离散事件系统的安全监控系统建模方法。
     数控系统是一类典型的离散事件系统,因此在离散事件系统基础上研究安全监控系统的建模方法,能够有效增强数控系统中安全控制功能的健壮性。本文首先总结了离散事件系统中已有的安全监控系统建模过程,并在此基础上,针对可能发生的事件可视性丢失问题,以及事件可视性突发丢失后的后继修复问题,提出了新的安全监控系统模型;重新定义了新模型中各元组的含义及内部原理,同时提出一种步进融合算法,给出了相应的伪代码和算法描述;最后,采用数学手段及实验验证对所提出方法与已有方法进行性能比较,证明该方法能够在保证安全监控目的的同时,获取更高的语言演化自由度,以及更低的模型复杂度,和更少的模型生成时间。
The high-end Computer Numerical Control (CNC) System is the enabling technology and basic equipment of developing new and hi-tech industry and advanced industrial science and technology. To meet the high-end CNC demands of safety, which is proposed by the performance of high velocity, high accuracy, composition, networking development trends and multiple channels, this dissertation focuses on the research of the functional safety of CNC system and related key technologies.
     Functional safety is part of the safety of the machine and the machine control system which depends on the correct functioning of the safety-related electrical control system, other technology safety-related systems and external risk reduction facilities. In accordance with related international standards, the implementation of functional safety includes two procedures, the first one is the risk assessment procedure, and the other one is the risk reduction procedure. Therefore, this dissertation focuses on solving related risk assessment method, safety communication method and safe supervisory control method.
     The main contributions of the dissertation are described as following:
     1. We present a hierarchical risk assessment method for CNC system.
     To identify risk factors and estimate the safety level of CNC system effectively, a hierarchical risk assessment method was presented. First of all, a hierarchical model of CNC system was proposed to disintegrate and simplify the complex CNC system, and an assessment sequences set matrix was deeply researched with the corresponding fuzzy mapping algorithm to mix the expert experience together and to quantize the expert experience. Secondly, a layered diffusion method of factor weights was proposed to locate key risk factors, and a horizontal fragmentation method was adopted to calculate the risk degree of CNC system. Finally, case studies were adopted to compare the performance between the digraph and matrix method and the new mechanism. The results proved that the new mechanism could decrease the similarity performance, reduce the execution time, and be more suitable for the application of risk assessment process in CNC systems.
     2. We present a safety communication method based on CNC Dual Ring Fieldbus.
     To meet the requirements of safety signals in transmission security and real-time performance of CNC system, a message safety communication method which adopting ring coding based on CNC Dual Ring Fieldbus was presented. Corresponding to the proposed method for safety communication, one ring field bus is used to transmit original messages, and the other one is used to transmit selfreparing messages which can be caculated to achieve original messages. The structure of CNC Dual Ring Fieldbus safety message was proposed, and safety communication mechanism based on Dual Ring and related algorithms were deeply researched. And then mathematic method and experiment tests were adopted to compare the performance between the new and traditional mechanisms. The results proved that the new mechanism could enhance the redundancy performance, reduce the retransmission probability, meet the real-time performance, and be more suitable for the application of message safety-critical communication in CNC Fieldbus.
     3. We present a safe supervisory control method under observability failure for Discrete Event System (DES).
     CNC system is a typical DES, so the robustness of safe control function of CNC system can be enhanced by the research of safe supervisory control methods based on the DES. Firstly, we summarized and described traditional modeling methods in detail for DES. Moreover, to solve the problem of safe supervisory control under possible loss of observability and repair of observability failure for DES, a step-fusion algorithm was proposed. Based on the step-fusion algorithm, a new safe supervisory control model was presented. And then mathematic method and case study were adopted to compare the performance between the new and traditional mechanisms. The results proved that the new mechanism could obtain a safe controller that avoids disaster states, and be more permissive than the traditional supervisor.
引文
[1]Dong Yu, Yi Hu, Xun Xu, et al. An Open CNC System Based on Component Technology[J]. IEEE Transactions on Automation Science and Engineering.2009,6(2):302-310.
