钢铁表面等离子体液相电解沉积陶瓷膜及耐磨耐蚀性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高钢铁材料的耐磨耐蚀性能,本文运用等离子体液相电解沉积(PED)方法在不同钢铁表面生长陶瓷膜。利用阴极PED法采用硝酸-铝乙醇溶液(乙醇体系)在Q235碳钢和30CrMnSi合金钢表面制备陶瓷膜;利用阳极PED法分别在铝酸钠-磷酸盐(铝酸盐体系)和硅酸钠-次磷酸盐(硅酸盐体系)两种水溶液体系中制备陶瓷膜。采用SEM、XRD、EDS、FTIR、XPS等手段系统地研究了陶瓷膜层的微观组织结构,并分析了PED过程中膜层的形成过程,建立膜层微区放电模型。利用球-盘摩擦磨损试验、电化学测试技术、显微硬度测试、拉伸和热震实验研究了陶瓷膜层的耐磨性能、耐腐蚀性能、硬度和结合强度。
     研究表明,Q235碳钢、30CrMnSi合金钢两种基体在乙醇体系中获得的阴极PED膜层组成和结构相似,均由α-Al_2O_3和γ-Al_2O_3组成,其中α-Al_2O_3为主晶相。提高占空比或电流密度有利于α-Al_2O_3含量的提高,膜层的组成元素主要来自基体,基体中的主要元素铁只有少量存在于膜层和基体的界面处,膜层生长过程中沿基体表面向外生长。
     Q235碳钢在在铝酸盐体系中形成的陶瓷膜层由Fe_3O_4-FeAl_2O_4晶相组成,随峰值电流密度、频率的提高以及反应时间的延长,膜层的结晶度略有提高,在硅酸盐体系中形成的膜层主要含有O、Si和Fe元素。30CrMnSi合金钢表面阳极PED膜层Q235碳钢相似,在铝酸盐体系中制备的膜层为Fe_3O_4-FeAl_2O_4晶相,在硅酸盐体系中制备的膜层由O、Si和Fe元素元素组成。钢铁阳极PED膜层的组成元素来自基体和电解液,膜层沿基体同时向内向外生长。
     Q235碳钢在乙醇体系中的膜层的腐蚀电流密度为7.359×10-8A/cm2,腐蚀电位为-0.490V,其腐蚀电流比基体降低三个数量级。在铝酸盐体系和硅酸盐体系中获得的膜层的腐蚀电流密度分别为3.117×10?7A/cm2 ,和7.636×10?7A/cm2,腐蚀电位分别位0.423V,-0.491V。腐蚀电流均比基体降低2个数量级。Q235碳钢表面膜层的摩擦系数以铝酸盐体系膜层最低,乙醇溶液中的膜层次之。三种膜层的最高硬度分别为为1896Hv,1201Hv,987Hv,最大结合强度为17.8MPa,21MPa,和15MPa。总体而言,Q235碳钢在铝酸盐体系的膜层具有最低的摩擦系数和较好的耐蚀性能,乙醇体系膜层具有最好的耐蚀性能和较低的摩擦系数。
     30CrMnSi在乙醇体系中的膜层的腐蚀电流密度也比基体降低三个数量级,铝酸盐体系和硅酸盐中获得膜层腐蚀电流密度比基体降低100倍左右。30CrMnSi表面膜层硬度以及结合强度与Q235碳钢表面膜层相似。30CrMnSi在乙醇体系的膜层具有较好的耐磨、耐蚀综合性能。
In order to improve the wear resistance and corrosion of steels, ceramic coatings were prepared on different kinds of steels by the technique of plasma electrolytic deposition (PED). The cathodic PED method was employed to prepare ceramic coatings on Q235 carbon steel and 30CrMnSi alloy steel in Al(NO_3)_3-ethanol solution(ethanol system). The anodic PED method was performed in NaAlO_2-NaH_2PO_4 solution (aluminate system) and Na_2SiO_3-NaH_2PO_2 solution (silicate system), respectively, to prepare ceramic coatings on the steels. The microstructure of the coatings was systematically observed by SEM、XRD、EDS、FTIR and XPS,and the formation process of the ceramic coatings was also analyzed and the discharge model of the coatings was put up. The wear resistance, corrosion resistance, hardness and bonding strength of the ceramic coatings were studied by ball-on-disk tester friction and wear test, electrochemical test and in micro-hardness instrument , pull-off test and thermal shock method, respectively.
