渗透脱水—冻结与玻璃化贮藏对芒果品质的影响及动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用了渗透脱水预处理和冻结联合应用加工芒果,研究不同预处理对冷冻芒果品质、多酚和挥发性成分的影响;同时,研究芒果渗透脱水—冻结的过程,以细胞为单元建立一维质量平衡方程和热平衡方程;将玻璃态贮藏理论应用在芒果冻藏中,研究芒果的玻璃化转变温度与状态图;并进一步验证玻璃态贮藏和渗透脱水—冻结对冻藏期内芒果品质的贮藏效果。得到的主要结果如下:
     (1)渗透脱水—冻结与传统冻结相比,芒果的冷冻时间减少,熔点下降,冷冻速率加快。渗透脱水—冻结芒果在色泽、硬度、汁液流失率、维生素C含量和其他生理指标方面都优于未处理和漂烫组。渗透脱水—冻结可使新鲜芒果的PPO活性下降,POD活性升高。
     (2)通过研究不同渗透脱水—冻结加工对芒果品质的影响,结果表明渗透液浓度越大,渗透脱水预处理样品的冻结速率越快。与新鲜芒果和芒果在蔗糖溶液中渗透预处理后相比,样品在葡萄糖和麦芽糖溶液中熔点(Tm)值较低。另外,渗透脱水—冻结样品在麦芽糖溶液中预处理后,维生素C含量增加了23.5~73.0%,总色差减少了2.6~39.2%以及汁液流失率降低了0.7~9.7%;样品在葡萄糖溶液中硬度增加了16.4~36.2%。通过主成分分析(PCA)和组间距离分析,得到45%的麦芽糖渗透脱水—冻结是芒果冷冻的最优条件。
     (3)渗透脱水—冻结与传统冻结相比,能够阻止芒果总酚含量的减少。与其他3种糖液预处理相比,葡萄糖渗透脱水—冻结后总酚含量最高。不同冷冻加工处理对芒果的各种酚类物质含量有显著性影响(P<0.05),没食子酸、芥子酸和槲皮素含量降低,对羟基苯甲酸和对香豆酸含量升高。与传统冻结相比,渗透脱水—冻结能够较好地保持芒果的多酚含量。
     (4)芒果经过不同渗透脱水—冻结加工处理后产生了一些新的挥发性成分。直接冷冻后有些挥发性成分未被检测到,并且有些成分含量降低。与传统冻结相比,渗透脱水—冻结能较好地保持芒果中酯类等其他香气成分。其中麦芽糖渗透脱水—冻结后,鉴定出的香气成分最多。
     (5)以细胞为单元建立了芒果一维渗透脱水质量平衡方程,与一维冻结过程的热平衡方程,通过实验值和模拟值的比较,证明本文建立的渗透脱水和冻结数学模型是可行的。本文预测了细胞内、外水质量浓度的分布,以及细胞外蔗糖质量浓度的分布。模拟结果得到细胞外水质量浓度分布曲线与细胞内水质量浓度分布曲线趋势相同,在任意位置任意时刻细胞外水质量浓度比细胞内水质量浓度较小。越靠近渗透液的位置细胞外蔗糖质量浓度越高,随着向中心位置方向移动,细胞外蔗糖质量浓度逐渐变小。
     (6)芒果粉末在25℃的吸附等温线符合GAB模型,单分子层水分含量(Xm)为0.109g/g湿基。通过DSC测量冻结点温度和玻璃化转变温度与水分含量的关系,建立了芒果状态图。从芒果状态图上,可以得到最大冻结浓缩状态时的固形物质量分数(Xs')为0.84g/g湿基,对应的冻结终点特征温度(Tm')为-33.0℃,特征玻璃化转变温度(Tg')为-54.6℃。其他特征玻璃化转变温度Tg"值和TG'"值分别为-43.2℃和-36.8℃。对应芒果的非冻结水的水分含量为0.16g/g湿基(1-Xs')。芒果的状态图既可以用来预测芒果冻藏过程中的稳定性,也可以预测芒果干燥条件下的稳定性,并且能提供最优的加工条件。
     (7)经过6个月的冻藏(-18℃)后,渗透脱水—冻结使得芒果的总色差降低了12.5~36.8%,硬度提高了35.8~65.5%,汁液流失率减少了11.3~44.5%,维生素C含量提高了21.2~134.8%。结果显示,较高浓度的渗透脱水前处理能够较好地保持冻藏芒果的品质,而40%的渗透液浓度是芒果冷冻保藏的最优条件。同时,芒果阴面(较硬)比阳面(较软)更适合于冷冻保藏。随着冻藏时间延长,渗透脱水前处理的冻藏芒果比直接冷冻的芒果品质下降缓慢。与普通冻藏(-18℃)相比,玻璃态贮藏(-55℃)能够提高芒果的色泽、硬度、汁液流失率、维生素C含量和其他生理指标。
The objectives of this study were to use the combining osmotic dehydration pre-treatment with freezing technique to improve the quality of frozen mango. The effects of different pre-treatments on the quality attributes, phenolic compounds and volatile flavor compositions of frozen mango were investigated. Moreover, in order to simulate the whole processes of osmotic dehydration and freezing, a successive one-dimensional mass and heat transfer modeling approach based on mango cell as a basic unit was developed. In addition, glass transition temperature and state diagram of mango were investigated to predict the storage stability of frozen mangoes. Moreover, the effects of storage at glassy state and osmo-dehydrofreezing on the quality attributes of frozen mangoes during storage were also investigated. The main results and conclusions were made as follows:
     (1) The osmo-dehydrofrozen mangoes obtained a shorter freezing time, a lower melting point and a higher freezing rate than that of the conventionally frozen samples. The osmotic dehydration pretreatment significantly improved the quality attributes of frozen mango in terms of color, hardness, drip loss, vitamin C content and other physical properties compared with the untreated or the blanched ones. In addition, the osmo-dehydrofreezing can inhibit the polyphenol oxidase activity, but activate the peroxidase activity.