    [2]Shuhua Wang, Haihui Cao, Weian Wu, et al. Design of A Large DDR Motor for High-End CNC Machine Tools Applications[C]. International Conference on Electrical Machines and Systems(ICEMS),2011:1-3.
    [3]Liuwen Huang, Wei Liu, Zhanqing Liu. Algorithm of Transformation From PLC Ladder Diagram to Structured Text[C].9th International Conference on Electronic Measurement& Instruments,2009(4):778-782.
    [4]Hongbo Cao, Dagui Huang. On Composite Position Control of CNC System Feeding PMSM Based on Position Feedforward and SVPWM[C]. International Conference on Mechatronics and Automation (ICMA),2010:735-740.
    [5]Hee-Sub Lee, Jae Wook Jeon, Joung Youn Choi. A High-Performance Open Architecture Motion Controller[C]. IEEE International Symposium on Industrial Electronics(ISIE), 2001(2):886-890.
    [6]Hongxing Wei, Xinming Duan, Youdong Chen, et al. Research of Open CNC System Based on CORBA[C]. Fifth IEEE International Symposium on Embedded Computing(SEC), 2008:364-369.
    [7]Hace A, Jezernik K. The Open CNC Controller for A Cutting Machine[C]. IEEE International Conference on Industrial Technology,2003(2):1231-1236.
    [8]Pritschow G, Altintas Y, Jovane F, et al. Open Controller Architecture-Past, Present and Future[C]. In:Proc. Annals of the CIRR,2001(50):463-470.
    [9]Asato O L, Kato E R R, Inamasu R Y. Analysis of Open CNC Architecture for Machine Tools[J]. Journal of the Brazilian Society of Mechanical Sciences,2002(24):208-212.
    [10]Janos N. Comparison of Three Different Open Architecture Controllers[C]. In:Proc. MIM 2001 IFAC Workshop on Manufacturing, Modelling, Management and Control, Preprints, Prague,2001:134-138.
    [11]王太勇,乔志峰,韩志国,等.高档数控装备的发展趋势[J].中国机械工程,2011,22(10):1247-1252,1259.
    [12]Veikko Rouhiainen. Technology Roadmap of Security Research[M]. ESPOO,2007.
    [13]Wenying Chen, Jianshe Chai. Application of the Cause-Consequence Diagram Model for Quantify Grinding Machine System Safety-Capability[C]. Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering (ICBBE2011), 2011:1-4.
    [14]Jinhua Mi, Yanfeng Li, Haiqing Li, et al. Reliability Analysis of CNC Hydraulic System Based on Fuzzy Fault Tree[C]. International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE),2011:208-212.
    [15]Cao Y, Shao Z, Wang M, et al. A Formal Specification and Verification Framework for Designing and Verifying Reliable and Dependable Software for Computerized Numerical Control(CNC) Systems[C]. The 28th International Conference on Distributed Computing Systems(ICDCS),2008:269-276.
    [16]Ashraf Armoush, Falk Salewski, Stefan Kowalewski. Design Pattern Representation for Safety-Critical Embedded Systems[J]. Journal of Software Engineering and Applications, 2009,2:1-12.
    [17]A Armoush, F Salewski, S Kowalewski. Effective Pattern Representation for Safety Critical Embedded Systems[C]. International Conference on Computer Science and Software Engineering(CSSE),2008:91-97.
    [18]S Konrad, B Cheng, L Campbell. Object Analysis Patterns for Embedded Systems[J]. IEEE Transactions on Software Engineering,2004,30(12):970-992.
    [19]I Koren, C M Krishna. Fault-Tolerant Systems[M]. Elsevier,2007.
    [20]李佳特.数控系统的安全功能[J].世界制造技术与装备市场,2006(4):78-82.
    [21]陈开泰,朱春标,黄松杰.机械安全标准体系及其安全实现[J].仪器仪表标准化与计量,2007(6):17-18,23.
    [22]王春喜.工业安全控制技术及其标准化研究[J].仪器仪表标准化与计量,2007(5):21-25.
    [23]Guido Beckmann. Safety over EtherCAT[R]. EtherCAT Technology Group Office China, 2007.
    [24]SPADA S, HUMPHREY D W. Safe motion technologies:competitive advantages for early adopters[R]. United States of America:ARC Advisory Group,2005.