     The results show that the composition and structure of the coatings prepared in ethanol system on both Q235 carbon and 30CrMnSi alloy steels were similar. The coatings obtained were composed ofα-Al_2O_3 andγ-Al_2O_3, andα-Al_2O_3 was the dominated phase. Increasing the duty ration and current densities will be helpful for increasing the contents ofα-Al_2O_3 in the coating. The coating mainly consisted of Al and O elements. Only a little Fe, which was the main elements of in the substrates, was found in the interface of the substrates and the coatings. The coating only grew outward the surface of the substrate during its growth process. The coatings forming in aluminate system by anodic PED on Q235 and 30CrMnSi are composed of crystal phase of Fe3O4-FeAl2O4, the crystallinity of which was enhanced by increasing the current densities or the frequencies or prolonging the treating time, while coatings forming in silicate system were proved to be composed of non-crystal SiO_2. The anodic PED coating forming on Q235 were mainly composed of Al, O, Fe, and a little P elements and coating on 30CrMnSi were mainly composed of Si, O, Fe and a little Mn、Cr and P elements. The elements in both Q235 and 30CrMnSi made contribution to composition of the coating during anodic PED. The coating grew both inwards and outwards the substrates.
     The coatings forming on Q235 obtained in ethanol system showed a low current density of 7.359×10~(-8)A/cm~2 and corrosion potential of -0.490V, the corrosion current density of which was decreased by 3 order of magnitudes compared to the substrate. Coatings forming on Q235 in aluminate system and silicate system showed corrosion current densities of 3.117×10~(-7)A/cm~2, 7.636×10~(-7)A/cm~2, respectively, and corrosion potential of -0.423V, -0.491V, respectively. The corrosion current densities of the coatings were decreased by 2 order magnitudes compared to the substrates. Coatings forming on Q235 in aluminate system showed the lowest friction coefficient of all the coatings on its surface, and coatings obtained in ethanol system ranked second. Coatings obtained from the above three systems exhibited highest hardness of 1896Hv,1201Hv, 987Hv, respectively, and highest bond strength of 7.8MPa, 21MPa, 15MPa respectively. In a word, coatings obtained in aluminate exhibited the best corrosion resistance and lower friction coefficient; coatings obtained in ethanol system exhibited the lowest friction coefficient and better corrosion resistance.
     The corrosion current density of coating forming on 30CrMnSi in ethanol system was also decreased by three order of magnitudes compared to 30CrMnSi substrate. The corrosion current densities of coating obtained in aluminate and silicate system were nearly decreased by 100 times than that of the substrate. Coatings on 30CrMnSi alloy steel in all electrolytes showed similar hardness and bond strength of coatings on Q235 carbon steel. The coatings obtained in ethanol system exhibited the comprehensive performance of corrosion resistance and wear resistance
引文
1 H. Skulev, S. Malinov, W. Sha et al. Microstructural and mechanical properties of nickel-base plasma sprayed coatings on steel and cast iron substrates. Surf. Coat. Technol. 2005, (197):177~184
    2葛中民,侯虞铿,温诗铸.耐磨损设计.北京:机械工业出版社, 1995:1~2
    3 X. Nie, L. Wang, Z. C. Yao, et al. Sliding wear behaviour of electrolytic plasma nitrided cast iron and steel. Surf. Coat. Technol. 2005, 200(5~6):1745~1750
