宁心痛颗粒干预模型兔动脉粥样硬化易损斑块的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1.观察宁心痛颗粒(由黄芪、川芎、葛根、毛冬青、细辛组成)对动脉粥样硬化易损斑块的稳定作用;2.探讨宁心痛颗粒稳定易损斑块的机制。
     方法:42只新西兰大白兔随机分为A、B1、B2、B3和B4组,A组6只,给予普通饲料喂养。B1、B2、B3和B4组每组9只,给予高脂饲料喂养,两周后采用球囊损伤腹主动脉,第10周末于球囊损伤部位转染野生型p53基因,12周末处死,处死前48h、24h分别予两次药物(中国斑点蝰蛇毒和组胺)触发建立兔动脉粥样硬化易损斑块模型。第3周起B1、B2、B3组分别予宁心痛颗粒高剂量(宁心痛颗粒2g-kg-1d-1)、宁心痛颗粒常规剂量(宁心通颗粒lg-kg-1·d-1)、血脂康胶囊60mg·kg-1·d-1)干预,B4组作为模型组,不予药物干预。各组分别于实验开始时和处死前取空腹血检测总胆固醇(TCH)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)水平,计算LDL-C/HDL-C、TG/HDL-C及TCH/HDL-C值;各组分别于实验开始时和药物触发前、药物触发后(处死前)取空腹血检测血浆纤维蛋白原(Fib)水平,并用酶联免疫吸附法(ELISA)检测血清超敏C反应蛋白(hs-CRP).白介素6(IL-6)、基质金属蛋白酶1(MMP-1)、基质金属蛋白酶抑制物1(TIMP-1)、细胞间黏附分子1 (ICAM-1)、血管细胞黏附分子1 (VCAM-1)水平。各组均以普通病理观察斑块形态,测量纤维帽厚度(FCT)及内膜-中膜厚度(IMT),并计算FCT/IMT比值;透射电镜观察斑块局部的超微结构;用免疫组化(IHC)观察斑块核因子κB (NF-κB)、单核细胞趋化因子1 (MCP-1)、MMP-1、TIMP-1、ICAM-1、VCAM-1的蛋白表达情况。采用蛋白印迹技术(Western Blot)检测斑块局部NF-κB、MCP-1、MMP-1、TIMP-1的蛋白表达水平。采用实时荧光定量PCR技术(real-time PCR)检测斑块局部核因子KB抑制蛋白(IκB)、MCP-1、MMP-1、TIMP-1、VCAM-1的mRNA表达量。采用原位末端脱氧核苷酸转移酶介导的缺口末端标记法(TUNEL)观察斑块局部平滑肌细胞凋亡情况。
     结果:
     1.使用新西兰大白兔,通过高脂喂养加球囊损伤,外源性p53基因转染,中国斑点蝰蛇毒(CRVV)和组胺触发,成功地建立了动脉粥样硬化易损斑块的动物模型。
     2.B1组、B2组、B3组实验兔斑块IMT低于B4组,差异有统计学意义(P<0.05);B1组、B2组、B3组斑块的FCT及FCT/IMT比值均高于B4组,差异有统计学意义(P<0.05);B1组斑块IMT、FCT及FCT/IMT比值与B3组比较差异无统计学意义(P>0.05);B1组、B3组FCT/IMT比值高于B2组,差异有统计学意义(P<0.05)。
     3.透射电镜显示B1、B2、B3、B4组实验兔斑块局部细胞超微结构无明显差异。
     4.高脂饲料喂养12周后,B1、B2、B3和B4组实验兔TCH、TG、LDL-C和HDL-C水平较A组明显升高,差异有统计学意义(P<0.05);B1组TCH、TG、LDL-C水平低于于B4组,差异有统计学意义(P<0.05);B3组TCH、LDL-C、HDL-C水平低于于B4组,差异有统计学意义(P<0.05);B1组、B2组、B3组LDL-C/HDL-C、TG/HDL-C及TCH/HDL-C比值与B4组比较无明显差异(P>0.05);B1组TCH、TG、LDL-C、HDL-C水平与B3组相当,差异无统计学意义(P>0.05);B1组TCH水平低于B2组,差异有统计学意义(P<0.05)。
     5.触发前、触发后(处死前)B1、B2、B3、B4组实验兔血浆纤维蛋白原水平较入组时升高,差异有统计学意义(P<0.05);B1组、B2组、B3组触发前和触发后血浆纤维蛋白原水平均稍低于B4组相同时间点纤维蛋白原水平,差异无统计学意义(P>0.05);三者组间比较,差异亦无统计学意义(P>0.05)。
     6.触发前及触发后,B1、B2、B3、B4组实验兔血清hs-CRP、IL-6、MMP-1、TIMP-1、ICAM-1、VCAM-1水平均较基线升高,差异有统计学意义(P<0.05)。药物触发后B1、B3组血清hs-CRP、IL-6、MMP-1、TIMP-1、ICAM-1、VCAM-1水平低于B4组,差异有统计学意义(P<0.05);B1、B3组间比较,差异无统计学意义(P>0.05);触发后B1组hs-CRP、IL-6、TIMP-1水平低于于B2组,差异有统计学意义(P<0.05)。
     7.IHC显示Bl、B2、B3、B4组实验兔斑块局部NF-κB、MCP-1、MMP-1、TIMP-1、ICAM-1、VCAM-1的蛋白表达水平较A组正常血管明显升高,差异有统计学意义(P<0.05);B1组、B3组斑块局部NF-κB、MCP-1、MMP-1、ICAM-1、VCAM-1的蛋白表达水平低于B4组,差异有统计学意义(P<0.05);B1组斑块局部TIMP-1的蛋白表达水平低于B4组,差异有统计学意义(P<0.05);B1组斑块局部NF-κB、MCP-1、MMP-1、TIMP-1、ICAM-1、VCAM-1的蛋白表达水平与B3组比较差异无统计学意义(P>0.05);B1组斑块局部NF-κB、ICAM-1的蛋白表达水平低于B2组,差异有统计学意义(P<0.05)。
     8. Westem Blot显示B1、B2、B3、B4组实验兔斑块组织NF-κB、MCP-1、MMP-1、TIMP-1的蛋白表达水平均高于A组,差异有统计学意义(P<0.05);B1组、B2组、B3组斑块组织NF-κB、MCP-1、MMP-1、TIMP-1的蛋白表达水平均低于B4组,差异有统计学意义(P<0.05);B1组斑块组织NF-κB、MCP-1、MMP-1、TIMP-1的蛋白表达水平与B3组水平相当,差异无统计学意义(P>0.05);B1组斑块组织NF-κB、MCP-1、MMP-1、TIMP-1的蛋白表达水平低于B2组,差异有统计学意义(P<0.05)。
     9. Real-time PCR显示B4组实验兔斑块组织IκB、MCP-1、VCAM-1、MMP-1、TIMP-1的nRNA表达水平高于A组,差异有统计学意义(P<0.05);B1组、B3组斑块组织IκB、MCP-1、MMP-1、TIMP-1的mRNA表达水平低于于B4组,差异有统计学意义(P<0.05),B3组斑块组织VCAM-1的mRNA表达水平低于B4组,差异有统计学意义(P<0.05),B1组斑块组织VCAM-1的mRNA表达水平与B4组比较差异无统计学意义(P>0.05);B1组斑块组织IκB, MCP-1、MMP-1、TIMP-1的mRNA表达水平与B3组比较差异无统计学意义(P>0.05);B1组斑块组织IκB、MMP-1的mRNA表达水平低于B2组,差异有统计学意义(P<0.05)。
     10. TUNEL显示B1组、B2组、B3组实验兔斑块局部平滑肌细胞凋亡率均低于B4组,差异有统计学意义(P<0.05);B1组凋亡率稍低于B3组,但差异无统计学意义(P>0.05)。
     结论:宁心痛颗粒对模型兔动脉粥样硬化易损斑块具有一定的稳定作用。宁心痛颗粒能够通过调节脂质代谢,影响相关的细胞因子、黏附分子、基质金属蛋白酶等炎性介质表达,抑制炎症反应,抑制VSMC凋亡,从而降低AS斑块IMT,增加FCT及FCT/IMT比值,达到稳定模型兔动脉粥样硬化易损斑块的目的。
Mechanism study for effects of Ningxintong granule on atherosclerosis vulnerable plaques in rabbit model
     Objective:To investigate the effect of Ningxintong granule (NXTG, a self-made drug composed from Chinese natural medicine of Radix Astragali, Radix Puerariae, Rhizoma Chuanxiong, Radix Ilecis Pubescens and Herba Asari, each pack contains 1Og of compound) on stabilizing the vulnerable plaques and address the mechanisms of therapeutic effects of NXTG on stabilization of vulnerable plaques.
     Methods:42 of healthy male new Zealand white rabbits were randomized into the group A (n=6), and the group B (n=36), rabbits in group B were divided into four subgroups randomly: group B1 was treated with high dose of NXTG (n=9,2g-kg-1·-d-1), B2 was treated with normal dose of NXTG (n=9, 1g-kg-1·d-1), group B3 was administered with Xuezhikang (n=9, 60mg-kg-1·d-1) and group B4 was as baseline control group (n=9). Rabbits in group A were fed with standard chow. Rabbits in group B were fed with the high cholesterol diet for 2 weeks, then underwent the ballon-induced abdominal aortic wall injury. At 3rd week, first of drug intervention was added during the process. Rabbits in group B were still fed by the cholesterol-rich diet. At the end of the 8th week, recombinant adenovirus, which carrying the p53 gene was injected through a catheter into the aortic segments rich in plaques in group B. After two weeks, all of the remaining rabbits in group B underwent pharmacological triggering with injection of Chinese Russell's viper venom (CRVV) and histamine. At the beginning of the experiment and 12th week, blood samples were collected for measuring the lipid profile. The Fibrinogen level on grouping, pre-pharmacological triggering and post-pharmacological triggering, the concentrations of hs-CRP, IL6, MMP-1, TIMP-1, ICAM-1, VCAM-1 on grouping, pre-pharmacological triggering and post-pharmacological triggering were measured using the ELISA method.The abdominal aorta were processed and examined by HE staining. Using transmission microscope to observe the ultra structure of the AS segments. The levels of NF-κB, MCP-1, MMP-1, TIMP-1, ICAM-1 and VCAM-1 were determined by means of immunohistochemistry. The protein expressions of NF-κB, MCP-1, MMP-1 and TIMP-1 in the lesions were examined using Western Blot analysis The mRNA expressions of IκB, MCP-1, VCAM-1, MMP-1 and TIMP-1 in the abdominal arterial atherosclerosis lesions were measured using the real-time fluorescence quantitative PCR. SMC apoptosis was detected by TUNEL assay.