     (2) Freezing time of the osmotic-dehydrated mangoes was reduced by increasing osmotic concentration due to less water to be frozen. The melting temperature of mango cuboids dehydrated in glucose and maltose solutions was lower than that of fresh samples and samples in sucrose solution. In addition, the dehydrofrozen samples pretreated in maltose had higher quality in vitamin C content (increasing by23.5-73.0%), color (color change reducing by2.6-39.2%) and drip loss (reducing by0.7~9.7%) than those pretreated in other osmotic solutions. The cuboids pretreated in glucose displayed higher hardness (increasing by16.4-36.2%). Based on principal component analysis (PCA) and group distance, osmotic dehydration in45%maltose was proposed as the most favorable freezing conditions.
     (3) The osmo-dehydrofreezing could prevent total phenolic losses of mangoes compared with conventional freezing. The dehydrofrozen samples pretreated in glucose had higher content of total phenolic than other sugars. After different freezing processes, there were significant differences (p<0.05) in the content of individual phenolic compounds; some phenolic compounds (including gallic acid, quercetin, and sinapic acid) decreased, while others (including p-hydroxybenzoic acid and p-coumaric acid) increased. The current work indicates osmo-dehydrofreezing improves the content of individual phenolic compounds in frozen mangoes.
     (4) The new volatile compounds were present in osmotically pretreated mangoes after freezing. Some compounds present in fresh samples tended to decrease or disappear after conventional freezing. The osmo-dehydrofreezing could improve the esters and other major aroma compounds of frozen mangoes compared with conventional freezing. The dehydrofrozen samples pretreated in maltose had more volatile compounds identified than other sugars.
     (5) The one-dimensional mass balance equations and thermal balance equations were established. And a good agreement was obtained between the simulated and experimental results, proving that two models were practical. Numerical results could describe the distribution of water and sucrose in the intracellular and extracellular volumes of mangoes during osmotic dehydration. The distribution of water in the intracellular was similar with that of water in the extracellular volumes. The density of water in the extracellular volumes was lower than in the intracellular volumes. In addition, the density of sucrose in the extracellular volumes was higher when the distance was close to the interface, and it gradually become lower when the distance was close to the center.
     (6) The water sorption isotherm of freeze-dried mango (25℃) was established by GAB model and the monolayer moisture content was found to be0.109g water/g sample (d.b.) as the stability criteria by water activity concept. The state diagram provided an estimate of maximal-freeze-concentrated solutes at0.84g solids/g sample (w.b.)(Xs') with the characteristic temperature of end point of freezing (Tm') being-33.0℃and the characteristic glass transition temperatures Tg'being-54.6℃. Other characteristic glass transition temperatures Tg "and Tg'"were-43.2℃and-36.8℃, respectively. The unfreezable water in mango was obtained as0.16g water/g sample (w.b.)(1-Xs'). The state diagram can be used in predicting the storage stability of frozen and dried mangoes as well as in providing the optimum processing conditions.
     (7) The osmotic dehydration pretreatment can improve the quality attributes of frozen mango in terms of color (total color difference reducing by12.5~36.8%), hardness (increasing by35.8~65.5%), drip loss (reducing by11.3~44.5%) and vitamin C content (increasing by21.2~134.8%) compared with the untreated ones after6months of frozen storage (-18℃). Pretreatment with higher solution concentration showed smaller alterations in the quality attributes of samples. Through comprehensive analysis, dehydration in osmotic solution of concentration40%was considered as the optimum pretreatment conditions for frozen storage. In addition, the quality was better maintained in shaded side (firmer) of mangoes than the sun-exposed side (softer). With progression of storage time, although there was a reduction in the quality of samples, mangoes pretreated by osmotic dehydration showed less reduction than the untreated. The quality attributes of frozen mango could be improved at glassy state during frozen storage (-55℃).
引文
卞科.食品中的玻璃态研究[J].河南工业大学学报(自然科学版),2006,27(6):1-7.
    常剑.果蔬干燥过程细胞孔道网络模拟及实验研究[D].北京:中国农业大学工学院,2012.
    晁龙军,吕全,贾秀珍,等.生物冰核研究与应用的现状和前景[J].林业科学研究,2001,14(4):446-454.
    陈美霞,陈学森,周杰,等.杏果实不同发育阶段的香味组分及其变化[J].中国农业科学,2005,38(6):1244-1249.