    [25]BS EN 1088. Safety of Machinery-Interlocking Devices Associated with Guards-Principles for Design and Selection[S].1996.
    [26]IEC 61496. Safety of Machinery — Electro-Sensitive Protective Equipment.2004.
    [27]IEC 61131. Programmable Controllers.2003.
    [28]IEC 61800-5-2. Adjustable Speed Electrical Power Drive Systems-Part 5-2:Safety Requirements-Functional.2007.
    [29]IEC 61784. Digital Data Communications for Measurement and Control.2003.
    [30]IEC 62443. Industrial Communication Networks-Network and System Security.2011
    [31]IEC 61918. Industrial Communication Networks-Installation of Communication Networks in Industrial Premises.2010.
    [32]IEC 61158. Safety Communication Profiles. Fieldbus Standard,2008.
    [33]IEC 61326-3-1. Electrical Equipment for Measurement, Control and Laboratory Use-EMC Requirements-Part 3-1:Immunity Requirements for Safety-Related Systems and for Equipment Intended to Perform Safety-Related Functions (Functional Safety)-General Industrial Applications.2008.
    [34]ISO 12100-1. Safety of Machinery-Basic Concepts, General Principles for Design-Part 1: Basic Terminology, Methodology.2009.
    [35]ISO 14121. Safety of Machinery-Risk Assessment.2007.
    [36]NFPA 79. Electrical Standard for Industrial Machinery.2007.
    [37]IEC 60204-1. Safety of Machinery-Electrical Equipment of Machines-Part 1:General Requirements.2006.
    [38]IEC 62061. Safety of Machinery-Functional Safety of Safety-Related Electrical, Electronic and Programmable Electronic Control Systems.2005.
    [39]IEC 61508. Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems,2002.
    [40]ISO 13849. Safety of Machinery-Safety-Related Parts of Control Systems.2006.
    [41]Hongkun Zhang, Wenjun Li, Jun Qin. Model-Based Functional Safety Analysis Method for Automotive Embedded System Application[C]. International Conference on Intelligent Control and Information Processing (ICICIP),2010:761-765.
    [42]Takeichi M, Sato Y, Suyama K, et al. Failure Rate Calculation With Priority FTA Method for Functional Safety of Complex Automotive Subsystems[C]. International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE),2011:55-58.
    [43]Purewal S, Waldron M A. Functional Safety in Application of Programmable Devices in Power System Protection and Automation[C]. Eighth IEE International Conference on Developments in Power System Protection,2004(1):295-298.
    [44]Gall H. Functional Safety IEC 61508/IEC 61511 the Impact to Certification and the User[C]. IEEE/ACS International Conference on Computer Systems and Applications (AICCSA), 2008:1027-1031.
    [45]Sinumerik 840D/Simodrive 611 Digital-Sinumerik Safety Integrated-Description of Functions[M]. Siemens,2006.
    [46]Risto Tiusanen, Marita Hietikko, Jarmo Alanen, et al. System Safety Concept for Machinery Systems[M]. ESPOO,2008.
    [47]王春喜,王玉敏.工业安全技术研究[J].仪器仪表标准化与计量,2004(6):7-12.
    [48]王春喜,石镇山.功能安全标准化发展现状分析[J].仪器仪表标准化与计量.2010(5):22-25.
    [49]杨栩楠.功能安全与微控制器自诊断技术的研究[D].北京交通大学,2010.
    [50]马宁.基于功能安全的多协议智能流量变送平台的软件系统研究[D].电子科技大学,2008.
    [51]邱辉.安全仪表系统的功能安全认证研究[D].首都经济贸易大学,2010.
    [52]曹宇.安全控制器功能安全检验测试方法与测试仪研究[D].北京化工大学,2011.
    [53]李跃峰.功能安全国际标准的研究[D].浙江大学,2007.
    [54]Rainer Faller. Experience in Component Assessment & Certification for Functional Safety[R]. Institution of Electrical Engineers,2004.
    [55]William L Mostia, Jr P E. Safety Instrumented Systems[OL]. contralsweekly.com,2006.