     Results:
     1. Establishment of vulnerable plaques animal model:Rabbits were treated with high cholesterol diet followed by balloon-induced abdominal aortic wall injury, then, tranfected the human wild-type p53 gene in the location of plaques to build the vulnerable plaques animal model.
     2. Compared with Group B4, the fibrous cap thickness(FCT) in medication groups (group B1, B2 and B3) was significantly thicker and the intima-media thickness(IMT) was significantly decreased (P<0.05). The ratio of FCT and IMT was significantly different between Group B4 and treatment groups (P<0.05). There were no significant difference in the parameter such as FCT, IMT, ratio of FCT and IMT between groupB1 and group B3. The ratio of FCT and IMT was significantly lower in group B2 than group B1 (P<0.05).
     3. Transmission microscopy showed that there was no significant difference in ultra structure of the AS segments among four model groups.
     4. Lipid profile:After 12 weeks of high lipid diet, the serum lipid levels (TCH, TG,LDL-C level and HDL-C)in group B1, B2, B3 and B4 significantly increased (P<0.05). Compared with group B4, the levels of TCH, TG and LDL-C in group B1 were decreased significantly(P<0.05), Compared with the group B4, the levels of TCH, LDL-C and HDL-C in group B3 were decreased significantly(P<0.05), There is no significant differences in TCH, TG, LDL-C and HDL-C between group B1 and B3.
     5. Fibrinogen level:Compared with the beginning of the experiment, the level of fibrinogen in group B1, B2, B3 and B4 was increased significantly before pharmacological triggering and after pharmacological triggering. There was no significant difference among these four groups.
     6. Compared with the beginning of the experiment, the concentrations of hs-CRP, IL-6, MMP-1, TIMP-1, ICAM-1 and VCAM-1 in group B1, B2, B3 B4 was increased significantly before pharmacological triggering and after pharmacological triggering (P<0.05). Compared with group B4,the concentrations of hs-CRP, IL-6, MMP-1, TIMP-1, ICAM-1 and VCAM-1 in group B1, B3 were decreased significantly after pharmacological triggering (P<0.05), but there were no significant difference between group B1 and B3. The concentrations of hs-CRP, IL-6 and TIMP-1 was significantly lower in group B1 than in group B2 (P<0.05).
     7. Immunohistochemistry analysis showed that expressions of NF-κB, MCP-1, MMP-1, TIMP-1, ICAM-1 and VCAM-1 were found in the atherosclerotic plaques. Compared with group B4, the expressions of NF-κB, MCP-1, MMP-1, ICAM-1 and VCAM-1 detected by immunohistochemistry in the group B1 and B3 were much lower (P<0.05), but there was no significant difference between group B1 and group B3. Compared with group B4, TIMP-1 positive cells was lower in group B1 (P<0.05). The expressions of NF-κB and ICAM-1 was significantly lower in group B1 than in group B2 (P<0.05).
     8. Western Blot analysis showed, that the protein expressions of NF-κB, MCP-1, MMP-land TIMP-1 were detected in the atherosclerosis lesions. Compared with group B4, the protein expressions of NF-κB, MCP-1, MMP-land TIMP-1 in group B1, B2 and B3 were much lower in the atherosclerosis lesions (P<0.05), but there was no significant difference between group B1 and group B3. The expressions of NF-κB, MCP-1, MMP-land TIMP-1 in the group B2 were higher compared with group Bl (P<0.05).
     9. The expressions of IκB, MCP-1, MMP-land TIMP-1 mRNA in Group B4 were significantly higher than Group A (P<0.05).Compared with group B4, the mRNA expressions of IκB, MCP-1, MMP-land TIMP-1 in group B1 and B3 were significantly lower in the atherosclerosis lesions (P<0.05), but there was no significant difference between group B1 and group B3. The mRNA expression of VCAM-1 was significantly lower in group B3 than group B4(P<0.05), but there was no significant difference of VCAM-1 mRNA expression between group B1 and group B4. The mRNA expressions of MMP-1, and IκB in the group B2 were higher compared with group B1(P<0.05).
     10. TUNEL analysis showed the positive cells in four groups. Compared with group B4, positive cells in group B1, B2 and B3 were significantly different(P<0.05). The positive cells in group B1 was slightly lower than group B3, but there was no significant difference between the two groups.
     Conclusion:NXTG has effects of anti-inflammation, decreasing the level of lipid and leading to stabilize the vulnerable plaques.
引文
[1]Yusuf S, Reddy S, Ounpuu S, et al. Global burden of cardiovascular diseases:part Ⅰ:general considerations, the epidemiologic transition, risk factors, and impact of urbanization[J].Circulation,2001,104(22):2746-2753.
    [2]Zaman AG, Helft G, Worthley SG,et al.The role of plaque rupture and thrombosis in coronary arthery disease[J].Atherosclerosis,2000,149(2):251-266.
    [3]NaghaviM,LibbyP,FalkE,et al.From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:PartI[J].Circulation,2003,108(14):1664-1672.
    [4]Ross R.Atherosclerosis-an inflammatory disease[J].N Eng J Med,1999,340(2):115-126.
    [5]Koerig W.Inflammation and coronary heart disease:an overview[J].Cardiol Rev,2001,9(1):31-35.
    [6]Yu H, Rifai N. High-sensitivity C-reactive protein and atherosclerosis:from theory to therapy [J].Clin Biochem,2000,33(8):601-610.
    [7]Lendon CL, Davies MJ, Born GV, et al. Atherosclerotic plaque caps are locally weakened when macrophages density is increased[J].Atherosclerosis,1991,87(1):87-90.
    [8]郭爱桃,韦立新.基质金属蛋白酶1与冠状动脉粥样硬化斑块破裂的关系[J].中华病理学杂志,2000,29(4):263-266.
    [9]Mazzone A, De Servi S, Ricevuti G, et al. Increased expression of neutrophil and monocyte adhesion molecules in unstable coronary artery disease[J].Circulation.1993,88(2):358-363.
    [10]Buffon A, Biasucci LM, Liuzzo G,et al.Widespread coronary inflammation in unstable angina[J].N Engl J Med,2002,347(1):5-12.
    [11]Zhang R, Brennan ML, Fu X, ET AL. Association between myeloperoxidase levels and risk of coronary artery disease[J]. JAMA,2001,286(17):2136-2142.
    [12]Biasucci LM, D'Onofrio G, Liuzzo G, et al.Intracellular neutrophil myeloperoxidase is reduced in unstable angina and acute myocardial infarction, but its reduction is not related to ischemia[J]J Am Coll Cardiol, 1996,27(3):611-6.
    [13]张运,张梅,陈文强,等.易损斑块的认识与研究进展[M]//胡大一,马长生.心脏病学实践2004-规范化治疗.北京:人民卫生出版社,2004,233-245.
    [14]李崇剑,徐耕.动脉粥样硬化与氧化修饰的低密度脂蛋白及抗氧化治疗的关系[J].中国循环杂志,2001,16(2):152-153.
    [15]Kockx MM. Apoptosis in the atherosclerotic plaque:quantitative and qualitative aspects[J].Arterioscler Thromb Vase Biol,1998,18(10):1519-22.
    [16]Isner JM, Kearney M, Bortman S, et al. Apoptosis in human atherosclerosis and restenosis[J].Circulation, 1995,91(11):2703-2711.
    [17]Dhume AS, Soundararajan K, Hunter WJ,et al. Comparison of vascular smooth muscle cell apoptosis and fibrous cap morphology in symptomatic and asymptomatic carotid artery disease[J].Ann Vasc Surg, 2003,17(1):1-8.
    [18]Geng YJ, Wu Q, Muszynski M, et al.Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta[J].Arterioscler Thromb Vasc Biol,1996,16(1):19-27.
    [19]Ge J, Chirillo F, Schwedtmann J, et al. Screening of ruptured plaques in patients with coronary artery disease by intravascular ultrasound[J].Heart,1999,81(6):621-627.
    [20]Loree HM, Kamm RD, Stringfellow RG, et al. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels[J].Circ Res,1992,71(4):850-858.
    [21]Falk E. Morphologic features of unstable atherothrombotic plaques underlying acute coronary syndromes [J].Am J Cardiol,1989,63(10):114E-120E.
    [22]Davies MJ. Pathophysiology of acute coronary syndromes[J].Heart,2000,83(3):361-366.
    [23]Imoto K,Hiro T, Fujii T,et al. Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging[J].J Am Coll Cardiol,2005,46(8):1507-1515.
    [24]Zhang Y, Cliff WJ, Schoefl GI, et al. Immunohistochemical study of intimal microvessels in coronary atherosclerosis[J].Am J Pathol,1993,143(1):164-172.
    [25]Jeziorska M, Woolley DE. Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteries [J].J Pathol,1999,188(2):189-196.
    [26]Kockx MM, Cromheeke KM, Knaapen MW,et al. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis[J].Arterioscler Thromb Vasc Biol,2003,23(3):440-446.
    [27]Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man[J].Nature,1969,223(5211):1159-1160.
    [28]王贵学.切应力变化与动脉粥样硬化斑块的形成和破裂[J].中国动脉硬化杂志,2009,17(8):625-628
    [29]Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries[J].Circ Res,1990,66(4):1045-1066.
    [30]Ku DN, Giddens DP, Zarins CK, et al.Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low oscillating shear stress[J].Arteriosclerosis,1985,5(3): 293-302.
    [31]Friedman MH, Bargeron CB, Deters OJ, et al.Correlation between wall shear and intimal thickness at a coronary artery branch.Atherosclerosis[J].1987,68(1-2):27-33.