    4 A. P. Srikanth, A. Lavanya, S. Nanjundan, et al. Synthesis, characterization, and corrosion protection properties of poly (N-(methacryloyloxymethyl) benzotriazole-co-methyl methacrylate) on mild steel. Appl. Surf. Sci. 2006, (253):1810~1816
    5 M. A. Domínguez-Crespoa, A. García-Murilloa, A. M. Torres-Huertaa. Characterization of ceramic sol-gel coatings as an alternative chemical conversion treatment on commercial carbon steel. Electrochim. Acta. 2009, (54):2932~2940
    6汪剑波,吴汉华,金曾孙等.钛合金微弧氧化膜微晶生长特性的研究.无机材料学报. 2006, 21(3):731~735
    7蒋百灵,李均明.铝镁合金微弧氧化处理技术的工程应用.新技术新工艺. 2009, (2):16~18
    8宋润滨,左洪波,吉泽升.轻合金等离子体电化学表面陶瓷化进展.轻合金加工技术. 2003, 31(2):8~11
    9蒋百灵,杨巍,苏阳.微弧氧化与磁控溅射的工程应用.金属热处理. 2008, 33(1):86~90
    10罗军,郑健峰,莫继良.钢表面多元共渗改性层的微动磨损行为研究.中国表面工程. 2009, 22(2):15~19
    11张荣,马颖,郝远等.钢液相等离子体电解渗透表面改性技术研究.热加工工艺技术与材料研究. 2009, (4): 86~89
    12 A. Kout, H. Müller. Parameter optimization for spray coating. Advances in Engineering Software. 2009, 40(10):1078~1086
    13 M. S. Han, Y. B. Woo, S. C. Ko. Effects of thickness of Al thermal spray coating for STS 304. Tran. Nonferrous Met. Soc. China. 2009, (19):925~929
    14周健儿,李家科,江伟辉.金属基陶瓷涂层的制备、应用及发展.陶瓷学报. 2004, 25(3):179~185
    15黎文献,张刚,赖延清等.梯度功能材料的研究现状与展望.材料导报. 2003, 222~232
    16付永信,王建江.热喷涂技术制备功能梯度材料涂层的发展状况.材料保护. 2006, 39(6):41~44
    17王焆,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状.化学工业与工程. 2009, 26(3):273~277
    18 M.A. Domínguez Crespo, A. García Murillo, A.M. Torres-Huerta et al. Electrochemical behaviour of ceramic yttria stabilized zirconia on carbon steel synthesized via sol–gel process. Journal of Alloys and Compounds. 2009, 483 (1-2):4373~2441
    19 G. Ruhi, O. P. Modi, I. B. Singh. Corrosion behaviour of nano structured sol-gel alumina coated 9Cr–1Mo ferritic steel in chloride bearing environments. urf. Coat. Technol.. 2009, 204(3):359~365
    20 L.M. Luo, J. P. Yao, J. Li, et al. Preparation and characterization of sol–gel Al2O3/Ni–P composite coatings on carbon steel. Ceramics International. 2009, 35(7):2741~2745
    21丁志敏,张浩,沈长斌.材料热处理学报,钢基电镀铝层阳极氧化处理后的组织结构和性能. 2007, 28:202~205
    22 K. Bobzin, N. Bagcivan, N. Goebbels, et al. Lubricated PVD CrAlN and WC/C coatings for automotive applications. Surf. Coat. Technol. 2009, 24(6-7):1097~1101
    23罗来马,俞佳,刘少光等,低合金高速钢的物理气相沉积技术应用与发展.金属热处理. 2008, 33(11):13~16
    24 G. Ruhi, O. P. Modi, A. S. K. Sinha, et al. Effect of sintering temperatures on corrosion and wear properties of sol–gel alumina coatings on surface pre-treated mild steel. Corrosion Science. 2008, 50(3):639~649
    25狄士春,潘明强.钢铁铝镁钛及其合金微弧氧化技术.纺织机械. 2006, (5):47~50
    26 O. Khaselev, D. Weiss, J. Yahalom. Anodizing of pure magnesium in KOH-aluminate solutions under sparking. J. Electrochem. Soc. 1999, 146(5): 1757~1761
    27 T. B. Van, S. D. Brown, G. P. Wirtz. Mechanism of anodic spark deposition. J. Am. Ceram. Soc. Bull. 1977, 56(6):563~566
    28 W. B. Xue, C. Wang, Y. Li, et al. Effect of micro-arc dis-charge surface treatment on the tensile properties of Al Cu Mg alloy. Mater. Lett. 2002,56(5):737~743
    29薛文斌,王超,马辉. TA2纯钛表面微弧氧化膜的成分和相结构分析,稀有金属材料与工程. 2002, 5(31):345~348
    30 A. Güntherschlze, H. Betz. Die. Electronenstromung in isolatoren bei extremen eldstarken. Z. Phys. 1934, (91):70~96
    31 A. Güntherschulze, A. H. Betz. Neue untersuchungen berdie elek-trolytische ventilwirkung. Z. Phys. 1932, 78(3):196~210.
