深基坑变形预测模型及其实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市的不断发展,城市建设不断的朝着深、高的方向发展,这都要求建筑要有很好的基础结构,从而产生了大量的深基坑工程。由于深基坑工程难度大,周期长,造价高,如何对其支护结构进行有效的设计分析,以及对其安全的控制保证就成为焦点。传统的深基坑边坡稳定性分析客观上存在着大量的不确定性,充分考虑由各种因素引起的不确定性是边坡稳定性研究的发展趋势。
     本文利用MIDAS有限元软件,采用单位建模,对成都金阳项目建立了基坑开挖、支护模拟的有限元模型,模拟分析了在不同的工况作用下,其基坑的水平以及垂直位移变形情况,并反馈与设计,从而可以更好的优化设计,优化造价。通过模拟得到如下结论:
     ①基坑开挖后,应用数值模拟技术对开挖过程中的各种复杂应力状况进行动态模拟分析,分析在开挖过程中基坑的变形位移,我们得到其在不同施工进程(直接开挖和分部开挖)、不同锚杆倾角(15度与18度)、有无附加荷载(有施工附加荷载与无施工荷载)的情况下,基坑位移变形的大小对比情况,为工程开挖做前期方案做定性分析。
     ②有限元法模拟基坑开挖过程中的不同锚杆间距(1.5米与2.0米)状况下的基坑位移变形大小分析,为工程决策做出参考,在满足工程安全的情况下,进行造价优化。
     同时基于土体的不确定性,实际工程的影响因素较大,数值模拟很难对基坑工程定量分析的特点,引入灰色理论的基本概念,将深基坑边坡系统视为一个灰色系统,对深基坑支护结构的水平、垂直位移建立GM(1,1)模型,对其基坑变形做出有效的模拟和预测。同时,本文还尝试引入在隧道工程中常用的Verhulst模型,对基坑变形做出警戒性预测,对基坑变形可能出现的最大值做出定量分析。为基坑预警做出探索。
     研究结果表明:灰色系统理论在深基坑变形预测分析中是比较有效的,具有良好的前景。改进型GM(1,1)模型预测变形较之其他的模型有明显的优势,而Verhulst模型则是对破坏曲线的一个具体模拟,可以得到较好的包络线,提供警戒值。
Accompany with the development of the city construction ,the buildings were builded higher and higher . As a result ,the building must have a durable basis, the foundation must be deep. But becanse of the foundation construction is very difficult and costs a lot of money with long period, the deep foundation construction is be paid more and more attention by the government and the engineers. How to make the deep foundation to be safety and how to optimizate the design are becomed focus. Many scholars have spended energy on it. Traditional slopal foundation thoery have many uncertain factors. Nowady, scholars consider the uncertains as indispensable factors in designs. The theroy as this becomes more and more popular.
     L use the finite element sofeware like MIDAS in the aricle below . it uses the modeling unite to set up an excavation project and the foundation support simulation established the jingyang projection in chengdu. It have simulated the horizonal displacement and the vertical dispalcement in different conditons. After that, we result back, and optimizate the design and decease the cost .we have get some conclutions from the simulations:
     ①After the excavation of numerical simulation technology, application of various excavation process complex stress status, analyzes the dynamic simulation in excavation pit deformation displacement in the process ,We get different construction process in the excavation and division, different anchor excavation Angle (15 degrees and 18 degrees), whether additional load (construction with no additional load under the condition of construction load), the size of the displacement deformation of foundation pit excavation projects for comparison, the qualitative analysis is done do scheme.
     ②Finite element method to simulate the excavation process different anchor spacing (1.5 meters and 2 meters) of excavation displacement situations for engineering deformation amplitude analysis, reference, satisfying the decisions under the condition of construction safety, cost optimization.
     Meanwhile, based on the uncertainty of soil influence factors of actual engineering larger, numerical simulation is hard to the characteristics of foundation pit engineering quantitative analysis, and introduce the basic concept of grey theory, deep foundation pit slope system as a gray system of deep foundation pit bracing structure, the horizontal and vertical displacement establish GM (1, 1) model, the deformation of the simulation and forecast an effective. At the same time, this paper also attempt to introduce in the tunnel engineering used in Verhulst model, the deformation forecast to make of vigilance deformation, the maximum possible to quantitative analysis. For foundation pit warning to explore.
     The result show that : The grey theroy is very useful in the forcasting of foundation deformation . The development of the GM (1,1) have much more advantages than other medals, and the Verhust medal have a good performace in providing the warning values.
引文
[1]王洋,汤连生.谈基坑监测项目中监控报警值的确定[J].施工技术, 2002. 6: 34.
    [2] TerzaghiK , Peck R B . 5011 Mechanics in Engineering Practice . [J] 2nd ed . , John Wiley & Sons , Inc . New Y6rk , 1967 : 729 .