    [32]Fisher AB, Chien S, Barakat AI, et al.Endothelial cellular response to altered shear stress[J].Am J Physiol Lung Cell Mol Physiol,2001,281(3):L529-533.
    [33]Wentzel JJ, Janssen E, Vos J, et al.Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss of compensatory remodeling[J].Circulation,2003,108(1):17-23.
    [34]Fukumoto Y, Hiro T, Fujii T, Hashimoto G, et al. Localized elevation of shear stress is related to coronary plaque rupture:a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution[J]. J Am Coll Cardiol,2008,51(6):645-50.
    [35]Kazmierski R. Biomechanic shear stress in carotid arteries and atherosclerosis development[J].Postepy Hig Med Dosw,2003,57(6):713-725.
    [36]Nagel T, Resnick N, Atkinson WJ, et al. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells[J].J Clin Invest,1994,94(2):885-891.
    [37]Morigi M, Zoja C, Figliuzzi M, et al.Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells[J].Blood,1995,85(7):1696-7103.
    [38]钱冠清,刘会齐,刘晓辉.流体切应力对血管内皮细胞粘附分子ICAM-1的影响[J].微循环学杂志2000,10(3):17-18.
    [39]Lovett JK, Rothwell PM.Site of carotid plaque ulceration in relation to direction of blood flow:an angiographic and pathological study[J].Cerebrovasc Dis,2003,16(4):369-375.
    [40]Dirksen MT, van der Wal AC, van den Berg FM,et al. Distribution of inflammatory cells in atherosclerotic plaques relates to the direction of flow[J].Circulation,1998,98(19):2000-2003.
    [41]Segers D, Helderman F, Cheng C, et al. Gelatinolytic activity in atherosclerotic plaques is highly localized and is associated with both macrophages and smooth muscle cells in vivo[J].Circulation. 2007,115(5):609-616.
    [42]Bartling B, Tostlebe H, Darmer D,et al. Shear stress-dependent expression of apoptosis-regulating genes in endothelial cells[J].Biochem Biophys Res Commun,2000,278(3):740-746.
    [43]Tricot O, Mallat Z, Heymes C, et a.l Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques[J].Circulation,2000,101(21):2450-2453.
    [44]Verma S, Devaraj S, Jialal Ⅰ. Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein promotes atherothrombosis[J].Circulation,2006,113(17):2135-2150.
    [45]Burke AP,Tracy RP,Kolodgie F,et al. Elevated C-reactive protein values and atherosclerosis in sudden coronary death:association with different pathologies[J].Circulation,2002,105(17):2019-2023.
    [46]Biasucci LM, Liuzzo G, Grillo RL, et al. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability[J].Circulation,1999,99(7):855-860.
    [47]Liuzzo G, Biasucci LM, Gallimore JR., et al.The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina[J].N Engl J Med,1994,331(7):417-424.
    [48]Roy D, Quiles J, Avanzas P,et al.A comparative study of markers of inflammation for the assessment of cardiovascular risk in patients presenting to the emergency department with acute chest pain suggestive of acute coronary syndrome[J].Int J Cardiol,2006,109(3):317-321.
    [49]Kinjo K, Sato H, Ohnishi Y, et al.Impact of high-sensitivity C-reactive protein on predicting long-term mortality of acute myocardial infarction[J].Am J Cardiol,2003,91(8):931-935.
    [50]Tanaka A, Shimada K, Sano T, et al. Multiple plaque rupture and C-reactive protein in acute myocardial infarction[J]. J Am Coll Cardiol,2005,45(10):1594-1599.
    [51]Rifai N, Joubran R, Yu H, et al.Inflammatory markers in men with angiographically documented coronary heart disease[J].Clin Chem,1999,45(11):1967-1673.
    [52]Lindmark E, Diderholm E, Wallentin L, et al. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease:effects of an early invasive or noninvasive strategy[J]JAMA,2001, 286(17):2107-2113.
    [53]Seino Y, Ikeda U, Ikeda M, et al.Interleukin 6 gene transcripts are expressed inhuman atherosclerotic lesions[J].Cytokine,1994,6(1):87-91.
    [54]Biasucci LM,Vitelli A,Liuzzo G,et al.Elevated levels of interleukin-6 in unstable angina[J].Circulation, 1996,94(5):874-877.
    [55]Ridke PM, Rifai N, Stampfer MJ,et al.Plasma Concentration of Interleukin-6 and the Risk of Future Myocardial Infarction Among Apparently Healthy Men[J].Circulation,2000,101(15):1766-1769.
    [56]Moreau M, Brocheriou I, Petit L, et al. lnterleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages:relevance to stability of atherosclerotic plaque[J].Circulation,1999,99(3):420-426.
    [57]Mallat Z, Corbaz A, Scoazec A, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability [J].Circulation,2002,104(14):1598-1603.
    [58]Blankenberg S, Luc G, Ducimetiere P, et al.Interleukin-18 and the risk of coronary heart disease in European men:the Prospective Epidemiological Study of Myocardial Infarction (PRIME)[J].Circulation, 2003,108(20):2453-2459.
    [59]Armstrong EJ, Morrow DA, Sabatine MS. Inflammatory biomarkers in acute coronary syndromes:part IV: matrix metalloproteinases and biomarkers of platelet activation[J].Circulation,2006,113(9):e382-385.
    [60]Loftus IM, Naylor AR, Goodall S, et al.Increased matrixmetalloproteinase-9 activity in unstable carotid plaques:a potential role in acute plaque disruotion[J].Stroke,2000,31(1):40-47.
    [61]Kai H, Ikeda H, Yasukawa H, et al.Peripheral blood levels of matrix metalloproteases-2 and-9 are elevated in patients with acute coronary syndromes[J].J Am Coll Cardiol,1998,32(2):368-372.
    [62]Zeng B, Prasan A, Fung KC, et al.Elevated circulating levels of matrix metalloproteinase-9 and-2 in patients with symptomatic coronary artery disease[J].Intern Med J.2005,35(6):331-335.
    [63]Balbay Y, Tikiz H, Baptiste RJ, et al. Circulating interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, and soluble ICAM-1 in patients with chronic stable angina and myocardial infarction[J].Angiology, 2001,52(2):109-114.
    [64]Ridker PM, Rifai N, Pfeffer M, et al.Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction[J].Circulation,2000,101(18):2149-2153.
    [65]Mizia-Stec K, Gasior Z, Zahorska-Markiewicz B, et al.Serum tumour necrosis factor-alpha, interleukin-2 and interleukin-10 activation in stable angina and acute coronary syndromes[J].Coron Artery Dis,2003,14(6): 431-438.
    [66]Valen G, Hansson GK, Dumitrescu A, et al. Unstable angina activates myocardial heat shock protein 72, endothelial nitric oxide synthase, and transcription factors NF kappaB and AP-1[J].Cardiovasc Res,2000, 47(1):49-56.
    [67]Ritchie ME. Nuclear factor-kappaB is selectively and markedly activated in humans with unstable angina pectoris[J].Circulation,1998,98(17):1707-1713.
    [68]Wilson SH, Best PJ, Edwards WD, et al. Nuclear factor-kappaB immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris[J].Atherosclerosis,2002,160(1):147-153.
    [69]罗瑛,谢秀梅,刘惠霞.冠心病相关炎性因子测定及其意义[J].中南大学学报(医学版),2004,29(2):227-229.
    [70]杨丽霞,郑甲林,齐峰,等.急性冠状动脉综合征患者核因子κB和基质金属蛋白酶9的变化及临床意义[J].中国循环杂志,2010,25(5):352-355.
    [71]Nureddin Cengiz, Ender Erdogan, Hanefi Ozbek, et al. Adhesion Molecules in Cerebral Ischemia and Atherosclerosis[J].Eur J Gen Med,2009,6(4):249-256.
    [72]Truskey GA, Herrmann RA, Kait J, et al. Focal increases in vascular cell adhesion molecule-1 and intimal macrophages at atherosclerosis-susceptible sites in the rabbit aorta after short-term cholesterol feeding [J].Arterioscler Thromb Vasc Biol,1999,19(2):393-401.
    [73]Gearing AJ, Newman W.Circulating adhension molecules in disease[J].Immunol Today,1993,14(10): 506-512.
    [74]Hwang SJ, Ballantyne CM, Sharrett AR,,et al. Circulating adhesion molecules VCAM-1,ICAM-1 and E-selectin in carotid atherosclerosis and incident coronary heart disease case:the Atherosclerosis Risk In Communities(ARIC) study[J].Circulation,1997,96(12):4219-4225.
    [75]Peng DQ, Zhao SP, Li YF,et al.Elevated soluble CD40 ligand is related to the endothelial adhesion molecules in patients with acute coronary syndrome[J].Clin Chim Acta,2002,319(1):19-26.
    [76]Haim M, Tanne D, Boyko V, et al. Soluble intercellular adhesion molecule-1 and long-term risk of acute coronary events in patients with chronic coronary heart disease. Data from the Bezafibrate Infarction Prevention (BIP) Study[J].J Am Coll Cardiol,2002,39(7):1133-1138.
    [77]Wallen NH, Held C, Rehnqvist N, et al. Elevated serum intercellular adhesion molecule-1 and vascular adhesion molecule-1 among patients with stable angina pectoris who suffer cardiovascular death or non-fatal myocardial infarction[J].Eur Heart J,1999,20(14):1039-1043.
    [78]Mulvihill NT, Foley JB, Murphy RT, et al. Risk stratification in unstable angina and non-Q wave myocardial infarction using soluble cell adhesion molecules[J].Heart,2001,85(6):623-627.
    [79]Tenaglia AN, Buda AJ, Wilkins RG, et al. Levels of expression of P-selectin, E-selectin, and intercellular adhesion molecule-1 in coronary atherectomy specimens from patients with stable and unstable angina pectoris [J].Am J Cardiol.1997,79(6):742-747.
    [80]Armstrong EJ, Morrow DA, Sabatine MS. Inflammatory biomarkers in acute coronary syndromes:part Ⅱ: acute-phase reactants and biomarkers of endothelial cell activation[J].Circulation,2006,113(7):e152-e155.
    [81]Stafforini DM.Biology of platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein associated phospholipase A2)[J].Cardiovasc Drugs Ther,2009,23(1):73-83.
