饮水型慢性氟中毒致脑损伤分子机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟虽是人体必需的微量元素之一,但长期过量摄入会引起慢性氟中毒(Chonic fluorosis)。氟对中枢神经系统的毒性表现为影响儿童智力发育,抑制自发性神经活动,损害学习记忆能力等。海马是与学习记忆密切联系的关键脑区,也是氟神经毒作用的靶部位之一。已有研究证明,过量氟会损伤海马内的突触超微结构,但鲜见氟影响突触相关蛋白表达的报道。突触后致密物蛋白95(postsynaptic density95, PSD-95)是突触后致密物的主要蛋白之一,本身并无活性,N-甲基-D-天(门)冬氨酸(N-methyl-D-aspartate, NMDA)受体则是与学习记忆相关的重要蛋白。PSD-95可以通过不同的结构域串集NMDA受体其相关分子,形成信号复合物,在突触水平转导并整合兴奋性信号。在突触可塑性过程中,NMDA受体起着极为关键的作用。我们推测,PSD-95表达水平的变化可能会影响NMDA受体的簇集,进而影响动物的学习记忆能力。
     自由基损伤学说被公认为氟中毒发病机制之一。该学说认为,正常情况下机体内由于各种抗氧化酶(如超氧化物歧化酶superoxide dismutase, SOD)和抗氧化物质(如维生素C)的存在,自由基的产生和清除处于动态平衡状态。氟中毒发生时,体内脂质过氧化作用增强,氧化系统与抗氧化系统的平衡遭到破坏,从而导致脂质过氧化产物丙二醛(malondialdehyde, MDA)含量增加。SOD、MDA是目前检测脂质过氧化水平的常用指标,但由于受多种因素影响,特异性与敏感性不强。因此,本实验通过复制慢性氟中毒动物模型,宏观上观察慢性氟中毒对大鼠脑功能的影响,微观上选用特异性与敏感性较好的自旋标记法检测脑内氧化应激水平,并采用免疫组化法(immuno-histochemical stain, IHC)检测海马CA3区PSD-95蛋白的表达水平。通过研究,拟筛选出脑内学习记忆相关脑区(海马)氟中毒相关蛋白和因子(靶分子),为深入探讨氟对中枢神经系统毒性作用的分子生物学机制提供一定的理论基础,为氟中毒的早期诊断和早期治疗提供科学依据,从而拓宽为我省氟污染区饮水型地氟病患者制定合理的综合治疗方案的思路。
     研究方法:192只初断乳的雄性SD大鼠随机分为四组,即对照组(饮用自来水,水氟含量低于0.5mg/L),低氟组(饮水含氟化钠(NaF)15mg/L),中氟组(饮水含NaF30mg/L),高氟组(饮水含NaF 60mg/L)。各组以配制的溶液作为饮水唯一来源,自由摄食、饮水,饲养时间为18个月。实验中每三个月对动物进行行为检测,以开场行为检测大鼠的自发活动和探究行为,以水迷宫检测大鼠的空间学习记忆能力;分别在染氟中期(9个月)和染氟结束后(18个月)分两批断头处死大鼠,HE染色作海马CA3区病理学观察,自旋标记法检测突触体膜流动性的变化,免疫组化法检测海马CA3区PSD-95蛋白表达的改变。
     实验结果:
     1、开场行为结果显示,慢性氟中毒可抑制大鼠在新异环境中的自发活动,使跑动格数减少(p<0.05),站立频率降低(p<0.05或p<0.O1)。水迷宫结果显示,各染氟组大鼠搜索平台潜伏期、搜索平台总路程普遍高于对照组,说明慢性氟中毒大鼠空间学习记忆能力下降。此外,染氟浓度越大、染毒时间越长,氟的这种毒性效应越明显。
     2、突触体膜流动性的检测结果显示,随着染氟浓度的增加,16-DSA标记的突触体膜序参数值与旋转相关时间呈递增趋势(p<0.05或p<0.01),即海马突触体膜流动性逐渐降低。说明慢性氟中毒可导致细胞膜流动性的改变,染氟18个月组大鼠的膜流动性变化比染氟9个月组更显著。值得注意的是,染氟9个月高氟组大鼠海马突触体膜序参数、旋转相关时间不升反降,基本回到低氟组的水平。
     3、HE染色结果显示,慢性氟中毒大鼠海马锥体细胞细胞数量减少,细胞轮廓消失,细胞出现空泡等。IHC结果显示,随着染氟浓度的增加,PSD-95的表达水平呈递减趋势,与同龄对照组相比,p<0.05或p<0.01。提示慢性氟中毒可损伤海马神经细胞,下调突触后致密物重要蛋白PSD-95的表达水平,影响NMDA等受体复合物的簇集,使学习记忆能力下降。
     4、在正常衰老过程中,大鼠存在增龄性的自发活动减少,学习记忆能力降低,膜流动性下降的现象。而染不同浓度氟后加剧了这种趋势,可见动物的学习记忆行为受多因素影响,衰老与环境因素(慢性氟中毒)致氧化应激均可在宏观上引起动物学习记忆损伤,微观上影响突触体膜流动性的降低和PSD-95表达水平的下降。
     综上所述,饮水型慢性氟中毒可抑制大鼠的自发性神经活动,损害空间分辨学习记忆能力;而氟可透过“血-脑”屏障,攻击神经细胞膜,导致突触体膜流动性降低,引起突触后致密物蛋白PSD-95表达的减少,这可能是饮水型慢性氟中毒致脑损伤的分子机理之一。根据自由基损伤学说,氧化应激可能参与了氟的这一系列毒性效应。鉴于PSD-95对于慢性氟中毒的敏感性,可以进一步研究动物发育早期氟化物对PSD-95表达水平的影响,为筛选脑内氟致脑损伤的生物标志物研究提供理论基础。
Fluoride is an essential trace element for all mammalian species, but meanwhile its excess is known to be toxic both to human and animals, such as affecting development of children's intelligence, impairing learning and memory ability and so on. Research shows that hippocampus is a target site of fluoride, which is closely related to spatial learning and memory ability. Our previous research indicated that fluoride impairs the synaptic ultra microstructure in rat hippocampus, but the concrete mechanism is still unknown. Post synaptic density 95(PSD-95) is one of the main proteins in post synaptic density; though it has no activity, it can connect NMDA receptor and other related molecules to form a signal-complex and combine the excitatory signal-transduction in synaptic level through its different domains. NMDA receptor plays a very important role in forming the synaptic plasticity. Above all, we presumed that changes of PSD-95 expression level in rat hippocampus can effect the clustering of NMDA receptor and then effects learning abilitiy of animals.