    [3] Peck R B . Deep EXcavations and Tunneling in Soft Ground . [J] 7th ICSMFE , Stare -of - the -Art [J]Volume 1 969 : 225一290 .
    [4] Bjerrum L . , Eide O . Stability of strutted excavations in clay . [J] Geotechnique 1956 6 ( l ) : 32 -47.
    [5]李达.深基坑锚杆反拉式支护结构体系平面有限元模拟分析. [M]哈尔滨工业大学硕士学位论文. 2005 . 01 . 01.
    [6] Clough G . W. , Duncan J. M . , Finite Element Analyses of Retaining Wall Behavior[J] , ASCE , 1971 , Vol . 97SM , 12 , 165 -167).
    [7] Andrew J. W, Youssef M . A. , Analysis of Deep Excavation in Boston , Journal Geotechnical Engineering , [J] 1993 , Vol . 119 , No . l , 69 -89.
    [8] Sunil. 5. Kishnani , Ronaldo 1 . , SeePage and 5011-structure interface Effects in Braced Excavations , Journal of Geotechnlcal Engineering , [J] 1993 , Vol . 119 , N0 . 5 , 912 -929.
    [9] Charles W. Ng , Martin L . Lings , Effects of Modeling Moil Nonlinearity and wall Installation on Back-Analysis of Deep Excavation in Stiff Clay , Journal of Geotechnical Engineering , [J]1995 , Vol . 121 , No . 10 , 687 -695.
    [10] Ou . C. Y . , Chiou D. C . , Wu T. S, Three-dimensional Element Analysis of Deep Excavation , Journal Geotechnical Engineering , [J]ASCE , 1996 , 122 ( 5 ) : 337 -345.
    [11]俞建霖,龚晓南,深基坑工程的空间性状分析[J],岩土工程学报, 1999 , 22 ( l ) : 21- 25.
    [12]宋二祥,娄鹏,陆新征,沈伟,某特深基坑支护的非线性三维有限元分析[J],岩土力学, 2004 , 25 ( 4 ) : 535 -543.
    [13]高文华,杨林德,软土深基坑围护结构变形的三维有限元分析[J],工程力学, 2000 , 17 ( 2 ) : 134 -140.
    [14]施占新,基坑工程的三维数值模拟分析[J],施工技术, 2005增刊: 302 -304.
    [15]屈俊童,周健,某特深圆形基坑的三维数值分析[J],昆明理工大学学报(理工版) , 2004 , 29 ( 5 ) : 96 -99).
    [16]胡友健.深基坑工程监测数据处理与预测报警系统.[M]焦作工学院学报(自然科学版) , 2001 . 20 ( 2 ) : 130 -135.
    [17]邓聚龙.灰色控制系统(第二版) [M] ,武汉:华中理工大学出版社, 1997 . 17 -20.
    [18]倪立峰.基坑变形的动态神经网络实时建模预报方法. [J]振动测试与诊断, 2002 , 9 : 217 -221.
    [19]曹红林.用小波神经网络预测深基坑周围地表的沉降. [J]土工基础. 2003 , 4 : 53 -55.
    [20]贺可强.神经网络法在深基坑变形实时预报中的应用研究. [J]建筑技术开发. 2002 , 7 : 28 -30.
    [21]荣延祥.灰色预测方法在基坑变形监测中的应用. [J]东北测绘。1999 , 3 : 5 -6).
    [22]张伟丽,陈爱云等.灰色系统理论在基坑变形预测中的应用. [J]莱阳学院学报. 2003 , 20 : 60 -61.
    [23]钟正雄.基坑变形的实时建模预报时序分析方法. [J]工业建筑, 2000 , 3 : 1-4).
    [24]潘洪科,饶运章.神经元网络在基坑工程变形预报中的应用研究[J].南方冶金学院学报, 2000 , 21 ( 4 ) : 239-430 .
    [25]邓跃进.自适应卡尔曼滤液在变形监测动态数据处理中的应用. [J]测绘信息与工程. 1996 , l : 1-4).
    [26]李庆来,谢康和.深基坑开挖变形预测与信息施工技术[J].水利学报, 2000 ( l ) : 42 -48.
    [27]赵海燕.基于幂函数形式的基坑变形预测. [J]同济大学学报. 2003 , 8 : 89-92).
    [28]邓建,朱合华.基于神经网络的岩土工程结构随机有限元分析[J].同济大学学报, 2002 , 30 ( 3 ) : 269-272 .
    [29]李庆来,谢康和.深基坑开挖变形预测与信息施工技术[J].水利学报, 2000 ( l ) : 42 -48 . ).
    [30]赵志缙,应惠清.简明深基坑工程设计施工手册[M].北京:中国建筑工业出版社, 2000, 176~345.