    [82]Oei HH, van der Meer IM, Hofman A,et al.Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke:the Rotterdam Study[J].Circulation, 2005,111(5):570-575.
    [83]Kolodgie FD, Burke AP, Skorija KS, et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression ofhuman coronary atherosclerosis[J].Arterioscler Thromb Vasc Biol,2006,26(11): 2523-2529.
    [84]刘军妮,徐冬玲,杜贻萌,等.血清脂蛋白相关磷脂酶A2与冠状动脉粥样硬化斑块稳定性的相关研究-附107例报告[J].新医学,2009,40(1):23-29.
    [85]Ballantyne CM, Hoogeveen RC, Bang H, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study[J].Circulation,2004,109(7):837-842.
    [86]Virani SS, Nambi V. The role of lipoprotein-associated phospholipase A2 as a marker for atherosclerosis[J].Curr Atheroscler Rep,2007,9(2):97-103.
    [87]Overgaard MT, Oxvig C, Christiansen M,et al.Messenger ribonucleic acid levels of pregnancy-associated plasma protein-A and the proform of eosinophil major basic protein:expression in human reproductive and nonreproductive tissues[J].Biol Reprod,1999,61(4):1083-1089.
    [88]Bayes-Genis A, Conover CA, Overgaard MT, et al.Pregnancy-associated plasma protein A as a marker of acute coronary syndromes[J].N Engl J Med,2001,345(14):1022-1029.
    [89]Heeschen C, Dimmeler S, Hainm CW, et al. Pregnancy-associated plasma protein-A levels in patients with acute coronary syndromes:comparison with markers of systemic inflammation, platelet activation, and myocardial necrosis [J].J Am Coll Cardiol,2005,45(2):229-237.
    [90]Ehara S, Ueda M, Naruko T, et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes[J].Circulation,2001,103(15):1955-1960.
    [91]Schonbeck U,Gerdes N,Varo N,et al.Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibittors limit CD40 and CD40L expression in human vascular cells
    [J].Circulation,2002,106(23):2888-2893.
    [92]Ehara S,Ueda M,Naruko T,et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronery syndromes[J].Circulation,2001,103(15):1955-1960.
    [93]Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease [J].Circulation,1998,98(15):1487-1494.
    [94]Toshima S, Hasegawa A. Kurabayashi M, et al. Circulating oxidized low density lipoprotein levels:A biochemical risk marker for coronary heart disease [J].Arterioscler Thromb Vase Biol,2000,20(10):2243-2247
    [95]Noelle RJ. CD40 and its ligand in host defense[J].Immunity,1996,4(5):415-419.
    [96]Mach F, Schonbeck U, Libby P.CD40 signaling in vascular cells:a key role in atherosclerosis [J]. Atherosclersis,1998,137(suppl):s89-s95.
    [97]Andre P, Nannizzi-Alaimo L, Prasad SK, et al. Platelet-derived CD40L:the switch-hitting player of cardiovascular disease[J].Circulation,2002,106(8):896-899.
    [98]Yan JC, Wu ZG, Kong XT, et al.Relation between upregulation of CD40 system and complex stenosis morphology in patients with acute coronary syndrome[J].Acta Pharmacol Sin,2004,25(2):251-256.
    [99]Heeschen C, Dimmeler S, Hamm CW, et al.Soluble CD40 ligand in acute coronary syndromes[J].N Engl J Med,2003,348(12):1104-1111.
    [100]Salonen JT, Salonen R. Ultrasound B-mode imaging in observational studies of atherosclerotic progression[J].Circulation,1993,87(3suppl):Ⅱ56-65.
    [101]Inoue F, SatoY,Matsumoto N, et al. Evaluation of plaque texture bymeans of multislice computed tomography in patientswith acute coronary syndrome and stable angina[J].Circ J,2004,68(9):840-844.
    [102]Scheffel H,AlkadhiH,Plass A, et al. Accuracy of dual-source CT coronary angiography:First experience in a high pre-test probability population without heart rate control [J].EurRadiol,2006,16(12):2739-2747.
    [103]Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system[J].EurRadiol,2006,16(2):256-268.
    [104]Honda M, Kitagawa N, Tsutsumi K,et al. High-resolution magnetic resonance imaging for detection of carotid plaques[J].Neurosurgery,2006,58(2):338-346.
    [105]Yuan C, Zhang SX, Polissar NL,et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke[J].Circulation,2002,105(2): 181-185.
    [106]Zimmermann-Paul GG, Quick HH, Vogt P, et al. High-resolution intravascular magnetic resonance imaging:monitoring of plaque formation in heritable hyperlipidemic rabbits[J].Circulation,1999,99(8): 1054-61.
    [107]Toussaint JF, LaMuraglia GM, Southern JF, et al.MR images lipid, fibrous, calcified, hemorrhagic and thrombotic component of human atherosclerosis in vivo[J].Circulation,1996,94(5):932-938.
    [108]Ben-Haim S, Israel O.PET/CT for atherosclerotic plaque imaging[J].Q J Nucl Med Mol Imaging, 2006,50(1):53-60.
    [109]Kolodgie FD, Petrov A, Virmani R, et al.Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V:a technique with potential for noninvasive imaging of vulnerable plaque[J]. Circulation,2003,108(25):3134-3139.
    [110]Arakawa K, Isoda K, Ito T, et al. Fluorescence analysis of biochemical constituents identifies atherosclerotic plaque with a thin fibrous cap[J].Arterioscler Thromb Vasc Biol,2002,22(6):1002-1007
    [111]Schoenhagen P, Nissen S.Understanding coronary artery disease:tomographic imaging with intravascular ultrasound[J].Heart,2002,88(1):91-96.
    [112]Komiyama N, Berry GJ, Kolz ML, et al. Tissue characterization of atherosclerotic plaques by intravascular ultrasound radiofrequency signal analysis:an in vitro study of human coronary arteries[J].Am Heart J,2000,140(4):565-574.
    [113]Schaar JA, De Korte CL, Mastik F, et al.Characterizing vulnerable plaque features with intravascular elastography[J].Circulation,2003,108(21):2636-2641.
    [114]de Korte CL, Schaar JA, Mastik F, et al. Intravascular elastography:from bench to bedside[J].J Interv Cardiol,2003,16(3):253-159.
    [115]de Korte CL, van der Steen AF, Cepedes El, et al.Characterization of plaque components and vulnerability with intravascular ultrasound elastography[J].Phys Med Biol,2000,45(6):1465-1475.
    [116]Ueda Y, Asakura M, Yamaguchi O, et al. The healing process of infarct-related plaques. Insights from 18 months of serial angioscopic follow-up[J].J Am Coll Cardiol,2001,38(7):1916-1922.
    [117]Lehmann KG, van Suylen RJ, Stibbe J, et al.Composition of human thrombus assessed by quantitative colorimetric angioscopic analysis[J].Circulation,1997,96(9):3030-304.
    [118]Casscells W, Hathorn B, David M, et al. Thermal detection of celiular infiltrates in living atherosclerotic plaques:possible implications for plaque rupture and thrormbosis[J].Lancet.1996,347(9013):1447-1451.
    [119]Stefanadis C, Diamantopoulos L,Vlachopoulos C,et al. Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo:A new method of detection by application of a special thermography catheter[J].Circulation,1999,99(15):1965-1971.
    [120]Madjid M, Willerson JT, Casscells SW. Intracoronary thermography for detection of high-risk vulnerable plaques[J].J Am Coll Cardio,2006,47(8 Suppl):C80-85.
    [121]Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography[J].Circulation,2005,111(12):1551-1555.
    [122]Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography[J].Circulation,2003,107(1):113-119.
    [123]陈文强,张运.动脉粥样硬化不稳定斑块研究进展[M]//胡大一,马长生.心脏病学实践2007-新进展与临床案例.北京:人民卫生出版社,2007,27-36.
    [124]Akdim F, van Leuven SI, Kastelein JJ, et al.Pleiotropic effects of statins:stabilization of the vulnerable atherosclerotic plaque? [J].Curr Pharm Des,2007,13(10):1003-1012.
    [125]Chapman MJ.From pathophysiology to targeted therapy for atherothrombosis:a role for the combination of statin and aspirin in secondary prevention [J].Pharmacol Ther,2007,113(1):184-196.
    [126]Nissen SE,Nicholls SJ,Sipahi I,et al.Effect of very high-intensity statin therapy on regression of coronary atherosclerosis:the ASTEROID trial[J].JAMA,2006,295(13):1556-1565.
    [127]Okazaki S, Yokoyama T, Miyauchi K, et al. Early statin treatment in patients with acute coronary syndrome:demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event:the ESTABLISH Study[J].Circulalion,2004, 110(9):1061-1068.
    [128]Yang J, Li XP, Zhao SP, et al.The effect of different doses of fluvastatin on inflammatory markers in the early phase of acute coronary syndrome[J].Clin Chim Acta,2006,368(1-2):183-187.
    [129]Zhou T, Zhou SH, Qi SS, et al. The effect of atorvastatin on serum myeloperoxidase and CRP levels in patients with acute coronary syndrome [J].Clin Chim Acta,2006,368(1-2):168-172.
    [130]Gomez-Hernandez A. Sanchez-Galan E, Martin-Ventura JL, et al. Atorvastatin reduces the expression of prostaglandin E2 receptors in human carotid atherosclerotic plaques and monocytic cells:potential implications for plaque stabilization[J].J Cardiovasc Pharmacol,2006,47(1):60-69.
    [131]Romano M. Mezzetti A, Marulli C, et al. Fluvastatin reduces soluble P-selectin and ICAM-1 levels in hypercholesterolemic patients:role of nitric oxide[J].J Investig Med,2000,48(3):183-189.
    [132]Blugaletta S, Biasucci LM,Pinnelli M, et a 1.Novel anti-inflammatory effect of statins:reduction of CD4+ CD28null T lymphocyte frequency in patients with unstable angina[J].Heart,2006,92(2):249-250.
    [133]Jain RK, Finn AV, Kolodgie FD, et al. Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature:a potential strategy for plaque stabilization [J].Nat Clin Pract Cardiovasc Med,2007,4(9): 491-502.