    [56]鲁晓玲.安全仪表系统的功能安全评估研究[D].首都经济贸易大学,2008.
    [57]LI Wenyuan, ZHOU Jiaqi, XIE Kaigui, et al. Power System Risk Assessment Using a Hybrid Method of Fuzzy Set and Monte Carlo Simulation[J]. IEEE Transactions on Power Systems, 2008,23(2):336-343.
    [58]Lin Li, Yunxiang Chen, Le Zhang. A Military Aircraft Safety Risk Evaluation Method Based on "Human-Machine-Environment System"[C], International Conference on Future Information Technology and Management Engineering (FITME),2010:8-12,
    [59]Zhaojun Yang, Binbin Xu, Fei Chen, et al. A New Failure Mode and Effects Analysis Model of CNC Machine Tool Using Fuzzy Theory[C]. IEEE International Conference on Informathion and Automation,2010:582-587.
    [60]Wei Xu, Shenghu Zhou, Dongmei Duan, et al. A Support Vector Machine Based Method for Credit Risk Assessment[C]. IEEE International Conference on E-Business Engineering,2010: 50-55.
    [61]Guixiang Shen, Shaohua Fan, Yingzhi Zhang, et al. Risk Evaluation of NC Machine Tools Based on Fuzzy Weighted Geometric Mean[C]. IEEE Institute of Ecology and Environmental Management,2010:2384-2388.
    [62]Peter J Edwards, Andrew M Peacock, David Renshaw, et al. Minimizing Risk Using Prediction Uncertainty in Neural Network Estimation Fusion and Its Application to Papermaking[J]. IEEE Transactions on Neural Networks,2002,13(3):726-731.
    [63]Faisal I Khan, Rehan Sadiq, Tahir Husain. GreenPro-I:A Risk-Based Life Cycle Assessment and Decision-Making Methodology for Process Plant Design[J]. Environmental Modelling& Software,2002(17):669-692.
    [64]William M Goble. Control Systems Safety Evaluation and Reliability[M]. International Society of Automation,2010.
    [65]邓璇炽.安全控制器的设计[D].北京交通大学,2010.
    [66]欧姆龙自动化(中国)统辖集团.安全控制器优缺点综述[J].机电产品市场,2007(11):59-61.
    [67]阳宪惠.现场总线技术及其应用[M].北京:清华大学出版社,1999.
    [68]冯冬芹,廖智军,金建祥,等.基于以太网的工业控制网络实时通信模型研究[J].仪器仪表学报,2005,26(9):891-894.
    [69]胡毅,于东,李培楠,等.基于现场总线的开放式数控系统的设计与实现[J].小型微型计算机系统,2008,29(9):1745-1749.
    [70]潘月斗,许镇琳,杨堂勇,等.一种基于CAN总线的机床数控系统接口设计研究[J].中国机械工程,2007,18(2):178-182.
    [71]沈青,桂卫华,杨铁军.基于工业以太网的实时控制性能分析[J].计算机工程,2007,33(1):233-235.
    [72]宋立博,李蓓智,杨建国,等.基于CAN总线和变结构方法的AGV控制器设计[J].中国机械工程,2004,15(16):1443-1446.
    [73]于海斌,曾鹏,王忠锋,等.分布式无线传感器网络通信协议研究[J].通信学报,2004,25(10):102-110.
    [74]Jonathan L. Process Automation Handbook:A Guide to Theory and PracticefM]. Springer Verlag,2007.
    [75]Scholz B, Wollschlaeger M. Configuration, implementation and management of heterogeneous industrial communication networks using fieldbus technoIogy[J]. Electrical Engineering,1998,81:253-261.
    [76]Pantoni R P, Mossin E A, Donaires O S, et al. Configuration Management for Fieldbus Automation Systems[C]. In:Proc. IEEE International Symposium on Industrial Electronics, 2007:1844-1848.
    [77]Valdes M D, Dominguez M a, Moure M J. A Reconfigurable Communication Processor Compatible with Different Industrial Fieldbuses [R]. Lecture Notes in Computer Science, 2004,3203:1011-1016.
    [78]Valckenaers P. Challenges of Next Generation Manufacturing Systems[R]. SoftSpez Final Report,2004:23-28.