     A variety of mechanisms have been proposed to explain fluoride-induced toxicity, including free-radical theory. It is considered that fluorosis could enhance the lipid peroxidation in vivo, break the balance between oxidation system and antioxidant system, and change the content of superoxide dismutase (SOD) and malondialdehyde (MDA). SOD and MDA content are usually regarded as one of index to lipid peroxidation level, but their specificity and sensitivity are not good enough because of variety reasons. Thus, we chose rat model of chronic fluorosis to explore the effects of different doses of fluoride on spatial learning and memory firstly on macroscopic level, and then detected synaptic membrane fluidity and expression levels of PSD-95 on microcosmic level, to offer some useful clues for further study of fluoride-induced neurotoxicity and provide a scientific basis for early diagnosis and treatment of fluorosis.
     Methods:192, just weaning male Sprague-Dawley(SD) rats (64±8.8g) were randomly divided into four groups and given 15,30,60 mg/L NaF solution and distilled water respectively for 9 and 18 months. Rats were fed standard diet throughout the experiment and water was given ad libitum. Animal's behaviors were tested every three months, including locomotor activity and exploratory behavior by open field test, learning and memory ability by morris water maze test; animals were thereafter decapitated when exposure was stopped, then evaluated pathological change in hippocampus with HE staining, membrane fluidity with ESR method, and expression level of PSD-95 in hippocampus CA3 region with IHC method.
     Results:1. Open field test reveal that chronic fluorosis suppressed rat's locomotor activity and exploratory behavior in extraneous environment, such as reduced locomotion and kearing frequency (p<0.05, p<0.01). The results of morris water maze test showed that mean escape latency and escape length of rat drinking fluoride water was higher when compared with control group. It indicated that chronic fluorosis impaired rat's spatial learning and memory ability. In addition, fluoride toxicity is connected with both fluoride concentration and time. Fluoride concen-tration is higher and exposure time is longer, the toxicity of fluoride may be stronger.
     2. The results of synaptic membrane fluidity showed that, order parameter(S) and rotational correlation time of synaptic membrane which marked by 16-DSA increased as fluoride concentration increased, which means the hippocampus synaptic membrane fluidity decreased in some degree. There was something need to be noticed that rotational correlation time of rat in 9-month old high-fluoride group decreased insteadly, almost decreased to the level of that in low-fluoride group.
     3. Chronic fluorosis could impair rat brain nerve cells. Results of HE staining showed that, the distribution of rat hippocampus pyramidal cells were sparse, cell outline disappeared. Result of IHC staning showed that, the expression level of protein PSD-95 decreased as fluoride concentration increasing (p<0.01,p<0.05). It is suggested that chronic would impair nerve cell, down-regulated expression of PSD-95 protein and impacted on aggregation of NMDA receptor complex, resulting in learning and memory ability decline finally.