    陈芹芹.孜然油成分鉴定及其体外功能性质研究[D].北京:中国农业大学食品科学与营养工程学院,2012.
    陈庆森,刘剑虹,阎亚丽,等.冰核活性菌体蛋白微冻保鲜虾体的应用研究[J].包装贮运,2002,23(11):139-143.
    陈庆森,王昌禄,魏国祥,等.冰核蛋白的结构及生冰核机理的研究进展[J].食品科学,2007,28(4):363-367.
    迟海,李学英,杨宪时,等.红酒提取物对南极磷虾贮藏过程中抗氧化效果的影响[J].农业机械学报,2013,44(2):153-158,187.
    崔清亮,郭玉明,程正伟.冷冻干燥物料共晶点和共熔点的电阻法测量[J].农业机械学报,2008,39(5):65-69,90.
    代焕琴,郭索娟,卢存福.抗冻蛋白及其在食品工业中的应用[J].食品与发酵工业,2001,27(12):44-49.
    邓云,张庆钢,Zhao Y Y.脉冲真空和超声波对苹果渗透动力学和品质的影响[J].农业机械学报,2008,39(8):89-93.
    董全.蓝莓渗透脱水和流化床干燥的研究[D].重庆:西南农业大学,2005
    关志强.食品冷冻冷藏原理与技术[M].北京:化学工业出版社,2010:240-243.
    关志强.食品冷冻冷藏原理与技术[M].北京:化学工业出版社,2010:70.
    何龙庆,林继成,石冰.菲克定律与扩散的热力学理论.安庆师范学院学报,2006,12(4):38-39
    胡爱军,丘泰球,邓捷.抗冻蛋白及其在食品工业中的应用[J].食品工业科技,2002,23(6):75-77.
    胡锐.速冻哈密瓜预处理及玻璃化贮藏工艺研究[D].北京:中国农业大学食品科学与营养工程学院,2013.
    黄文书.汁用杏筛选与超高压加工特性的研究[D].北京:中国农业大学食品科学与营养工程学院,2013.
    李日旺,黄国弟,苏美花,周俊岸,陈永森.我国芒果产业现状与发展策略[J].南方农业学报,2013,44(5):875-878.
    李毅平,龚和.昆虫低温生物学:Ⅱ.冰核物质(冰核蛋白)和昆虫的耐冻性[J].昆虫知识,2000,37(4):250-254.
    李勇,苏世彦.超高压在速冻食品加工中的应用[J].食品与机械,2000(5):33-34.
    李云飞,宋立华.牛肉部分玻璃化转变温度研究[J].农业工程学报,2003,19(3):182-185.
    林婉玲,杨贤庆,侯彩玲,等.直接浸渍冷冻过程中溶质在对虾中渗透规律的研究[J].现代食品科技,2013,29(8):1820-1825.
    刘朝华.形状规则食品冻结过程的研究[D].杭州:华中科技大学能源与动力工程学院,2005.
    刘木华,杨德勇.高分子科学中的玻璃化转变理论在谷物干燥及储存研究中的应用初探[J].农业工程学报,2000,16(5):95-98.
    罗睿雄,黄建峰,高爱平.我国芒果种质资源研究进展[J].产业发展,2013,50(1):10-13.
    农军.百色市芒果产业发展探析[J].安徽农业科学,2014,42(2):602-606,608.
    潘永康.现代干燥技术[M].北京:化学工业出版社,1998,68-89
    彭丹.花椰菜速冻及冰温保鲜技术研究[D].长沙:湖南农业大学食品科学技术学院,2010.
    石海燕.综合保鲜措施对“紫花”芒果采后生理的影响[D].北京:中国农业大学食品科学与营养工程学院,1996.
    宋国胜,胡松青,李琳.超声波辅助冷冻对湿面筋蛋白中冰晶粒度分布及总水含量的影响[J].化工学报,2009,60(4):978-983.
    宋洪波.植物组织的复水动力学模型.农业机械学报,2004,35(5):147-151
    宋莲军,唐贵芳,赵秋艳,等.富士苹果多酚氧化酶的提取及特性的研究[J].浙江农业科学,2009,(4):789-793.
    孙钟雷,孙永海,李宇,等.仿生食品质构仪设计与试验[J].农业机械学报,2012,43(1):230-234.
    唐会周,明建,程月皎,等.成熟度对芒果果实挥发物的影响[J].食品科学,2010,31(16):247-252.
    王运东,骆广生,刘谦.传递过程原理[M].北京:清华大学出版社,2002,192-200
    王璋编.食品酶学[M].北京:中国轻工业出版社,1990:42.
    王忠.植物生理学[M].北京:中国农业出版社,2000:12-60
    吴晗.食品单体冻结时间的数值模拟[D].北京:中国农业大学食品科学与营养工程学院,2006.
    吴喆,刘泽勤.食品冷冻中新技术的研究进展[J].冷藏技术,2010,12(4)::18-21.
    夏露,张超,王立,等.冬小麦抗冻蛋白制备及其在汤圆中的应用研究[J].食品工业科技,2009,30(11):241-243,310.