    [79]Cuong D M, Kim M K. Real-Time Communications on an Integrated Fieldbus Network Based on a Switched Ethernet in Industrial Environment[C]. In:Proc.3th International Conference on Embedded Systems,2007:498-509.
    [80]Neumann P. Communication in industrial automation-What is going on?[J]. Control Engineering Practice,2007,15:1332-1347.
    [81]Jamsa-Jounela S L. Current status and future trends in the automation of mineral and metal processing[J]. Control Engineering Practice,2001,9:1021-1035.
    [82]Jamsa-Jounela S L. Future trends in process automation[R]. Annual Reviews in Control, 2007,31:211-220.
    [83]Plesowicz R, Metzger M. Experimental Testing of TCP/IP/Ethernet Communication for Automatic Control[C]. In:Proc. International Federation for Information Processing,2007: 260-275.
    [84]Hiroo Kanamaru, Taro Harima. Safety Field Network Technology and Its Implementation[C]. SICE Annual Conference,2008:1487-1490.
    [85]Jarmo Alanen, Marita Hietikko, Timo Malm. Safety of Digital Communications in Machines[M]. ESPOO,2004.
    [86]Dacfey Dzung, Martin Naedele, Thomas P. Von Hoff, et al. Security for Industrial Communication Systems[J], Proceedings of the IEEE,2005,93(6):1152-1177.
    [87]Timo Malm, Jacques Herard, Jorgen Boegh, et al. Validation of Safety-Related Wireless Machine Control Systems[M]. Nordic Innovation Centre,2007.
    [88]James R Moyne, Dawn M Tilbury. The Emergence of Industrial Control Networks for Manufacturing Control, Diagnostics, and Safety Data[J]. Proceedings of the IEEE,2007, 95(1):29-47.
    [89]Johan Hedberg. Methods for Verification and Validation of Time-Triggered Embedded Systems[M]. Nordic Innovation Centre,2005.
    [90]Akerberg J, Reichenbach F, Gidlund M, et al. Measurements on An Industrial Wireless HART Network Supporting PROFIsafe:A Case Study[C]. IEEE 16th Conference on Emerging Technologies& Factory Automation (ETFA),2011:1-8.
    [91]Akerberg J, Reichenbach F, Bjorkman M. Enabling Safety-Critical Wireless Communication Using WirelessHART and PROFIsafe[C]. IEEE Conference on Emerging Technologies and Factory Automation (ETFA),2010:1-8.
    [92]JARMO A, MARITA H, TIMO M. Safety of digital communications in machines[R]. ESPOO:VTT Research NOTES 2265,2004.
    [93]Benoit E, Chovin A, Foulloy L, et al. Safe Design of CANOpen Distributed InstrumentsfC]. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference, 2001(3):1768-1772.
    [94]吴勤,覃强.CC-Link Safety安全功能实现浅释[J].自动化博览,2007,24(2):36-38.
    [95]EtherCAT Communication Principles[R]. EtherCAT Technology Group Office China, Shanghai:2007.
    [96]胡毅,于东,郭锐锋,等.数控总线的消息安全通信方法[J].机械工程学报,2011,47(5):134-142.
    [97]Yaskawa Electric Corporation. Sigma-V Series-User's Manual-Design and Maintenance[M].2009.
    [98]Liu F. Brief Introduction of Safety System AS-Interface Safety at Work[J]. Intelligent Control Technology,2009(5):26-31.
    [99]Hidehiro H, Jiro K, Kazunari A, et al. The Latest Al-Nano CNC Which Can Realize High-Speed, High-Quality Machining FANUC Series 30i/300i/300is FANUC Series 31i/310i/310is FANUC Series 32i/320i/320is[J]. Fanuc Tech Rev,2004,17(1):1-17.
    [100]Jiro K, Masahiko H. Dual Check Safety Function Which is the European Standard Compatible Safety Function Integrated into FANUC Series30i/31i/32i[J]. Fanuc Tech Rev, 2004,17(2):13-17.
    [101]David W. Humphrey, Sal Spada. Siemens'Safety Integrated Adds Value to Automation Applications[R]. United States of America:ARC Advisory Group,2005.