     4. Brain aging can decrease rat locomoter activity, spatial learning and memory ability, and membrane fluidity. This research showed that group of 18-month old rat escape latency was significant different (p<0.01) when compared with group of 3-month old rat, and this trend intensified with the increase of fluoride concentration. So we can learn from it that animals'learning abilities and memories can be affected by several factors, including senility and environmental factors as chronic fluorosis.
     Above all, chronic fluorosis can depress rat locomoter activity and impair spatial learning and memory ability. And excessive fluoride can pass blood-brain barrier, attack the nervous cells membrane, decrease rat hippocampus synaptic membrane fluidity and expression level of post synaptic density protein PSD-95. According to free-radical theory, oxidative stress may be a resource of fluoride toxicity. Since the expression level of PSD-95 is sensitive to chronic fluorosis, we could make further research of fluoride effect in early development stage, and it can offer us a theoretical basis in research of PSD-95 as an environmental neurotoxic substance biomarker.
引文
[1]Mandinic Z, Curcic M, Antonijevic B, et al. Relationship between fluoride intake in Serbian children living in two areas with different natural levels of fluorides and occurrence of dental fluorosis[J]. Food and Chemical Toxicology,2009, 47(6):1080~1084
    [2]Tamer M N, Kale Koroglu B, Arslan C, et al. Osteosclerosis due to endemic fluorosis[J]. Science of The Total Environment,2007,373(1):43~48
    [3]Xiong X Z, Liu J L, He W H, et al. Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children[J]. Environmental Research,2007,103(1):112-116
    [4]Niu R Y, Sun Z L, Cheng Z T, et al. Decreased learning ability and low hippo-campus glutamate in offspring rats exposed to fluoride and lead[J].Environmental Toxicology and Pharmacology,2009,28(2):254~258
    [5]Li H R, Liu Q B, Wang W Y, et al. Fluoride in drinking water, brick tea infusion and human urine in two counties in Inner Mongolia, China[J]. Journal of Hazardous Materials,2009,167(1-3):892~895
    [6]Ando M, Tadano M, Yamamoto S, et al. Health effects of fluoride pollution caused by coal burning[J]. the Science of the Total Environment,2001,271(1-3):107~116
    [7]Cao J, Zhao Y, Liu J W, et al. Prevention and control of brick-tea type fluorosis— a 3-year observation in Dangxiong, Tibet[J]. Ecotoxicology and Environmental Safety,2003,56(2):222~227
    [8]Patra R C, Dwivedi S K, Bhardwaj B, et al. Industrial fluorosis in cattle and buffalo around Udaipur, India[J]. The Science of The Total Environment,2000,253(1-3): 145~150
    [9]中国地方病防治研究中心(编)地方病学.第1版.哈尔滨:黑龙江人民出版社,1999:133~133
    [10]王夔主编.生命科学中的微量元素.第二版.中国计量出版社,1996:25~28
    [11]王环增,沈尔礼,候培森,等.中国地方性氟中毒防治工作进展副[M].第20届国际氟研究协会学术讨论会论文集,中国北京,1994:23~25
    [12]角田文男.会长祝词[M].第20届国际氟研究协会学术讨论论文集.中国北京,1994:3-4
    [13]刘昌汉(主编).地方性氟中毒防治指南.第1版,北京:人民卫生出版社.1988:28
    [14]中华人民共和国国家统计局.2000年第五次全国人口普查主要数据公报(第二号)[R].中华人民共和国国家统计局,2000
    [15]樊永贞,白京兰.饮茶型氟中毒流行病学研究进展.中国地方病学杂志,1998,17(5):345~346
    [16]孙殿军,赵新华,于光前,等.四川省阿坝县藏族饮茶型氟中毒流行病学调查研究之一[A].泛亚州太平洋地区氟砷研究国际学术会议文集[C].中国地方病 协会,1999:121~121
    [17]Dryzek H. Electronic version of the encyclopaedia of occupational health and safety as a source of definitions[J]. Journal of Safety Research,2002,33(2): 155~163
    [18]Taves, D R. Electro Phonetic mobility of serum fluoride. Nature,1960,220(5): 582~593
    [19]Whitford G M. Fluorides:metabolism, mechanisms of action and safety[J]. Dental Hygiene,1983,57(5):16~18