    邢华,周国燕,蓝浩.食品冷冻干燥物料共晶、共融点测量[J].食品与机械,2012,28(1):52-55.
    徐丽涵.冻豆腐的冷冻工艺及冷冻数学模型的研究[D].杭州:浙江大学生物工程与食品科学学院,2006.
    闫清华,杨理,邵强.抗冻蛋白及其在食品领域中的应用[J].山东农业科学,2010(11):89-92.
    闫师杰,梁丽雅,胡小松,等.不同处理对鸭梨采后颜色变化的影响[J].农业机械学报,2009,40(6):120-123,163.
    晏绍庆,刘宝林,华泽钊,等.冻结速率对苹果片多酚氧化酶和过氧化物酶活性影响的研究[J].食品工业科技,2000,20(2):8-10.
    杨彬彬.多孔介质干燥分形孔道网络模拟及实验研究[D].北京:中国农业大学工学院,2006.
    杨阳.蜂蜜品质的红外光谱和传感器快速检测技术研究[D].北京:中国农业大学食品科学与营养 工程学院,2013.
    尹国胜,任艳芳,何俊瑜,等.NO对延长芒果货架期的影响研究[J].中国农学通报,2011,27(26):114-118.
    袁越锦.非固结多孔介质干燥的多尺度孔道网络模拟与实验研究[D].北京:中国农业大学工学院,2007.
    张素文.玻璃态下冻结、冻藏及其后续解冻对西兰花品质的影响研究[D].无锡:江南大学食品学院,2007.
    赵金红,胡锐,刘冰,等.几种冷冻新技术对食品冻结过程中冰晶形成的影响[J].食品与机械,2012,28(6):241-245
    赵金红,胡锐,刘冰,等.渗透脱水前处理对芒果冻结速率和品质的影响[J].农业机械学报,2014,45(2):220-227.
    赵金红.果蔬渗透脱水过程动力学研究[D].北京:中国农业大学工学院,2007.
    赵黎明.DSC和脉冲NMR研究食品的玻璃化和玻璃化转变温度[J].食品科技,2001,(1):10-16,18.
    赵黎明.DSC和脉冲NMR研究食品的玻璃化合玻璃化转变温度[J].食品科技,2001,1:14-16.
    郑华,张弘,张汝国,等.云南特产“小三年”芒果不同成熟期香气成分的差异[J].食品科学,2008,29(10):487-490.
    郑小林,田世平,李博强,等.外源草酸延缓采后芒果成熟及其生理基础的研究[J].中国农业科学,2007,40(8):1767-1773
    朱立贤,罗欣.新技术在食品冷冻过程中的应用[J].食品与发酵工业,2009,35(6):145-150.
    邹克坚.芒果渗透脱水和变温压差膨化干燥的研究[D].南宁:广西大学轻工与食品工程学院,2012.
    Ablett S, Izzard M J, Lillford P J, et al. Calorimetric study of the glass-transition occurring in fructose solutions[J]. Carbohydrate Research,1993,246(1):13-22.
    Agnelli M E, Marani C M, Mascheroni R H. Modelling of heat and mass transfer during (osmo) dehydrofreezing of fruits. Journal of Food Engineering,2005,69:415-424.
    Ahmad S, Yaghmaee P, Durance T. Optimization of dehydration of lactobacillus salivarius using radiant energy vacuum[J]. Food and Bioprocess Technology,2010,5:1019-1027.
    Aleksandar J, Julianna G, Ljubinko L, et al. Osmotic dehydration of sugar beet in combined aqueous solutions of sucrose and sodium chloride[J]. Journal of Food Engineering,2007,78:47-51.
    Ando H, Kajiwara K, Oshita S, et al. The effect of osmotic dehydrofreezing on the role of the cell membrane in carrot texture softening after freeze-thawing[J]. Journal of Food Engineering,2012, 108(3):473-479.
    Arballo J R, Bambicha R R, Campanone L A, et al. Mass transfer kinetics and regressional-desirability optimisation during osmotic dehydration of pumpkin, kiwi and pear[J]. International Journal of Food Science and Technology,2012,47:306-314.
    Arvanitoyannis I S, Blanshard J M V, Ablett S, et al. Calorimetric study of the glass-transition occurring in aqueous glucose-fructose solutions[J]. Journal of the Science of Food and Agriculture,1993,63 (2):177-188.
    Askar A, Abdel-Fadeel M G, Ghonaim S M, et al. Osmotic and solar dehydration of peach fruits[J]. Fruit Process,1996,9 (1):258-262.
    Baek M H, Yoo B, Lim S T. Effect of sugars and sugar alcohols on thermal transition and cold stability of corn starch gel[J]. Food Hydrocolloids,2004,18:133-142.
    Bai Y, Rahman M S, Perera C O, et al. State diagram of apple slices:glass transition and freezing curves[J]. Food Research International,2001,34(2-3):89-95.
    Bartley J, Schwede A. Volatile flavor components in the headspace of the Australian or Bowen mango[J]. Journal of Food Science,2006,52(2):353-355.
    Biswal R, Bozorgmehr K, Tompkins F, et al. Osmotic concentration of green, beans prior to freezing[J]. Journal of Food Science,1991,56:1008-1012.