    [31]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社, 1997.
    [32]龚晓南,高有潮.深基坑工程设计施工手册[M].北京:中国建筑工业出版社, 1998.
    [33]施金平.利景中心深基坑支护设计[J].福建建筑, 2007. 104(2): 44~46.
    [34]吴庆令.南京地区基坑开挖的变形预警研究[J].南京航空航天大学硕士论文, 2006: 19~30.
    [35]张云军,宰金珉等.南京地区某深基坑工程的监测与分析[J].岩土工程界, 2006. 7(11): 75~77.
    [36]代艳华,张川等.深基坑工程支护桩体时空监测[J].西部探矿工程, 2004. 103(12): 56~57.
    [37]彭振斌,吴启红等.新型桩锚支护结构在某深基坑中的应用[J].探矿工程, 2005. (10): 17~19.
    [38]张冬晓.建筑基坑监测及预测预报系统研究[D].中南大学硕士论文, 2004. 49~50.
    [39]陈建强,黄树华.湘雅二医院住院大楼深基坑支护设计与监测[J].施工技术, 159~161.
    [40]腾军林.某深基坑开挖变形监测与分析.西部探矿工程[J], 2004. 98(7): 206~207.
    [41]韦漠,苏力才等.广西地矿局科技业务楼深基坑施工实例[J].探矿工程, 2006. (8): 11~16.
    [42]韩选江.镇江国贸大厦深基坑支护结构的锚拉试验与检验[J].岩土力学, 2003. 24(1):97~102.
    [43]朱彦鹏,王秀丽等.兰州中广大厦超长深基坑支护的设计、施工与实验监测[J].工程力学增刊, 2003. 336~341.
    [44]李建峰,曾永祥等.桩、锚、喷三结合支护深基坑[J].西安科技大学学报, 2005. 25(1): 21~23.
    [45]杨辉.长春百脑汇基坑土钉墙支护数值模拟与研究[J].吉林大学硕士论文, 2005. 38~41.
    [46]韩杰.太原桩锚支护基坑工程设计方法研究[D].太原理工大学硕士论文, 2004. 44~49.
    [47]梁成华,盖建国.郑州蓝码大厦深基坑支护与地下水控制工程[J].地基基础工程, 2006. 10(1): 37~40.
    [48]李杰.基坑开挖数值模拟研究[D].中国海洋大学硕士论文, 2006. 36~50.
    [49] O'Rourke T D, O'Donnell C J. Deep Rotational Stability of Tieback Excavations in Clay. Journal of Geotechnical and Geoenvironmental Engineering, [J] ASCE, 1997, 123(6).
    [50] Dawson, E. M, W. H. Roth and A. Drescher.“Slope Stabbility Analysis with Finite Element and Finite Difference Methods”, [J] Geotechnique, June, 1998.
    [51] Dawson, E. M and W. H. Roth.“Slope Stabbility Analysis with FLAC, in FLAC and Numerical Modeling in Geomechanics”, proceeding of the international FLAC symposium on Numerical Modeling in Geomechanics, [J] Minneapolis, Minnesota, September 1999, 3-9. Rotterdam: A. Balkema, 1999.
    [52] Smith I. M. Three-dimernsional Analysis of Reinforced and Nailed Soil[J]. In: Pande, Pietruszczak, eds. Unmerical models in geomecha-nics, 1992: 829~838.
    [53] Jose M. roesset. Analysis, Design, Construction and Testing of Deep Foundation[M]. America: Geotechnical Special Publication, 1999.
    [54] RichardBrummer etc. FLAC and Numerical Modeling in Geomechanics. [J] Netherlands: Swets & Zeitling Publisher, 2003.
    [55] Dawson, E. M, W. H. Roth and A. Drescher.“Slope Stabbility Analysis with Finite Element and Finite Difference Methods”, [J] Geotechnique, June, 1998.
    [56] Dawson, E. M and W. H. Roth.“Slope Stabbility Analysis with FLAC, in FLAC and Numerical Modeling in Geomechanics”, proceeding of the international FLAC symposium on Numerical Modeling in Geomechanics, [J] Minneapolis, Minnesota, September 1999, 3-9. Rotterdam: A. Balkema, 1999.
    [57] Smith I. M. Three-dimernsional Analysis of Reinforced and Nailed Soil[J]. In: Pande, Pietruszczak, eds. Unmerical models in geomecha-nics, 1992: 829~838.
    [58] Jose M. roesset. Analysis, Design, Construction and Testing of Deep Foundation. [J] America: Geotechnical Special Publication, 1999.
    [59] RichardBrummer etc. FLAC and Numerical Modeling in Geomechanics. [J] Netherlands: Swets & Zeitling Publisher, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700