    32В.Н.Белеванев,О.П.Терлеева,Г.А.Марков.Микроплменныеэлект-рохимическиепроцессыобзор.ЗашитаМеталлов. 1998, 34(5):469
    33А.В.Николаев,Г.А.Марков,Б.И.Пещевицкий.НовоеЯвлениевЭлек-тролите.Изв.СОАНСССР.Сер.Хим.Наук.1977, 78(12): 32
    34 F. Patcas, W. Krysmannb, F. C. Buciuman. Preparation of structured egg-shell catalysts for selective oxidations by the ANOF technique. Catal. Today. 2001, 69:379~383
    35 A. A. Voevodin, A. L. Yerokhin, V. V. Lyubimov, et al. Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment. Surf. Coat. Technol. 1996, 86~87:516~521
    36 Y. K. Wang, L. Sheng, R. Z. Xiong. Effects of additives in electrolyte on characteristics of ceramic coatings formed by microarc oxidation. Surf. Eng. 1999, 15(2):112~113.
    37 T. S. Zhong, B. L. Jiang, J. M. Li. Characteristics, applications and research direction of micro-arc oxidation technology. Electroplat. Finish. 2005, 24(6):47~50
    38 H. J. Song, M. K. Kim, G. C. Jung, et al. The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics. Surf. Coat. Technol. 2007, 201(21):8738~8745
    39 K. H. Nan, Y. J. Wang, X. Chen, et al. Application research of plasma-enhanced electrochemical surface ceramic-coating technology on titanium implants. J. Biomed. Mater. Res. Part B. 2005, 75(2):328~333
    40宋润滨,左洪波,吉泽升.合金等离子体增强电化学表面陶瓷化进展.轻合金加工技. 2003, 32(2):8~11
    41 S. V. Gnedenkov , O. A. Khrisanfova, A. G. Zavidnaya. Production of hard and heat resistant coatings on aluminum using plasma micro discharge. Surf. Coat. Technol. 2000, 123:24~28.
    42 G. P. Wirtz, S. D. Brown, W. M. Kriven. Ceramic coatings by anodic spark deposition. Mater. Manuf. Processes. 1991, 6(1):87~115
    43杨晓战,何业东,王德仁等.阴极微弧电沉积钇稳定氧化锆涂层.科学通报. 2002, 47(7):525~529
    44李夕金,程国安,薛文斌等. TiAl合金表面阴极微弧制备的Al2O3膜结构与性能,粉末冶金材料科学与工程. 2009, 14(2):115~118
    45 P. Gupta, G. Tenhundfeld, E. O. Daigle, et al. Electrolytic plasma technology: Science and engineering-An overview. Surf. Coat. Technol. 2007, 201(21):8746~8760