    [134]Wilson SH, Herrmann J, Lerman LO, et al.Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering[J].Circulation,2002, 105(4):415-418.
    [135]Koutouzis M,Nomikos A,Nikolidakis S,et al. Statin treated patients have reduced intraplaque angio-genesis in carotid endarterectomy specimens[J].Atherosclerosis,2007,192(2):457-463.
    [136]Heart Protection Study Collaborative Group.MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals:a randomised placebo-controlled trial[J].Lancet,2002,360 (9326):23-33.
    [137]Salonen RM, Nyyssonen K, Kaikkonen J, et al. Six-year effect of combined vitamin C and E supple-mentation on atherosclerotic progression:the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP)Study[J].Circulation,2003,107(7):947-953.
    [138]Sawayama Y, Shimizu C, Maeda N, et al.Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia. Fukuoka Atherosclerosis Trial (FAST)[J]J Am Coll Cardiol,2002,39(4):610-616.
    [139]Sawayama Y,Maeda S,Ohnishi H. Effect of probucol on elderly hypercholesterolemic patients in the FAST study[J].Fukuoka Igaku Zasshi,2006,97(1):15-24.
    [140]贾伟华,周立春,田桂玲.普罗布考对颈动脉粥样硬化斑块稳定性影响的临床研究[J].中国新药杂志,2007,16(3):237-239.
    [141]Choy K, Beck K, Png FY, et al. Processes involved in the site-specific effect of probucol on athero-sclerosis in apolipoprotein E gene knockout mice[J].Arterioseler Thromb Vase Biol,2005,25(8):1684-1690.
    [142]Wang Y,Rosen H,Madtes DK,et al.Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue:an oxidative mechanism for regulating proteolysis during inflammation[J].J Biol Chem, 2007,282(44):31826-31834.
    [143]Kunsch C, Luchoomun J, Grey JY, et al.Selective inhibition of endothelial and monocyte redox-sensitive genes by AGI-1067:a novel antioxidant and anti-inflammatory agent[J].J Pharmacol Exp Ther,2004,308(3): 820-829.
    [144]Tardif JC, Gregoire J, L'Allier PL, et al. Effects of the antioxidant succinobucol (AGI-1067) on human atherosclerosis in a randomized clinical trial[J].Atherosclerosis.2008,197(1):480-486.
    [145]Schieffer B Schieffer E,Hilfiker-Kleiner D,et al.Expression of angiotensin Ⅱ and interleukin 6 in human coronary atherosclerotic plaques:potential implications for inflammation and plaque instability[J].Circulation, 2000,101(12):1372-1378.
    [146]Weiss D, Kools JJ, Taylor WR.Angiotensin Ⅱ-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice[J].Circulation,2001,103(3):448-454.
    [147]Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers[J].Am J Med,2002,113(5): 409-418.
    [148]Schieffer B, Bunte C, Witte J, et al.Comparative effects of AT1-antagonism and angiotensin-converting enzyme inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease[J].J Am Coll Cardiol,2004,44(2):362-368.
    [149]Kohno M, Ohmori K, Nozaki S,et al.Effects of valsartan on angiotensin II-induced migration of human coronary artery smooth muscle cells[J].Hypertens Res,2000,23(6):677-681.
    [150]Takai S, Jin D, Sakaguchi M, et al.The regressive effect of an angiotensin II receptor blocker on formed fatty streaks in monkeys fed a high-cholesterol diet[J].J Hypertens,2005,23(10):1879-1886.
    [151]Strawn WB, Chappell MC, Dean RH, et al.Inhibition of early atherogenesis by losartan in monkeys with diet-induced hypercholesterolemia[J].Circulation,2000,101(13):1586-1593.
    [152]Dandona P, Kumar V, Aljada A,et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: evidence of an antiinflammatory action[J].J Clin Endocrinol Metab,2003,88(9):4496-4501.
    [153]Pharmacological strategies to prevent restenosis:lessons learned from blockade of the renin-angiotensin system[J].Circulation,1996,93(5):848-852.
    [154]Candido R, Jandeleit-Dahm KA, Cao Z, et al.Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic apolipoprotein E-deficient mice[J].Circulation,2002,106(2):246-253.
    [155]Ceconi C, Fox KM, Remme WJ, et al. ACE inhibition with perindopril and endothelial function. Results of a substudy of the EUROPA study:PERTINENT[J].Cardiovasc Res,2007,73(1):237-246.
    [156]Ceconi C, Fox KM, Remme WJ, et al. ACE inhibition with perindopril and biomarkers of atherosclerosis and thrombosis:results from the PERTINENT study[J].Atherosclerosis,2009,204(1):273-275.
    [157]Cyrus T, Sung S, Zhao L, Funk CD, Tang S, Pratico D.Effect of low-dose aspirin on vascular inflamma-tion, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice[J].Circulation,2002, 106(10):1282-1287.
    [158]Chew DP, Bhatt DL, Robbins MA, et al.Effect of clopidogrel added to aspirin before percutaneous coronary intervention on the risk associated with C-reactive protein[J].Am J Cardiol.2001,88(6):672-674.
    [159]顾晴,陈纪林,阮英茆.阿司匹林、氯吡格雷及合用对兔动脉粥样硬化病变进展的抑制作用[J].中国医学科学院学报,2005,27(1):87-91.
    [160]张峻,陈纪林,顾晴,等.抗血小板药物抑制动脉粥样硬化进展及机制研究[J].中国循环杂志,2005,20(6):463467.
    [161]顾晴,陈纪林,陈曦.阿司匹林和氯吡格雷抑制兔粥样硬化主动脉基质金属蛋白酶1的表达[J].中国动脉硬化杂志,2006,14(7):577-580.
    [162]Mason RP. Mechanisms of atherosclerotic plaque stabilization for a lipophilic calcium antagonist amlodipine[J].Am J Cardio,2001,88(10A):2M-6M.
    [163]Pitt B, Byington RP, Furberg CD, et al. Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events. PREVENT Investigators[J].Circulation,2000,102(13):1503-1510.
    [164]Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure:the CAMELOT study:a randomized controlled trial[J].JAMA,2004,292(18):2217-2225.
    [165]Lopez-Sendon J, Swedberg K, McMurray J, et al.Expert consensus document on beta-adrenergic receptor blockers[J].Eur Heart J,2004,25(15):1341-1362.
    [166]倪梅,张运.动脉粥样硬化易损斑块的基础与临床[M]//胡大一,马长生.心脏病学实践2011-规范化治疗.北京:人民卫生出版社,2010,9-19.
    [167]Hedblad B, Wikstrand J, Janzon L, et al. Low-dose metoprolol CR/XL and fluvastatin slow progression of carotid intima-media thickness:Main results from the Beta-Blocker Cholesterol-Lowering Asymptomatic Plaque Study (BCAPS)[J].Circulation,2001,103(13):1721-1726.
    [168]Wikstrand J, Berglund G, Hedblad B,et al. Antiatherosclerotic effects of beta-blockers[J].Am J Cardiol, 2003,91(12A):25H-29H.
    [169]Liang C, Xiaonan L, Xiaojun C,et al. Effect of metoprolol on vulnerable plaque in rabbits by changing shear stress around plaque and reducing inflammation[J].Eur J Pharmacol,2009,613(1-3):79-85.
    [170]Axisa B, Loftus IM, Naylor AR,et al. Prospective, randomized, double-blind trial investigating the effect of doxycycline on matrix metalloproteinase expression within atherosclerotic carotid plaques [J]. Stroke, 2002,33(12):2858-2864.
    [171]Brown DL, Desai KK,Vakili BA.,et al.Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial[J].Arterioscler Thromb Vase Biol,2004,24(4):733-738.
    [1]程康林,覃勇,陈仁山,等.痰浊型冠心病患者痰浊证与颈动脉斑块的相关性分析[J].新中医,2006,38(8):20-21.
    [2]周仲瑛,金妙文,顾勤,等.滋肾养肝、化痰消瘀法治疗动脉粥样硬化的理论探讨[J].南京中医药大学学报(自然科学版),2002,18(3):137-139.
    [3]第五永长,肖颖,王友民.动脉粥样硬化中医病机探析[J].陕西中医学院学报,2003,26(6):8-9.
    [4]王东升,袁肇凯,陈方平.动脉粥样硬化“痰瘀”病理的理论探讨[J].湖南中医学院学报,2004,24(5):27-29
    [5]于俊生,陈兆昌.动脉粥样硬化从痰瘀毒论治探讨[J].山东中医杂志,2002,21(8):451-454.
    [6]张京春,陈可冀,张文高,等.不稳定斑块的中西医结合认识现状及研究思路[J].中国中西医结合杂志,2005,25(10):869-871.
    [7]张京春,陈可冀.瘀毒病机与动脉粥样硬化易损斑块相关的理论思考[J].中国中西医结合杂志,2008,28(4):366-368.
    [8]徐浩.活血解毒中药抗炎及稳定易损斑块的探索与思考[J].中国中西医结合杂志,2008,28(5):393-394.
    [9]徐浩,史大卓,殷惠,等.“瘀毒致变”与急性心血管事件:假说的提出与临床意义[J].中国中西医结合杂志,2008,28(10):934-938.
    [10]张柏丽,陆一竹,范英昌.调肝导浊法中药抗高血脂及动脉粥样硬化的研究[J].辽宁中医杂志,2002,29(8):509-510.
    [11]尚改萍,文志斌,何晓凡,等.补阳还五汤抗动脉粥样硬化的作用及其机制[J].中国动脉硬化杂志,2002,10(2):112-114.
    [12]黑子清,吴伟康,孙慧兰,等.四逆汤对家兔动脉粥样硬化的形成及血管壁神经酰胺含量的影响[J].中国病理生理学,2003,1(3):345-347.
    [13]黑子清,吴伟康,孙慧兰,等.四逆汤对兔实验性动脉粥样硬化斑块形成及血脂的影响[J].中国病理生理学,2003,1(3):345-347.
    [14]黄政德,张玉生,葛金文.加味丹参饮对家兔动脉粥样硬化形成影响的研究[J].湖南中医学院学报,2002,22(4):4-6.