    Blanda G, Cerretani L, Bendini A, et al. Effect of vacuum impregnation on the phenolic content of Granny Smith and Stark Delicious frozen apple cvv[J]. European Food Research and Technology, 2008,226:1229-1237.
    Blanda G, Cerretani L, Cardinali A, et al. Osmotic dehydrofreezing of strawberries:polyphenolic content, volatile profile and consumer acceptance[J]. LWT-Food Science and Technology, 2009,42:30-36.
    Canuto K M, de Souza M A, Garruti D D. Volatile chemical composition of mango fruit 'Tommy Atkins', cultivated in San Francisco valley, at different stages of maturity [J]. Quimica Nova, 2009,32(9):2377-2381.
    Chang H D, Tao L C. Correlations of enthalpies of food systems[J]. J. Food Sci,1981,46:1493-1497.
    Chassagne-Berces S, Fonseca F, Citeau M, et al. Freezing protocol effect on quality properties of fruit tissue according to the fruit, the variety and the stage of maturity [J]. LWT-Food Science and Technology,2010,43:1441-1449.
    Chiralt A, Martinez-Navarrete N, Martinez-Monzo J, et al. Changes in mechanical properties throughout osmotic processes:cryoprotectant effect [J]. Journal of Food Engineering,2001, 49(2~3):129-135.
    Chottanom P, Srisa-ard M. Osmotic dehydration as a factor in freezing of tomato[J]. American Journal of Food Technology,2011,6(6):483-491.
    Chow R, Blindt R, Chivers R, et al. A study on the primary and secondary nucleation of ice by power ultrasound[J]. Ultrasonics,2005,43(4):227-230.
    Chow R, Blindt R, Chivers R, et al. The sonocrystallisation of ice in sucrose solutions:primary and secondary nucleation[J]. Ultrasonics,2003,41(8):595-604.
    Cornillon p. Characterization of osmotic dehydrated apple by NMR and DSC[J]. LWT-Food Science and Technology,2000,33:261-267.
    Delgado A, Zheng L, Sun D W. Influence of ultrasound on freezing rate of immersion-frozen apples[J]. Food and Bioprocess Technology,2009,2:263-270.
    Dermesonlouoglou E K, Giannakourou M C, Taoukis P. Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes[J]. Journal of Food Engineering,2007,78:272-280.
    Dermesonlouoglou E K, Pourgouri S, Taoukis P S. Kinetic study of the effect of the osmotic dehydration pre-treatment to the shelf life of frozen cucumber[J]. Innovative Food Science and Emerging Technologies,2008,9(4):542-549.
    Dit-udom-po S, Pittarate C. Mass transfer during osmotic dehydration of tomato using sucrose, sorbitol and maltitol[J]. Journal of Agricultural Science,2007,38(6):115-118.
    Fabra M J, Talens P, Moraga G, et al. Sorption isotherm and state diagram of grapefruit as a tool to improve product processing and stability[J]. Journal of Food Engineering,2009,93 (1):52-58.
    FAO. FaoStat Database. Available from http://faostat.fao.org,2012
    Forni E, Sormani A, Scalise S, et al. The influence of sugar composition on the colour stability of osmodehydrofrozen intermediate moisture apricots[J]. Food Research International,30,87-94.
    Forni E, Torregiani D, Crivelli G, et al. Influence of osmosis time on the quality of dehydrofrozen kiwi fruit[J]. Acta Horticulturae Sinica,1990,282:425-434.
    Franks F. Metastable water at subzero temperatures[J]. Journal of Microscopy,1986,141 (3):243-249.
    George R M. Freezing processes used in the food industry[J]. Trends in Food Science and Technology, 1993,4(5):134-138.
    Giampaolo B, Lorenzo C, Andrea C, et al. Osmotic dehydrofreezing of strawberries:Polyphenolic content, volatile profile and consumer acceptance [J]. LWT-Food Science and Technology,42, 30-36.
    Giraldo G, Talens P, Fito P, et al. Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango[J]. Journal of Food Engineering,2003,58(1):33-43.
    Gordon M, Taylor J S. Ideal copolymers and the second-order transitions of synthetic rubbers.1. Non-crystalline copolymers[J]. Journal of Applied Chemistry,1952,2:493-500.
    Goula A M, Lazarides H N. Modeling of mass and heat transfer during combined processes of osmotic dehydration and freezing (Osmo-Dehydro-Freezing)[J]. Chemical Engineering Science, 2012,82:52-61.
    Gras M L, Vidal D, Betoret N, et al. Calcium fortification of vegetables by vacuum impregnation: Interactions with cellular matrix[J]. Journal of Food Engineering,2003,56(2-3):279-284.
    Guizani N, Al-Saidi G S, Rahman M S, et al. State diagram of dates:Glass transition, freezing curve and maximal-freeze-concentration condition[J]. Journal of Food Engineering,2010,99(1): 92-97.
    Hou H, Li B, Zhao X, et al. Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness[J]. LWT-Food Science and Technology, 2001,44:421-428.