    46 A. L. Yerokhin, X. Nie, A. Leyland, et al. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122(2~3):73~93.
    47 A. D. Davydov. Breakdown of valve metal passivity induced by aggressive anions. Electrochim. Acta. 2001, (46):3777~3781
    48 S. Omanovic, M. Metikos-Hukovic. The ionic conductance of barrier anodic oxide films on indium. Solid state ionics. 1995, 78(1~2):69~78
    49查全性.电极过程动力学导论.北京:科学出版社. 2005:1985
    50薛文斌,邓志威,来永春. ZM5镁合金微弧氧化膜的生长规律. 1998,
    19(3):42~45
    51李淑华,程金生,尹玉军等.微弧氧化过程中电压和电流变化规律探讨.特种铸造及有色合金. 2001, (3):4~6
    52马臣,王颖慧,曲立杰.电参数对钛合金微弧氧化法制备TiO2生物陶瓷涂层的影响.佳木斯大学学报.2007, 25(1):52~55
    53王敬丰,覃彬,吴夏等.镁合金防腐蚀技术的研究现状及未来发展方向.表面技术. 2008, 37(5):71~74
    54 T. B. Van, S. D. Brown, G. P. Wirtz. Mechanism of anodic spark deposition. J. Am. Ceram. Soc. Bull. 1977, 56(6):563~56
    55辛铁柱,赵万生,刘晋春.铝合金微弧氧化过程的特性研究及机理分析.表面技术. 2006, 35(1):15~16
    56蒋百灵,张先锋,朱静.镁合金维护氧化陶瓷层的形成机理及性能.西安理工大学学报. 2003, 19(4):297-302
    57薛文彬,邓志威,来永春等.铝合金微弧氧化陶瓷膜的相组成及其形成.材料研究学报. 1997, 11(2):169~172
    58李淑华,程金生,尹玉军等.微弧氧化过程中电压和电流变化规律探讨.特种铸造及有色合金. 2001, (3):4~6
    59 P. Kurze, W. Krysmann, H. G. Schneider. Applications fields of ANOF layers and composites. Cryst. Res. Technol. 1986, 21:1603~1609
    60 P. Kurze, W. Krysmann, J. Schreckenbach, et al. Colored ANOF layers on aluminum. Crrest. Res. Technol. 1987, 22(1):53~58
    61 S. Ikonopisov. Electronic conduction of anodized aluminium electrodes. Electrohim. Acta. 1969, 14(8):761~771
    62陈星宇,赵中伟,陈爱良等.钛金属表面微弧氧化的电击穿行为.华南理工大学学报. 2009, 37(8):145~149
    63严志军,朱新河,程东等.影响铝合金微弧氧化起弧电压的因素.金属热处理. 2007, 32(11):81~83
    64钟涛生,蒋百灵,夏天等.铝合金微弧氧化起弧临界条件及膜层生长特点.电镀与涂饰. 2005, 24(3):1~13
    65С.Гордиенко,П.С.Недозоров,Л.М.Волкова, et al.ФазовыйСоставАнодныхПл?нокнасплавеНБЦУ,ПолученныхприПотенциалахИскрениявВодныхЭлектролитах.ЗащитаМеталлов. 1989, 25(1):125~128
    66Л.М.Каданер,И.Б.Ермолов,В.М.Федченко.ЭлектрохимическоеПоведениеНиобиявВодныхиНеводныхСредах.ИтогиНаукииТехники.ВИНИТИАНСССР.Сер.Электрохимия. 1984, 21:227
    67П.С.Гордиенко,П.С.Недозоров,П.М.Завиднаяи, et al.ЭлементныйСоставАнодныхПл?нокнасплавеНБЦУ,ПолученныхприПотенциалахискрения.ЭлектроннаяОбработкаМатериалов. 1991, (1):38~42
    68П.С.Гордиенко,П.С.Недозорови,Л.М.Яровая.ТемпертурнаязависимостьЭлектросопротивлениеАнодныхОксидныхПл?нокнасплавеНиобияНБЦУ.ЭлектроннаяОбработкаМатериалов. 1990, (3):37~41
    69刘建平,侯朝辉.旷亚非.阳极氧化过程中电击穿理论的研究进展.电镀与精饰. 2000, 19(3):38~45.