    [15]文川,徐浩,黄启福,等.几种活血中药对ApoE缺陷小鼠动脉粥样硬化斑块的影响[J].中国病理生理杂志,2005,21(5)864-867.
    [16]Zhang WG, Yan TX, Gao FJ, et al. Study on effect of Zhixinkang Capsule(脂欣康胶囊) in treating unstable effort angina and hyperlipidemia and its function invascular endothelium protection [J].Chin J Integr Med,2003,9 (1):25-30.
    [17]王强,黄国钧.通脉胶囊抗动脉粥样硬化内皮细胞损伤的实验研究[J].中药药理与临床,2004,20(1):26-27.
    [18]张路,吴宗贵,廖德宁,等.通心络对实验性家兔主动脉粥样斑块血管内皮生长因子表达的影响[J].中国动脉粥样硬化杂志,2004,12(2):177-182.
    [19]周桂桐,赵桂峰,范英昌.丹参酮ⅡA对TNF-α损伤平滑肌细胞MAP-1、IL-1β表达的影响[J].天津中医药,2006,23(3):189-191.
    [20]袁志兵,李晓辉,李淑惠,等.三七总皂苷改善兔动脉粥样硬化斑块稳定性的机制探讨[J].中草药,2006,37(5):741-743.
    [21]张保亭,颜乾麟,颜德馨,等.稳斑护脉颗粒对动脉粥样硬化斑块稳定性影响的分子机制[J].中国中西医结合杂志,2005,2(2):154-159.
    [22]姜希娟,杜云,苏金玲,等.心脑血脉宁对家兔易损斑块模型清CRP和斑块内炎细胞浸润的影响[J]天津中医药,2007,24(5):402-404.
    [23]姜希娟,杜云,苏金玲,等.心脑血脉宁对家兔易损斑块模型血脂NF-κB和ICAM-1mRNA表达的影响[J].辽宁中医杂志,2008,35(5):783-785.
    [24]张京春,陈可冀,郑广娟,等.解毒活血中药配伍对载脂蛋白E基因敲除小鼠主动脉NF-κB与MMP-9表达的调控作用[J].中国中西医结合杂志,2007,27(1):40-43.
    [25]张京春,陈可冀,郑广娟,等.解毒活血配伍方药对载脂蛋白E基因敲除小鼠血清超敏C反应蛋白的影响[J].中国中西医结合杂志,2008,28(4):330-333.
    [26]周明学,徐浩,潘琳,等.活血、益气、化痰中药对ApoE基因敲除小鼠主动脉粥样硬化斑块炎症反应的影响[J].中国中医急症,2008,17(4):496-499.
    [27]周明学,徐浩,陈可冀,等.活血解毒中药有效部位对ApoE基因敲除小鼠血脂和动脉粥样硬化斑块炎症反应的影响[J].中国中西医结合杂志,2008,28(2):126-130.
    [28]周明学,徐浩,陈可冀,等.几种活血解毒中药有效部位对ApoE基因敲除小鼠主动脉粥样斑块稳定性的影响[J].中国病理生理杂志,2008,24(11):2097-2102.
    [29]刘艳,张蕾,张运,等.动脉粥样硬化斑块炎性因子表达及通心络胶囊的干预作用[J].上海中医药杂志,2007,41(12):54-56.
    [30]王强,王毅.通脉胶囊对动脉粥样硬化斑块稳定性影响的实验研究[J].中成药,2004,26(9):732-735.
    [31]赵玉霞,刘运芳,张梅.祛淤消斑胶囊对动脉粥样硬化斑块组织学构成的临床研究[J].上海中医药杂志,2001,35(12):13-14.
    [32]洪永敦,吴辉,莫洪辉,等.香丹注射液治疗急性冠状动脉综合征的临床研究及其对炎症指标的影响[J]. 中药新药与临床药理,2004,15(6):425-428.
    [33]左芳,赵玉霞.通心络胶囊对动脉粥样硬化斑块影响的临床研究[J].山东中医杂志,2005,24(5):269-271.
    [34]丁茹,吴宗贵,潘晓明,等.通心络对急性冠状动脉综合征病人血管细胞黏附分子-1水平影响的研究[J].中西医结合心脑血管病杂志,2005,3(5):377-378.
    [35]曹源,舒晓春,吴贻金,等.复方丹参滴丸对冠心病基质金属蛋白酶-9和肿瘤坏死因子-α的影响[J].心血管康复医学杂志2005,14(4):319-321.
    [36]尚德师,何立人,陈咸川,等.化湿泄浊汤影响不稳定心绞痛患者IL-6、TNF-α的临床研究[J].辽宁中医杂志,2007,34(6):760-761.
    [37]刘龙涛,吴敏,张文高,等.虎杖苷对颈动脉粥样硬化斑块稳定性的干预研究[J].北京中医药,2009,28(3):172-174.
    [1]丁光迪,张谷才,曹钟苓.编著.金匮要略学习参考资料[M].北京:人民卫生出版社,1998:236.
    [2]任应秋.任应秋论医集[M].北京:人民卫生出版社,1984:508.
    [3]中国中医研究院.蒲辅周医疗经验[M].北京:人民卫生出版社,2005:90.
    [4]中国中医研究院.岳美中论医集[M].北京:人民卫生出版社,2005:119.
    [5]衷敬柏,董绍英,王阶,等.2689例冠心病心绞痛证候要素的文献统计分析[J].中国中医药信息杂志,2006,13(5):100-101.
    [6]张秋雁,邓冰湘.冠心病心绞痛临床中医证型分布的回顾性分析[J].中医研究,2005,18(11):23-24.
    [7]丁书文,李晓,李运伦.热毒学说在心系疾病中的构建与应用[J].山东中医药大学学报,2004,6(28):413-416.
    [8]李臣鸿,刘晓晴,张珍祥,等.急性肺损伤时黄芪对核因子κB及白细胞介素mRNA表达的影响[J].中华结核和呼吸杂志,2002,25(3):189-190.
    [9]黄卫江,陈朝俊.参七脉心通胶囊对颈部动脉硬化粥样斑块稳定的影响[J].中医杂志,2007,48(9):821-822.
    [10]杨五彪,陈群力,马灵筠,等.黄芪多糖对兔动脉粥样硬化血管内皮细胞功能的影响[J].陕西医学杂志,2005,34(8):914-918.
    [11]赵晖.黄芪桂枝汤加红参抗血脂作用的实验研究[J].国外医药中医分册,2000,22(2):83-86.
    [12]文川,徐浩,黄启福,等.活血中药对ApoE基因缺陷小鼠血脂及动脉粥样硬化斑块炎症反应的影响[J].中国中西医结合杂志,2005,25(4):345-349.
    [13]张璐,薛梅,马晓娟,等.赤芍川芎有效部位对兔动脉粥样硬化基质金属蛋白酶的影响[J].中国中西医结合杂志,2009,29(6):514-518.
    [14]张京春,陈可冀,郑广娟,等.解毒活血中药配伍对载脂蛋白E基因缺陷小鼠主动脉NFκB与MMP9表达的调控作用[J].中国中西医结合杂志,2007,27(1):40-44.
    [15]舒冰,周重建,马迎辉,等.中药川芎中有效成分的药理作用研究进展[J].中国药理学通报,2006,22(9):1043-1047.
    [16]任志强,孙兰军.川芎嗪的心血管药理作用[J].中西医结合心脑血管病杂志,2008,(6)5:570-572.
    [17]石琳,范盘生,梁中琴,等.川芎嗪抑制动脉粥样硬化斑块形成及其机制分析[J].中药药理与临床,1988(2):14-17.
    [18]黄泰康,主编.常用中药成分与药理手册[M].北京:中国医药科技出版社,1999,413-420.
    [19]李国凡,张延斌,陈清枝.川芎嗪对凝血酶诱导的血管平滑肌细胞增殖的影响[J].心脏杂志,2007,19(6):646-648.
    [20]Ren XY, Ruan QR, Zhu DH, et al. Tetramethylpyrazine inhibits agiontensin Ⅱ-induced nuclear factor-kappaB activation and bone morphogenetic protein-2 downregulation in rat vascular smooth muscle cells[J].Acta Physiologica Sinica,2007,59(3):339-344.
    [21]吴海云,王士雯,朱姝,等.川芎嗪在急性冠状动脉综合征中抗炎作用的研究[J].中国中西医结合急救杂志,2004,11(4):196-198.
    [22张仁岗,刘福明.葛根的心血管药理作用研究进展[J].中药材,2001,24(7):35-537.
    [23]王永霞,何立人.葛根素的心血管系统药理作用及机理研究[J].上海中医药杂志,2004,38(4):62-64.
    [24]Yue TL, Bao W, Jucker BM,,et al. Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury [J].Circulation,2003,108 (19):2393-2399.
    [25]李东野,江自龙,夏勇,等.体外冠心病单核源巨噬细胞分泌的基质金属蛋白酶9、组织因子的临床意义及葛根素的干预作用[J].中国中西医结合杂志,2007,27(8):692-695.
    [26]华海婴.李艳瑛.毛冬青甲素药理作用的研究[J].中国现代医药杂志,2006,11(8):137-138.
    [27]杨涛,蔺桂芬,王科大.毛冬青甲素体外给药对花生四烯酸诱导的兔血小板聚集和丙二醛生成的影响[J].首都医学学报,1992,3(3):171-175.
    [28]北京制药工业研究所,中国人民解放军157医院.秃毛冬青叶对冠心病的药理研究[J].中草药,1980,11(8):358-361.
    [29]王玲,汪钟.毛冬青甲素调节花生四烯酸代谢的机理探讨[J].中国医学科学院学报,1991,13(2):30.
    [30]曾俊玲.毛冬青乙素抗炎作用研究[J].广东医学,1993,16(11):31.
    [31]国家中医药管理局《中华本草》编委会.《中华本草》(第十册)[M].上海:上海科学技术出版社,1990,495-502.
    [32]曲淑岩,毋英杰.细辛油的抗炎作用[J].药学学报1982,17(1):12.
    [33]王龙妹,傅惠娣,周志兰.枸杞子、白术、细辛、苍耳子对白细胞介素-2受体表达的影响[J].中国临床药学杂志,2000,9(3):171.