    Hozumi T, Saito A, Okawa S, et al. Freezing phenomena of supercooled water under impacts of ultrasonic waves[J]. International Journal of Refrigeration,2002,25(7):948-953.
    Hua Z Z, Li Y F, Liu B L. Principles and equipments of food freezing and refrigerated storage[M]. CMP Press, Beijing, China,1990.
    Inada T, Zhang X, Yabe A, et al. Active control of phase change from supercooled water to ice by ultrasonic vibration 1. Control of freezing temperature[J]. International Journal of Heat and Mass Transfer,2001,44(23):4523-4531.
    Jackson T H, Ungan A, Critser J K, et al. Novel microwave technology for cryopreservation of biomaterials by suppression of apparent ice formation[J]. Cryobiology,1997,34(4):363-372.
    Kalichevsky M T, Knorr D, Lillford P J. Potential food applications of high-pressure effects on ice-water Transitions[J]. Trends in Food Science & Technology,1995,6(8):253-259.
    Kasapis S, Rahman M S, Guizani N, et al. State diagram of temperature vs. date solids obtained from the mature fruit[J]. Journal of Agricultural and Food Chemistry,2000,48:3779-3784.
    Kaymak-Ertekin F, Sultanoglu M. Modeling of mass transfer during osmotic dehydration of apples[J]. Journal of Food Engineering,2000,46(4):243-250.
    Kiani H, Sun D W. Water crystallization and its importance to freezing of foods:A review[J]. Trends in Food Science & Technology,2011,22(8):407-426.
    Li B, Sun D W. Novel methods for rapid freezing and thawing of foods-a review[J]. Journal of Food Engineering,2002a,54(3):175-182.
    Li B, Sun D W. Effect of power ultrasound on freezing rate during immersion freezing of potatoes[J]. Journal of Food Engineering,2002b,55(3):277-282.
    Li L Y. Numerical of mass transfer during the osmotic dehydration of biological tissues[J]. Computational Materials Science,2006,35(2):75-83
    Liu F X, Fu S F, Chen F, et al. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China[J]. Food Chemistry,2013,138(1):396-405.
    Liu H, Lelievre J. Transitions in frozen gelatinized-starch systems studied by differential scanning calorimetry[J]. Carbohydrate Polymers,1992,19:179-183.
    Lopez P, Sala F J, Fuente J L, et al. Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication[J]. Journal of Agricultural Food Chemistry,1994,42(2):252-256.
    Marani C M, Agnelli M E, Mascheroni R H. Osmo-frozen fruits:mass transfer and quality evaluation[J]. Journal of Food Engineering,2007,79(4):1122-1130.
    Martin-Belloso, O. Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut 'Kent' mango (Mangifera indica L.) [J]. Postharvest Biology and Technology,2009, 51:384-390.
    Mohanty P. Magnetic resonance freezing system[J]. AIRAH Journal,2001,55(9):28-29.
    Norton T, Sun D W. Recent advances in the use of high pressure as an effective processing technique in the food industry[J]. Food and Bioprocess Technology,2008,1(1):2-34.
    Otero L, Sanz P D, Guignon B, et al. Experimental determination of the amount of ice instantaneously formed in high-pressure shift freezing[J]. Journal of Food Engineering,2009,95(4):670-676.
    Otero L, Sanz P D. High-pressure shift freezing. Part 1. Amount of ice instantaneously formed in the process[J]. Biotechnology Progress,2000,16(6):1030-1036.
    Otero L, Sanz P D. High-pressure-shift freezing:main factors implied in the phase transition time[J]. Journal of Food Engineering,2006,72(4):354-363.
    Ozen B F, Dock L L, Ozdemir M, et al. Processing factors affecting the osmotic dehydration of diced green peppers[J]. International Journal of Food Science and Technology,2002,37:497-502.
    Panagiotou N M, Karathanos V T, Maroulis Z. Effect of osmotic agents on osmotic dehydration of fruits[J]. Drying Technology,1999,17(1-2):175-189.
    Pang X L, Chen D, Hu X S, et al. Verification of aroma profiles of Jiashi Muskmelon juice characterized by odor activity value and gas chromatography-olfactometry/detection frequency analysis:aroma reconstitution experiments and omission tests[J]. Journal of Agricultural and Food Chemisitry,2012,60:10426-10432.
    Payne S R, Young O A. Effect of pre-slaughter administration of antifreeze proteins on frozen meat quality[J]. Meat Science,1995,41(2):147-155.
    Pott I, Marx M, Neidhart S, et al. Quantitative determination of β-carotene stereoisomers in fresh, dried, and solar-dried mangoes (Mangifera indica L.)[J]. Journal of Agricultural and Food Chemistry,2003,51:4527-4531.
    Rahman M S. Food properties handbook[M]. Boca Raton, Fla.:CRC Press,1995.
    Rahman M S, Kasapis S, Guizani N, et al. State diagram of tuna meat:freezing curve and glass transition[J]. Journal of Food Engineering,2003,57:321-326.
    Rahman M S. State diagram of date flesh using differential scanning calorimetry (DSC) [J]. International Journal of Food Properties,2004,7 (3):407-428.