    [102]Spada S, Humphrey D W. Safe Motion Technologies:Competitive Advantages for Early Adopters[R]. United States of America:ARC Advisory Group,2005.
    [103]Helmut Gierse. The Safety System for Industry[M]. Siemens,2004.
    [104]徐格宁,冯晓蕾.机械系统的风险概率与经济性安全评价方法研究与应用[J].中国安全科学学报,2010,20(6):69-75.
    [105]王朝芬.基于未确知测度的机械安全风险评价方法[J].中国科技信息,2010(21):139-140.
    [106]GANDHI O P, AGRAWAL V P. FMEA — A Digraph and Matrix Approach[J]. Reliability Engineering and System Safety,1992(35):147-158.
    [107]RAO R V, PADMANABHAN K K. Selection, Identification and Comparison of Industrial Robots Using Digraph and Matrix Methods[J]. Robotics and Computer-Integrated Manufacturing,2006(22):373-383.
    [108]RAO R V, PADMANABHAN K K. Selection of Best Product End-of-Life Scenario Using Digraph and Matrix Methods[J]. Journal of Engineering Design,2010,21(4):455-472.
    [109]RAO R V. A Decision-Making Framework Model for Evaluating Flexible Manufacturing Systems Using Digraph and Matrix Methods[J]. The International Journal of Advanced Manufacturing Technology,2006(30):1101-1110.
    [110]朱欣焰,周春辉,呙维,等.分布式空间数据分片与跨边界拓扑连接优化方法[J].软件学报,2011,22(2):269-284.
    [111]Mitsuo Harada. Security Management of Factory Automation[C]. SICE Annual Conference,2007:2914-2917.
    [112]Tina M, Frank S, Annemarie M, et al. Safety Proof of Combinations of CRC for Industrial Communication[J]. Journal of Applied Computer Science,2008,16(1):15-32.
    [113]Song Fei, Tong Xiaobing, Wu Qihui, et al. A Multi-CRC Selective Harq Scheme for Mimo Systems[J]. Journal of Electronics,2008,25(1):53-58.
    [114]CASSANDRAS C G, LAFORTUNE S. Introduction to Discrete Event Systems-2nd Edition[M]. New York:Springer Science+Business Media,2008.
    [115]RAMADGE P J, WONHAM W M. Supervisory Control of A Class of Discrete Event ProcessesfJ]. SIAM Jounal of Control and Optimization,1987,25(1):206-230.
    [116]舒少龙,林峰,黄志强.离散事件系统的可测性[J].计算机工程与应用,2007,43(15):19-21.
    [117]YOUNG S, GARG V K. Model Uncertainty in Discrete Event Systems[J]. SIAM Journal of Control and Optimization,1995,33(1):208-226.
    [118]LIN F. Robust and Adaptive Supervisory Control of Discrete Event Systems[J]. IEEE Transactions on Automatic Control,1993,38(12):1848-1852.
    [119]SAMPATH M, SENGUPTA R, LAFORTUNE S, SINNAMOHIDEEN K, TENEKETZIS D. Diagnosability of Discrete Event Systems[J]. IEEE Transactions on Automatic Control,1995,40(9):1555-1575.
    [120]CONTANT O, LAFORTUNE S, TENEKETZIS D. Diagnosability of Discrete Event Systems With Modular StructurefJ]. Discrete Event Dynamic Systems,2006,16(1):9-37.
    [121]WANG Y, YOO T S, LAFORTUNE S. Diagnosis of Discrete Event Systems Using Decentralized Architectures[J]. Discrete Event Dynamic Systems,2007,17(2):233-263.
    [122]SANCHEZ A M, MONTOYA F J. Safe Supervisory Control Under Observability Failure[J]. Discrete Event Dynamic Systems,2006,16(4):493-525.
    [123]BOEL R. Adaptive Supervisory Control[M]. Norwell:Synthesis and Control of Discrete Event Systems,2002:115-123.
    [124]岳东峰,于东,高甜容,等.基于数控双环现场总线的安全通信方法[J].计算机集成制造系统,2011,17(5):1032-1039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700