    [34]张丽丽,关振中,张竞逵.细辛脂素体外免疫抑制作用的实验研究[J].中华心血管病杂志,2003,31(6):444.
    [35]樊景坡.苍耳子、细辛、枸杞子、白术对小鼠组织自由基代谢的影响[J].中医药信息,1994,(2):48.
    [36]Constantinides P, Chakravarti RN. Rabbit arterial thrombosis production by systemic procedures[J].Arch Pathol,1961,72:197-208.
    [37]Abela GS, Picon PD, Friedl SE, et al. Triggering of Plaque Disruption and Arterial Thrombosis in an Atherosclerotic Rabbit Model[J].Circulation,1995,91 (3):776-784.
    [38]Johnson JL,Jackson CL.Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse [J]'.Atherosclerosis,2001,154(2):399-406.
    [39]von der Thiisen JH,Van Vlijmen BJ,Hoeben RC,et al.Induction of atherosclerotic plaque rupture in apolipoprotein E-/-mice after adenovirus-mediated transfer of p53[J].Circulation,2002,105(17):2064-2070.
    [40]陈文强,张运,张梅,等.外源性人野生型p53基因转染动脉硬化兔导致斑块不稳定性[J].中华医学杂志,2004,84(1):43-47.
    [41]陈文强.动脉粥样硬化斑块易损性的研究[D].山东:山东大学,2004,43-47.
    [42]陈文强,张运,张梅,等.不稳定斑块血管内超声特征的实验研究[J].中华超声影像学杂志,2004,13(6):456-459.
    [43]Waxman S, Ishibashi F, Muller JE. Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events[J].Circulation,2006,114(22):2390-411.
    [44]Virmani R, Burke AP, Kolodgie FD,et al. Pathology of the thin-cap fibroatheroma:a type of vulnerable plaque[J].J Interv Cardiol,2003,16(3):267-272.
    [45]Finn AV, Nakano M, Narula J, et al.Concept of vulnerable/unstable plaque[J].Arterioscler Thromb Vasc Biol,2010,30(7):1282-12892.
    [46]Loree HM, Kamm RD, Stringfellow RG, et al. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels[J].Circ Res,1992,71(4):850-858.
    [47]Moreno PR, Falk E, Palacios IF, et al. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture [J].Circulation,1994,90(2):775-778.
    [48]Li D, Liu L, Chen H, Sawamura T,et al.LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells[J].Arterioscler Thromb Vase Biol,2003, 23(5):816-821.
    [49]Chawla A, Barak Y,Nagy L, et al. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation[J].Nat Med,2001,7(1):48-52.
    [50]Pentikainen MO, Oorni K, Ala-Korpela M,et al. Modified LDL-trigger of atherosclerosisn and inflammation in the arterial intimal[J].J Inter Med,2000,247(3):359-370.
    [51]陈志华.低密度脂蛋白及其抗体与动脉粥样硬化的关系[J].上海第二医科大学学报,2005,25(6):638-642.
    [52]Iacobini C, Menini S, Ricci C, et al.Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: role of lipoxidation via receptor-mediated mechanisms[J].Arterioscler Thromb Vasc Biol,2009,29(6):831-836.
    [53]Huang Y, Jaffa A, Koskinen S, et al.Oxidized LDL-containing immune complexes induce Fc gamma receptor Ⅰ-mediated mitogen-activated protein kinase activation in THP-1 macrophages[J].Arterioscler Thromb Vasc Biol,1999,19(7):1600-1607.
    [54]Toth PP,Davidson MH. Therapeutic interventions targeted at the augmentation of reverse cholesterol transport[J].Curr Opin Cardiol,2004,19(4):374-379.
    [55]Shaul PW, Mineo C. HDL action on the vascular wall:is the answer NO?[J].J Clin Invest,2004,113(4): 509-513.
    [56]Navab M, Ananthramaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis:the role of oxidized phospholipids and HDL[J].J Lipid Res,2004,45(6):993-1007.
    [57]Barter PJ, Nicholls S, Rye KA, et al. Antiinflammatory properties of HDL[J].Circ Res,2004,95 (8):764-772.
    [58]Cockerill GW,Huehns TY,Weerasinghe A, et al. Elevation of plasma high-density lipoprotein concentration reduces interleukin-1-induced expression of E-selectin in an in vivo model of acute inflammation[J].Circulation,2001,103(1):108-112.
    [59]吴新伟,傅明德.胆固醇逆向转运的分子机制[J].生理科学进展,1998,29(4):361-363.
    [60]Haim M, Benderly M, Brunner D, et al. Elevated serum triglyceride levels and long-term mortality in patients with coronary heart disease:the Bezafibrate Infarction Prevention (BIP) Registry[J].Circulation,1999, 100(5):475-482.
    [61]Coughlan BJ, Sorrentino MJ. Does hypertriglyceridemia increase risk for CAD? Growing evidence suggests it plays a role[J].Postgrad Med,2000,108:77-84.
    [62]Devroey D, Vantomme K, Betz W, et al. A review of the treatment guidelines on the management of low-levels of high-density lipoprotein cholesterol[J].Cardiology,2004,102(2):61-66.
    [63]Couillard C, Despres JP, Lamarche B, et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides:evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study[J].Arterioscler Thromb Vase Biol,2001,21(7):1226-1232.
    [64]贾连群,勾蓝图,傅明德,等.血清总胆固醇、甘油三酯与高密度脂蛋白胆固醇比值同高密度脂蛋白亚类组成关系的研究[J].中国病理生理杂志,2006,22(1):75-79.
    [65]Gotto AM Jr, Whitney E, Stein EA, et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS)[J].Circulation,2000,101(54):477-484.
    [66]Benderly M, Graff E, Reicher-Reiss H, et al. Fibrinogen is a predictor of mortality in coronary-heart disease patients. The Bezafibrate Infarction Prevention (BIP) Study Group[J].Arterioscler Thromb Vase Biol,1996,16(3):351-356.
    [67]Stec JJ, Silbershatz H, Tofler GH, et al.Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Population[J].Circulation,2000,102(14):1634-1638.
    [68]Fibrinogen Studies Collaboration.Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality:an individual participant meta-analysis[J].JAMA,2005,294(14):1799-1809.
    [69]Guo M, Sahni SK, Sahni A,et al.Fibrinogen regulates the expression of inflammatory chemokines through NF-kappaB activation of endothelial cells[J].Thromb Haemost,2004,92(4):858-866.
    [70]Koenig W. Inflammation and coronary heart disease:an overview[J].Cardiol Rev,2001,9(1):31-35.
    [71]Yu H, Rifai N. High-sensitivity C-reactive protein and atherosclerosis:from theory to therapy[J].Clin Biochem,2000,33(8):601-610.
    [72]Burke AP,Tracy RP,Kolodgie F,et al. Elevated C-reactive protein values and atherosclerosis in sudden coronary death:association with different pathologies[J].Circulation,2002,105(17):2019-2023.
    [73]Biasucci LM, Liuzzo G, Grillo RL, et al. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability[J].Circulation,1999,99(7):855-860.
    [74]Plutzky J. Inflammatory pathways in atherosclerosis and acute coronary syndromes[J].Am J Cardiol, 2001,88(8A):10K-15K.
    [75]Futterman LG, Lemberg L. Novel markers in the acute coronary syndrome: BNP, IL-6, PAPP-A[J].Am J Crit Care,2002,11 (2):168-172.
    [76]Choussat R, Montalescot G, Collet J, et al. Effect of prior exposure to Chlamydia pneumoniae, Helicobacter pylori, or cytomegalovirus on the degree of inflammation and one-year prognosis of patients with unstable angina pectoris or non-Q-wave acute myocardial infarction[J].Am J Cardiol,2000,86(4):379-384.
    [77]Braunersreuther V, Mach F, Steffens S.The specific role of chemokines in atherosclerosis[J].Thromb Haemost,2007,97(5):7147-7121.
    [78]Seino Y, Ikeda U, Takahashi M, et al.Expression of monocyte chemoattractant protein-1 in vascular tissue[J].Cytokine,1995,7(6):575-579.
    [79]Boring L, Gosling J, Cleary M, et al.Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis[J].Nature,1998,394(6696):894-897.
    [80]Gu L, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptordeficient mice[J].Mol Cell,1998,2(2):275-281.
    [81]Inoue S, Egashira K, Ni W, et al.Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice[J].Circulation, 2002,l06(21):2700-2706.
    [82]Valen G, Yan ZQ, Hansson GK.Neclear factor kappar-B and the heart[J].J Am Coll Cardiol,2001, 8(2):307-314.
    [83]Collins T.Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion[J].Lab Invest,1993,68(5):499-508.
    [84]Brand K, Page S, Walli AK, et al. Role of nuclear factor-kappa B in atherogenesis[J].Exp Physiol. 1997,82(2):297-304.
    [85]Miskolci V, Castro-Alcaraz S, Nguyen P, et al. Okadaic acid induces sustained activation of NFkappaB and degradation of the nuclear IkappaBalpha in human neutrophils[J].Arch Biochem Biophys,2003,417(1): 44-52.
    [86]Nureddin Cengiz, Ender Erdogan, Hanefi Ozbek, et al. Adhesion Molecules in Cerebral Ischemia and Atherosclerosis[J].Eur J Gen Med,2009,6(4):249-256.
    [87]Blankenberg S, Barbaux S, Tiret L.Adhesion molecules and atherosclerosis[J].Atherosclerosis,2003,170 (2):191-203.
    [88]Poston RN, Haskard DO, Coucher JR, et al. Expression of intercellular adhesion molecule-1 in atherosclerotic plaques[J].Am J Pathol,1992,140(3):665-673.
    [89]Printseva OYu, Peclo MM, Gown AM. Various cell types in human atherosclerotic lesions express ICAM-1. Further immunocytochemical and immunochemical studies employing monoclonal antibody 10F3 [J].AAm J Pathol,1992,140(4):889-896.
    [90]Mulvihill NT, Foley JB. Inflammation in acute coronary syndromes[J].Heart,2002,87(3):201-204
    [91]Gearing AJ, Newman W.Circulating adhension molecules in disease[J].Immunol Today,1993,14(10): 506-512.