    Rahman M S, Sablani S S, Al-Habsi N, et al. State diagram of freeze-dried garlic powder by differential scanning calorimetry and cooling curve methods[J]. Journal of Food Science,2005, 70(2):135-141.
    Rahman M S. State diagram of foods:its potential use in food processing and product stability[J]. Trends in Food Science and Technology,2006,17(3):129-141.
    Rahman M S. Food stability beyond water activity and glass transition:macro-micro region concept in the state diagram[J]. International Journal of Food Properties,2009,12:726-740.
    Rahman M S, Al-Belushi R M, Guizani N, et al. Fat oxidation in freeze-dried grouper during storage at different temperatures and moisture contents[J]. Food Chemistry,2009,114 (4):1257-1264.
    Rahman M S. Food stability determination by macro-micro region concept in the state diagram and by defining a critical temperature[J]. Journal of Food Engineering,2010,99:402-416.
    Ramallo L A, Mascheroni R H. Dehydrofreezing of pineapple [J]. Journal of Food Engineering,2010, 99(3):269-275
    Rastogi N K, Angersbach A, Knorr D. Synergistic effect of high hydrostatic pressure pretreatment and osmotic stress on mass transfer during osmotic dehydration[J]. Journal of Food Engineering, 2000,45:25-31.
    Rastogi N K, Raghavarao K S M S, Niranjan K, et al. Recent developments in osmotic dehydration: methods to enhance mass transfer[J].Trends in Food science & technology,2002,13(2):48-59.
    Rincon A, Kerr W L. Influence of osmotic dehydration, ripeness and frozen storage on physicochemical properties of mango[J]. Journal of Food Processing and Preservation,2010, 34(5):887-903.
    Rizzolo A, Gerli F, Prinzivall C, et al. Headspace volatile compounds during osmotic dehydration of strawberries (cv Camarosa):influence of osmotic solution composition and processing time. LWT-Food Science and Technology,2007,40(3):529-535.
    Robbers M, Singh R P, Cunha L M. Osmotic-convective dehydrofreezing process for drying kiwifruit[J]. Journal of Food Science,1997,62(5):1039-1042,1047.
    Robles-Sanchez R M, Rojas-Grau M A, Odriozola-Serrano I, et al. Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut 'Kent' mango (Mangifera indica L.)[J]. Postharvest Biology and Technology,2009,51:384-390.
    Roos Y H, Karel M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models[J]. Journal of Food Science,1991,56(1):38-43.
    Roos Y H. Characterization of food polymers using state diagrams[J]. Journal of Food Engineering, 1995,24:339-360.
    Roos Y H. Effect of moisture on the thermal behavior of strawberries studied using differential scanning calorimetry[J]. Journal of Food Science,1987 52:146-149.
    Roos Y H. Water activity and physical state effects on amorphous food stability[J]. Journal of Food processing and Preservation,1993,16(6):433-447.
    Sa M M, Figueiredo A M, Sereno A M. Glass transitions and state diagrams for fresh and processed apple[J]. ThermochimicaActa,1999,329(1):31-38.
    Sa M M, Sereno A M. Glass transitions and state diagrams for typical natural fruits and vegetables[J]. Thermochimica Acta,1994,246:285-297.
    Sablani S S, Kasapis S, Rahman M S, et al. Sorption isotherms and state diagram for evaluating stability criteria of abalone[J]. Food Research International,2004,37(10),915-924.
    Sakano K. Revision of biochemical pH-stat:Involvement of alternative pathway metabolism[J]. Plant and Cell Physiology,1998,39(5):467-473.
    Sanz P D, Otero L, de Elvira C, et al. Freezing processes in high-pressure domains[J]. International Journal of Refrigeration,1997,20(5):301-307.
    Sanz P D, Ramos M, Aguirre-Puente J. One-stage model of freezing[J]. Journal of Food Engineering,1999,40(4):233-239.
    Saurel R, Raoult-Wack A L, Riosand G, et al. Mass transfer phenomena during osmotic dehydration of apple I. Fresh plant tissue[J]. International Journal of Food Science & Technology,1994,29(5): 531-542.
    Shi Q L, Wang X H, Zhao Y, et al. Glass transition and state diagram for freeze-dried Agaricus bisporus[J]. Journal of Food Engineering,2012,111(4):667-674.
    Simperler A, Kornherr A, Chopra R, et al. Glass Transition temperature of glucose, sucrose and trehalose:an experimental and in silicon study [J]. Journal of Physical Chemistry,2006,110(39): 19678-19684.
    Singleton V L, Orthofer R, Lamuela-Raventos R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent[J]. Methods Enzymol,1999, 299:152-178
    Slade L, Levine H. Glass transitions and water-food structure interactions[J]. Advances in Food and Nutrition Research,1995,38,103-269.
    Slade L, Levine H. Water and glass transition-dependence of the glass transition on composition and chemical structure:special implications for flour functionality in cookie baking[J]. Journal of Food Engineering,1995,24(4):431-509.
    Spiazzi E A, Raggio Z I, Bignone, K A, et al. Experiments on dehydrofreezing of fruits and vegetables: mass transfer and quality factors[J]. Advances in the Refrigeration Systems, Food Technologies and Cold Chain, IIF/IIR,1998,6:401-408.