    70刘建平,旷亚非.微弧氧化技术及其发展.材料导报. 1998, 12(5):27~29
    71 L. Young. Temperature rise during formation of anodic films. Trans Faraday Soc. 1956, 51(2):229~233.
    72 J. Yahalom, J. Zahavi. Electrolytic Breakdown Crystallization of Anodic Oxide Films on Al, Ta and Ti. Electrochim. Acta. 1970, 15(9):1429~1435
    73 J. Yahalom, J. Zahavi. Experimental evaluation of some electrolytic breakdown hypotheses. Electrochim. Acta. 1971, 16(5):603~607
    74 G. C. Wood, C. Pearson. Dielectric breakdown of anodic oxide films on valve metals. Corros. Sci. 1967, 7(2):119~125
    75 S. Ikonopisov, L. Andreeva. Induction periods in anodization of aluminum. J. Electrochem. Soc. 1973, 120(10):1361~1368
    76 S. Ikonopisov. Theory of electrical breakdown during formation of barrier anodic films. Electrochim. Acta. 1977, 22(10):1077~1082
    77 N. Klein, V. Moskovici, V. Kadary. Electrical Breakdown. J. Electrochem. Soc. 1980, 127(1):152~155
    78 V. kadary, N. Klein.Electrical breakdown during the anodic growth of tantalum pentoxide. J. Electrochem. Soc. 1980, 127(1):139~150
    79 I. Montero, J. M. Albella, J. M. Martínez-Duart. High feld ionic conduction in anodic Ta2O5 formed in oxalic and phosphoric electrolytes. J. Electrochem. Soc. 1985, 132(4):976~978
    80 J. M. Albella, I. Montero, J. M. Martinez-Duart. A theory of avalanche breakdown during anodic oxidation. Electrochim. Acta. 1987, 32(2):255~258
    81 K. H. Dittrich, W. Krysmann, P. Kurze, et al. Structure and properties of ANOF layers. Crystal. Res. Technol. 1984, 19(1):93~99
    82 W. Krysmann, P. Kurze, K. H. Dittrich, et al. Process characteristics and parameters of anodic oxidation by spark discharge (ANOF). Cryst. Res. Technol. 1984, 19(7):973~979.
    83 F. D. Quarto, S. Piazza, C. Sunseri. Breakdown phenomena during the growth of anodic oxide films on zirconium metal: influence of experimental parametres on electrical and mechanical breakdown. J. Electrochem. Soc. 1984, 131(12):2901~2906
    84 Nikolaevav, Rrkalinnn, Borzhovap. Enegy balance of a high current hollow tungsten cathode. Fiz kai Khimiya Obrabotki Materialov. 1977, (2):32~41
    85张英,孟保平,杨国英.镁合金表面微弧氧化法.轻合金加工技术. 2004, 32 (10):23~25
    86И.В.Лукиянчук,В.С.Руднев,Н.А.Анденко, et al.Анодно-искровоеОксидированиеСплаваАлюминиявВольфраматныхЭлектролитах.ЖурналПрикладнойХимии. 2002, 75(4):587~591
    87陈小红,曾敏,曹彪.微弧氧化电源的研究现状.新技术新工艺. 2008, (3):87~89
    88徐桂东,沈丽如,李炯.直流和直流脉冲电源对镁合金微弧氧化膜层性能的影响.材料保护. 2007, 40(6):42~45
    89О.П.Терлеева,В.В.Уткини,А.И.Слонова.РаспределениеПлотностиТокапоПоверхностиДюралюминиявПроцессеРостаОксидавУсловияМикроплазменныхРазрядов.ФизикаиХимияОбработкиМатериалов. 1999, (2):60~64
    90О.Н.Дунбкин,А.П.Ефремови,Б.Л.Крититд.ВлияниеПараметровМикродуговогоОксидированиянаСвойстваПокрытий,ФормируемыхнаАлюминиевыхСплавах.ФизикаиХимияОбработкиМатериалов. 2000, (2):49~53
    91Г.А.Марков,А.И.Слонова,О.И.Терлеева.ХимическийСоставСтруктураиМорфологияМикроплазменныхПокрытий.ЗащитаМеталлов. 1997, 33(3):289~294
    92陈宏,郝建民.负脉冲对铝合金微弧氧化膜耐蚀性影响的研究.材料保护. 2007, 40(9):17~20
    93汪剑波.钛合金微弧氧化膜微晶生长特性的研究.无机材料学报. 2006, 21(3):731~735
    94陈克选,刘纪周,李春旭等.基于80C196KC的大功率微弧氧化电源控制系统的研究.兰州理工大学学报. 2006, 32(3):14~17
    95贲洪奇,金祖敏,郝燕玲.峰值电流控制模式微等离子体氧化电源研究.电力电子技术. 2004, 38(2):59~61
    96李春旭,赵介勇,陈克选等.大面积镁合金件的微弧氧化工艺研究.材料保护. 2006, 39(10):67~70
    97文思.获2005年国家科学技术二等奖—铝、镁合金微弧氧化系列设备及工艺技术的研究开发.中国科技奖励. 2006, (6):51~53
    98Э.С.Атрощенко.Технологияполученияпокрытийразничногофункциональногоназначениямикродуговымоксидированием.Практикапротивокоррозионнойзащиты. 1999, (3):32~39