    [92]Malik I, Danesh J, Whincup P, et al.Soluble adhesion molecules and prediction of coronary heart disease.a prospective study and meta analysis[J].Lancet,2001,358(9286):971-976.
    [93]Blankenberg S, Rupprecht HJ, Bickel C, et al.Circulating cell adhesion molecules and death in patients with coronary artery disease[J].Circulation,2001,104(12):1336-1342.
    [94]Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis:the good, the bad, and the ugly[J].Circ Res,2002,90(3):251-262.
    [95]Shah PK, Falk E, Badimon JJ, et al.Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture[J].Circulation,1995,92(6):1565-1569.
    [96]Beaudeux JL, Giral P, Bruckert E, et al. Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives [J].Clin Chem Lab Med,2004,42(2):121-131.
    [97]Nikkari ST, O'Brien KD, Ferguson M, et al. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis[J].Circulation,1995,92(6):1393-1398.
    [98]Sukhova GK, Schonbeck U, Rabkin E, et al.Evidence for increased collagenolysis by interstitial collagenases-1 and-3 in vulnerable human atheromatous plaques[J].Circulation,1999,99(19):2503-2509.
    [99]Cavusoglu E, Ruwende C, Chopra V, et al.Tissue inhibitor of metalloproteinase-1(TIMP-1)is an independent predictor of all-cause mortality, cardiac mortality, and myocardial infarction[J].Am Heart J,2006,151(5):1101.e1-8.
    [100]Newby AC, George SJ, Ismail Y, et al.Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes[J].Thromb Haemost,2009,101 (6):1006-1011.
    [101]Kockx MM. Apoptosis in the atherosclerotic plaque:quantitative and qualitative aspects[J].Arterioscler Thromb Vasc Biol,1998,18(10):1519-1522.
    [102]Isner JM, Kearney M, Bortman S, et al. Apoptosis in human atherosclerosis and restenosis[J]. Circulation,1995,91(11):2703-2711.
    [103]Geng YJ.Biologic effect and molecular regulation of vascular apoptosis in atherosclerosis[J].Curr Atheroscler Rep,2001,3(3):234-242.
    [104]Bennett MR.Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture[J].Cardiovasc Res,1999,41(2):361-368
    [105]Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability[J].Circulation,2002,105(8):939-943.
    [106]叶平.血脂康调整血脂对冠心病二级预防研究(CCSPS)的启示[J].中国处方药,2004,(11):77-78.
    [107]Zhao SP, Liu L, Cheng YC, et al.Xuezhikang, an extract of cholestin, protects endothelial function through antiinflammatory and lipid-lowering mechanisms in patients with coronary heart disease[J]. Circulation,2004,110(8):915-920.
    [108]姚青海,崔长琮,王军奎,等血脂康对不稳定型心绞痛患者血脂、血清氧化修饰低密度脂蛋白、C反应蛋白和纤维蛋白原含量的影响[J].中国中西医结合杂志,2003,23(10):750-752.
    [109]姚巍,张秀兰,王风芝.血脂康对急性冠状动脉综合征的P-选择素、可溶性细胞间黏附因子-1、基质金属蛋白酶-9的影响[J].中华心血管病杂志,2006,34(11):1004.
    [110]Li JJ, Wang Y, Nie SP, et al.Xuezhikang, an extract of cholestin, decreases plasma inflammatory markers and endothelin-1, improve exercise-induced ischemia and subjective feelings in patients with cardiac syndrome X[J].Int J Cardiol,2007,122(1):82-84.
    [111]叶忠平,宗金波,姜昌浩.血脂康胶囊对颈动脉粥样硬化斑块及高敏C-反应蛋白水平的影响[J].医药导报,2008,27(1):56-57.
    [112]王蔚,高鸿祥,等.血脂康对颈动脉斑块的影响[J].中国临床药学杂志,2002,11(5):263-265.
    [113]王晓静,曾定尹,郑晓伟,等.血脂康对实验性家兔动脉粥样硬化形成及其脂质过氧化损伤的影响[J].中国循环杂志,1998,13(5):305-307.
    [114]曾定尹,于波,郑晓伟,等.血脂康对家兔血管平滑肌细胞增殖迁移的抑制作用[J].中华内科杂志,1998,37(6):400.
    [115]徐伯平,程蕴琳,鲁翔,等.血脂康对低密度脂蛋白体外氧化修饰的影响[J].中华内科杂志,1999,38(8):520-522.
    [116]徐伯平,程蕴琳,鲁翔,等.血脂康对鼠巨噬细胞摄取氧化低密度脂蛋白能力影响的观察[J].江苏预防医学,2004,15(1):9-13.
    [117]张鹏华,李鹏,韩晓男,等.血脂康在体外对巨噬细胞分泌基质金属蛋白酶-2的抑制作用[J].中华心血管病杂志,2001,29(8):497-499.
    [1]Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardio-vascular disease [J].Circulation,1989,79(4):733-743.
    [2]de Korte CL, Sierevogel MJ, Mastik F, et al. Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo:a Yucatan pig study[J].Circulation,2002,105(14):1627-1630.
    [3]Badimon L.Atherosclerosis and thrombosis:lessons from animal models[J].Thromb Haemost,2001,86(1): 356-365.
    [4]Granada JF, Moreno PR, Burke AP, et al. Endovascular needle injection of cholesteryl linoleate into the arterial wall produces complex vascular lesions identifiable by intravascular ultrasound:early development in a porcine model of vulnerable plaque [J].Coron Artery Dis,2005,16(4):217-224.
    [5]Prescott MF, McBride CH, Hasler-Rapacz J, et al. Development of complex atherosclerotic lesions in pigs with inherited hyper-LDL cholesterolemia bearing mutant alleles for apolipoprotein B[J].Am J Pathol,1991, 139(1):139-147.
    [6]Constantinides P, Chakravarti RN. Rabbit arterial thrombosis production by systemic procedures [J].Arch Pathol,1961,72:197-208.
    [7]Abela GS, Picon PD, Friedl SE, et al. Triggering of Plaque Disruption and Arterial Thrombosis in an Atherosclerotic Rabbit Model[J].Circulation,1995,91(3):776-784.
    [8]Nakamura M, Abe S, Kinukawa N. Aortic medial necrosis with or without thrombosis in rabbits treated with Russell's viper venom and angiotensin II[J].Atherosclerosis,1997,128(2):149-156.
    [9]Rekhter MD, Hicks GW, Brammer DW, et al. Animal model that mimics atherosclerotic plaque rupture[J]. Circ Res,1998,83(7):705-713.
    [10]Pakala R, Leborgne L, Cheneau E, et al. Radiation-induced atherosclerotic plaque progression in a hypercholesterolemic rabbit:a prospective vulnerable plaque model?[J].Cardiovasc Radiat Med,2003,4(3): 146-151.
    [11]陈文强,张运,张梅,等.外源性人野生型p53基因转染动脉硬化兔导致斑块不稳定性[J].中华医学杂志,2004,84:43-47.
    [12]陈文强,张运,张梅,等.不稳定斑块血管内超声特征的实验研究[J].中华超声影像学杂志,2004,13(6):456-459.
    [13]Zhang L, Liu Y, Lu X'T,et al. Intraplaque injection of Ad5-CMV.p53 aggravates local inflammation and leads to plaque instability in rabbits[J].J Cell Mol Med,2009,13(8B):2713-2723.
    [14]Calara F, Silvestre M, Casanada F, et al. Spontaneous plaque rupture and secondary thrombosis in apoli-poprotein E-deficient and LDL receptor-deficient mice[J].J Pathol,2001,195(2):257-263.
    [15]Zhang SH,Reddick RL,Pietrahita JA,et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E[J].Science,1992,258(5081):468-471.
    [16]Reddick RL, Zhang SH, Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional develop-ment and progression[J]. Arterioscler Thromb,1994,14(1):141-147.
    [17]Seo HS, Lombardi DM, Polinsky P, et al. Peripheral vascular stenosis in apolipoprotein E-deficient mice. Potential roles of lipid deposition, medial atrophy, and adventitial inflammation[J].Arterioscler Thromb Vasc Biol,1997,17(12):3593-3601.
    [18]Rosenfeld ME, Polinsky P, Virmani R, Kauser K, et al. Advanced atherosclerotic lesions in innominate artery of apoE knockout mouse[J].Arterioscler Thromb Vasc Biol,2000,20(12):2587-2592.
    [19]Reddick RL, Zhang SH, Maeda N. Aortic atherosclerotic plaque injury in apolipoprotein E deficient mice[J].Atherosclerosis,1998,140(2):297-305.
    [20]Johnson JL, Jackson CL. Atherosclerotic plaque rupture in the apolipoprotem E knockout mouse[J], Atherosclerosis,2001,154(2):399-406.
    [21]Williams H, Johnson JL, Carson KG, et al. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice[J].Arterioscler Thromb Vasc Biol,2002,22(5): 788-792.
    [22]Knowles JW, Maeda N. Genetic modifiers of atherosclerosis in mice[J].Arterioscler Thromb Vasc Biol, 2000,20(11):2336-2345.
    [23]Braun A, Trigtti BL, Post MJ, et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotem E-deficient mice[J].Circ Res,2002,90(3):270-276.
    [24]von der Thusen JH, van Vlijmen BJ, Hoeben RC, et al Induction of atherosclerotic plaque rupture in apolipoprotein E-/-mice after adenovirus-mediated transfer of p53[J].Circulation,2002,105(17):2064-2070.
    [25]Nakata Y, Maeda N. Vulnerable atherosclerotic plaque morphology in apolipoprotein E-deficient mice unable to make ascorbic Acid[J].Circulation,2002,105(12):1485-1490.
    [26]Shimshi M, Abe E, Fisher EA, et al. Bisphosphonates induce inflammation and rupture of atherosclerotic plaques in apolipoprotein-E null mice[J].Biochem Biophys Res Commun,2005,328(3):790-793.
    [27]Herrera VL, Makrides SC, Xie HX, et al. Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein[J].Nat Med,1999,5(12):1383-1389.
    [28]Russell JC, Graham SE, Richardson M.Cardiovascular disease in the JCR:LA-cp rat[J].Mol Cell Biochem, 1998,188(1-2):113-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700