    Spiazzi E, Mascheroni R. Mass transfer model for osmotic dehydration of fruits and vegetables-I development of the simulation model[J]. Journal of Food Engineering,1997,34(4):387-410.
    Sriwimon W, Boonsupthip W. Utilization of partially ripe mangoes for freezing preservation by impregnation of mango juice and sugars[J]. LWT-Food Science and Technology,2011,44: 375-383.
    Sun D W, Li B. Microstructural change of potato tissues frozen by ultrasound-ssisted immersion freezing[J]. Journal of Food Engineering,2003,57(4):337-345.
    Suzuki, M. Enhancement of anthocyanin accumulation by high osmotic stress and low pH in grape cells (Vitis hybrids)[J]. Journal of plant physiology,1995,147(1),152-155.
    Syamaladevi R M, Sablani S S, Tang J M, et al. State diagram and water adsorption isotherm of raspberry (Rubus idaeus)[J]. Journal of Food Engineering,2009,91(3):460-467.
    Taiwo K A, Eshtiaghi M N, Ade-Omowaye B I O, et al. Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics[J]. International Journal of Food Science and Technology,2003,38,693-707.
    Talens P, Martinez-Navarrete N, Fito P, et al. Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit[J]. Innovative Food Science and Emerging Technologies, 2002,3,191-199.
    Telis V R N, Sobral P J A. Glass transitions and state diagram for freeze-dried pineapple[J]. LWT-Food Science and Technology,2001,34(4):199-205.
    Telis V R N, Sobral P J A. Glass transitions for freeze-dried and air-dried tomato[J]. Food Research International,2002,35:435-443.
    Telis V R N, Sobral P J D, Telis-Romero J. Sorption isotherm, glass transitions and state diagram for freeze-dried plum skin and pulp[J]. Food Science and Technology International,2006,12 (3): 181-187.
    Tokuyama E, Matsunaga C, Yoshida K, et al. Famotidine orally disintegrating tablets:bitterness comparison of original and generic products[J]. Chemical and Pharmaceutical Bulletin,2009,57, 382-387.
    Torregianni D. Osmotic dehydration in fruit and vegetable processing [J]. Food Research International, 1993,26(1):59-68
    Tovar B, Garcia H S, Mata M. Physiology of pre-cut mango. I. ACC and ACC oxidase activity of slices subjected to osmotic dehydration[J]. Food Research International,2000,34:207-215.
    Wang H Y, Zhang S Z, Chen G M. Glass transition and state diagram for fresh and freeze-dried Chinese gooseberry[J]. Journal of Food Engineering,2008,84(2):307-312.
    Wang Z F, Wu H, Zhao G H, et al. One-dimensional finite-difference modeling on temperature history and freezing time of individual food[J]. Journal of Food Engineering,2007,79:502-510
    Wu L, Orikasa T, Tokuyasu K, et al. Application of vacuum-dehydrofreezing technique for the long-term preservation of fresh-cut eggplant:Effects of process condition conditions on the quality attributes of the samples[J]. Journal of Food Engineering,2009,91(4):560-565.
    Xiao H W, Gao Z J, Lin H, et al. Air impingement drying characteristics and quality of carrot cubes[J]. Journal of Food Process Engineering,2010,33:899-918.
    Xiao H W, Yao X D, Lin H, et al. Effect of SSB (superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices[J]. Journal of Food Process Engineering,2012,35:370-390.
    Yao Z M, Maguer M L. Mathematical modelling and simulation of mass transfer in osmotic dehydration process. Part I Conceptual and mathematical models[J]. Journal of Food Engineering,1996,29(3-4):349-360
    Zhang M, Chen D. Effects of low temperature soaking on color and texture of green eggplants[J]. Journal of Food Engineering,2006,74:54-59.
    Zhang S, Wang H, Chen G. Addition of ice-nucleation active bacteria:Pseudomonas syringae pv. panici on freezing of solid model food[J]. LWT-Food Science and Technology,2010,43(9): 1414-1418.
    Zhang S, Wang H, Chen G. Effects of Pseudomonas syringae as bacterial ice nucleator on freezing of model food[J]. Journal of Food Engineering,2009,94(3-4):248-253.
    Zhang X, Inada T, Yabe A, et al. Active control of phase change from supercooled water to ice by ultrasonic vibration 2. Generation of ice slurries and effect of bubble nuclei International[J]. Journal of Heat and Mass Transfer,2001,44(23):4533-4539.
    Zhiming Y, Maguer M L. Mathematical modelling and simulation of mass transfer in osmotic dehydration process. Part I:Conceptual and mathematical models[J]. Journal of Food Engineering,1996,29:349-360.
    Zhu S, Le Bail A, Ramaswamy, H S, et al. Characterization of ice crystals in pork muscle formed by pressure-shift freezing as compared with classical freezing methods[J]. Journal of Food Science, 2004,69(4):E190~E197.
    Zhu S, Ramaswamy, H S, Le Bail A. Ice-crystal formation in gelatin gel during pressure shift versus conventional freezing[J]. Journal of Food Engineering,2005,66(1):69-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700