    99王德云,东青,陈传忠等.微弧氧化技术的研究进展.硅酸盐学报. 2005, 33(9):1133~1138
    100金乾,薛文斌,李夕金.钛表面阴极微弧沉积氧化铝涂层的组织结构及其性能研究.航空材料学报. 2009, 29(3):61~275
    101郭洪飞,安茂忠,徐莘等.镁合金微弧氧化配方的优化及膜层耐蚀性能评价.电镀与涂饰. 2004, 23(6):23~27
    102崔作兴,邵忠财,刘志远等.添加剂对镁合金微弧氧化膜性能的影响.材料研究学报. 2009, (2):193~198
    103 W. McNiell, L.L. Gruss.Anodic spark reaction process and articles. US Patent 3293158, 1966.
    104 L. S. Saakiyan, A. V. Efremov, A. V. Epelfeld, et al. Mekh. Mater. 1987, 23 (6):88~90.
    105 W. C. Gu, G. H. Lv, H. Chen, et al. Preparation of ceramic coatings on inner surface of steel tubes using a combined technique of hot-dipping and plasma electrolytic oxidation. J. Alloys. Compd. 2007, 430(1~2):308~312
    106 V. pokhmurskii, H. Nykyforchyn, M. Student, et al. Plasma electrolytic oxidation of arc-sprayed aluminum coatings. J. Therm. Spray Technol. 2007, 16(5~6):998~1004
    107 W. C. Gu , D. J. Shen, Y. L. Wang, et al. Deposition of duplex Al2O3/aluminum coatings on steel using a combined techinique of arc spraying and plasma electrolytic oxidation. Appl. Surf. Sci. 2006, 252(8):2977~2932
    108 A. P. Efremov. Composite coating for protecting carbon steel from stress corrosion failure. Prot. Met. 1989, (25):176~180.
    109 D. J. Shen, Y. L. Wang, G. W. Chao. Structures of ceramics coatings on steel fabricated by hot-dipping and micro-arc oxidation. Trans. Nonferrous Met. Soc. China. 2004, 14(9):170~172
    110 S.X. Yu, Y. Xia, L. Chen, et al. Formation and structure of composite coating of HDA and micro-plasma oxidation on A3 Steel. T Trans. Nonferrous Met. Soc. China. 2004, 14(9):310~314
    111 T. R. Tan, J. R. Cheng, J. H. Wang, et al. Morphology and characterization of the anodic coating on galvanized steels prepared by alternating currents. Surf. Coat. Technol. 1998, 110(3):194~199
    112 X. Z. Yang, Y. D. He, D. R. Wang, et al. Cathodic micro-arc electrodeposition of yttrium stabilized zirconia (YSZ) coatings on FeCrAl alloy. Chin. Sci. Bull. 2003, 48(8):746~750
    113 I. Strovsky. Aqueous electrolyte solution composition for treating metallic workpiece, has at least two different phosphorus co ntaining compounds, silicon containing compound(s) and alkali metal cations and/or ammonium cations. US2006016690-A1. 2006
    114 X. Niea, E. I. Meletisa, J. C. Jianga, et al. Abrasive weary corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surf. Coat. Technol. 2002, 149(2~3): 245~251
    115 A. V. Timoshenko, B. K. Opara, Y. V. Magurova. Formation of protective wear-resistent oxide coating on aluminium alloys by the microplasma methods from aqueous electrolyte solutions. Proc. Interational Corrosion Congress. 1993, (1):280~293
    116李淑华,尹玉军,程金生等.微弧氧化技术与材料表面陶瓷化.特种铸造及有色合金. 2001, (1):36~39
    117薛文斌,邓志威,来永春,等.铝合金微弧氧化膜的形成及其特性.电镀与精饰. 1996, 18(5):3~6
    118丁志敏,沈长斌,阎颖等.微弧氧化处理对Q235钢电镀铝层相结构和性能的影响.材料热处理学报. 2008, 29(5):171~174
    119李均明.铝合金微弧氧化陶瓷层的形成机制及其磨损性能.西安理工大学博士论文. 2008 .
    120张军,王立,谢发勤等.添加剂对Ti-Al合金微弧氧化膜耐磨性的影响.材料导报. 2009, 23(5):8~11
    121尚伟,陈白珍,石西昌等.添加剂对AZ91D镁合金微弧氧化膜的影响.材料导报. 2009, 38(2):335~338
    122丁志敏,姜来金,阎颖等.表面铝含量对Q235钢电化学腐蚀性能的影响[J].材料保护. 2007, 40(7):27~30
    123张胜寒,陈小芹,宋晓芳等.热处理0Cr18Ni9Ti不锈钢孔蚀的影响.热处理. 2004, 19(4):26~28
    124戚佳睿,姜伟,王兵.激光熔凝30CrMnSi钢.材料热处理. 2007, 36(2):79~81
    125赵霞,徐家文,孙永鑫.氩弧重熔对Q235钢热浸镀铝层组织和性能的影响.焊接学报. 2009, 30(9):93~98
    126吴正龙,泰国刚.纳米硅-氧化硅薄膜的XPS测量.现代科学仪器. 2009(2):28~29
    127 S. Thangjitham, J. ChoiH. Thermal stresses in a multilayered aniso trop icmedium. Journal of Applied Mechanics. 1991, 58: 1021-1027
    128 G. L. Yang, X. Y. Lu, Y. Z. Bai, et al. Characterization of microarc oxidation discharge process for depositing ceramic coating. Chin. Phys. Lett. 2001, 8(8): 1141-1143
    129孙学通.钛合金表面微等离子体氧化陶瓷膜的结构及摩擦学行为.哈尔滨工业大学博士论文. 2005
    130 G. Bereket, E. Hür, The corrosion protection of mild steel by single layered polypyrrole and multilayered polypyrrole/poly(5-amino-1-naphthol) coatings. Prog. Org. Coat. 2009, 65:116-124.
    131 L. Li, E. W. Niu, G. H. Lv , et al. Synthesis and electrochemical characteristics of Ta–N thin films fabricated by cathodic arc deposition, App. Surf. Sci. 2007, 253:6811–6816.
    132 F. Mansfel. Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection. Electrochim. Acta. 1990, 35: 1533~1544.
    133李新梅,李银锁,憨勇.钛表面阴极微弧电沉积制备氧化铝涂层[J].无机材料学报. 2005, 20(6):143~149
    134 L. O. Snizhko, A. L. Yerokhin, N. L. Gurevina, et al. Excessive oxygen evolution during plasma electrolytic oxidation of aluminium. Thin Solid Films. 2007, 516(2-4):460~464
    135解世岳,王从曾,马捷等.碳钢热浸镀铝及微弧氧化研究.轻合金加工技术. 2003, 31(9):263~275
    136何继全.钢铁表面微弧氧化技术的研究.哈尔滨工业大学硕士论文. 18
    137孙佳丰.钢铁表面等离子体氧化的工艺研究.哈尔滨工业大学硕士论文. 27~30
    138 H. E. Haring. The mechanism of electrolytic rectification. Journal of the electrochemical society. 1952, 99(1):30~37
    139杨钟时,贾建峰,田军.不锈钢表面Al2O3膜的微弧氧化制备.无机材料学报. 2004, 19(6):1446~1450
    140 A. C. Crossland, H. Habazaki, K. Shimizu, et al. Residual flaws due to formation of oxygen bubbles in anodic alumina. Corrosion Science.1999, 41: 1945~1954
    141 N. Klein. Electrical breakdown mechanisms in thin insulators. Thin Solid Films. 1978, 50:223~232
    142 S. Ikonopisov, A. Girginov, M. Machrova. Electrical breaking down of barrier anodic films during their formation. Electrochim. Acta. 1979, 24:451-456
    143 O. Khaselev, D Weiss, J. Yahalom. Structure and composition of anodic film formed on Mg- Al alloys binary alloys in KOH–aluminate solutions under continuous spark. Corros. Sci . 2001, 43:1295~1307
    144徐学基,诸定昌.气体放电物理.上海:复旦大学出版社. 168
    145王立世,潘春旭,蔡启舟等.等离子体电解氧化过程中单个稳态微放电的热效应研究.物理学报. 2007, 56 (9): 5341~5346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700