    [20]Maneshwari U P, McDonald J T, Schneider V S, et al. Fluoride balance studies in ambulatory healthy men with and without fluoride supplements[J]. The American Journal of Clinical Nutrition,1981,34(12):2679~2684
    [21]Eanes E D, Reddi A H. The effect of fluoride on bone mineral appetite[J]. Metabolic Bone Disease and Related Research,1979,15(2):3~10
    [22]Shashi S P. Effect of fluoride administration on organs of gastrointestinal tract-an experimental study on rabbit effect on tissue proteins[J]. Fluoride,1987,20(4): 183~184
    [23]詹承烈.关于氟病的发病机理问题[J].中国职业医学,1990,17(4):244~246
    [24]Whitford G M, Williams J L. Fluoride absorption:Independence from plasma fluoride levels[J]. Fluoride,1987,20(3):46~49
    [25]Whyte M P, Essmyer K, Gannon F H, et al. Skeletal fluorosis and instant tea[J]. The American Journal of Medicine,2005,118(1):78~82
    [26]Kukleva M P, Isheva A V, Kondeva V K, et al. Prevalence of dental fluorosis among 4-to 14-year-old children from the town of Dimitrovgrad(Bulgaria)[J]. Folia Medica (Plovdiv),2007,49(1-2):25~31
    [27]孙仲楠,张抒,李亮.直接贴面法治疗氟斑牙的临床疗效观察[J].中周地方病学杂志,2007,26(4):462~464
    [28]Browne D, Whehon H, O'Mullane D. Fluoride metabolism and fluorosis[J]. Journal of Dentisity,2005,33(3):177~186
    [29]李广生.从“钙矛盾”看氟骨症的发生机制[C].全国氟砷学术会议论文集,哈尔滨:中国地方病学杂志编辑部
    [30]任立群,李广生,孙波.中长周期慢性氟中毒对大鼠骨转换的影响及机理研究[J].中国地方病学杂志,1998,17(2):13~16
    [31]吴天秀,廖进民,陈艳,等.氟化物对幼年大鼠骨胶原的影响[J].现代医院,2009,12(9):11~13
    [32]齐玲,刘辉,陈春红,等.氟对三维培养中成纤维细胞增殖活性的影响[J].中国地方性防治杂志,2008,23(1):15~17
    [33]康龙丽,郭雄,许鹏,等.“硼复方”对过量氟实验大鼠血清脂质过氧化和RNA合成的影响[J].西安交通大学学报,2003,24(6):599~601
    [34]李省,陈悦,许启泰,等.自由基与氟中毒对RNA代谢影响[J].中国公共卫生,2007,23(1):113~115
    [35]桂传枝,王长松,于燕妮,等.氟对软骨细胞与成骨细胞凋亡及H202、SOD、NO的影响[J].中国地方病学杂志,2004,23(2):108~112
    [36]Geeraerts F, Gijs G, Finne E, et al. Kinetics of fluoride penetration in liver and brain[J]. Fluoride,1986,19(2):108~110
    [37]于燕妮,杨文秀,董仲,等.地方性氟病区胎儿大脑神经递质与受体的变化[J].中国地方病学杂志,1996,15(5):257~259
    [38]张晨,凌冰,刘继文,等.氟-砷联合染毒对大鼠子代神经行为发育的影响[J].卫生研究,1999,22(8):337~339
    [39]许晓路,章子贵,申秀英.氟中毒对小鼠学习记忆行为及脑内SOD活性和MDA含量的影响[J].中国公共卫生,2001,17(1):8-10
    [40]章子贵,许晓路,申秀英.硒对氟致小鼠学习记忆损伤的改善作用[J].卫生研究,2001,30(3):144~146
    [41]Chioca L R, Raupp I M, Da Cunha C, et al. Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats[J]. European Journal of Pharmacology,2008,579(1-3):196~201
    [42]Bhatnagar M, Rao P, Sushma J, et al. Neurotoxicity of fluoride:neurodegenera-tion in hippocampus of female mice[J]. Indian Journal of Experimental Biology. 2002,40(5):546~554
    [43]Ekambaram P, Paul V. Calcium orevernting locomotor behavioral and dental toxicities of fluoride by decreasing serum fluoride level in rats[J]. Fluoride,2001, 9(4):141~143
    [44]Wang J D, Ge Y M, Ning H M, et al. Effect of high Fluoride and low iodine on biochemical indexes of the brain and learning memory of offspring rats[J]. Fluoride, 2004,37(3):201~205
    [45]Lu Y, Sun Z R, Wu L N, et al. Effect of high-fluoride water on intelligence in children[J]. Fluoride,2000,33(2):74~78
    [46]Xiang Q, Liang Y, Chen L, et al. Effect of fluoride in drinking water on children's intelligence[J]. Fluoride 2003,36(3):84~94
    [47]Trivedi M H, Verma R J, Chinoy N J, et al. Effect of high fluoride water on intelligence of school children in India[J]. Fluoride,2007,40(3):178~183
    [48]Calderon J, Blenda M, Marielena N, et al. Influence of fluoride exposure on reaction time and visuospatial organization in children[J]. Epidemiology,2000, 11(4):153~157
    [49]Shao Q L, Wang, Y N, Li L W, et al. Study of Cognitive Function impairment caused by fluorosis. Chinese Journal of Endemiology(in Chinese),2003,22(6): 336~338
    [50]孙增荣,刘凤贞,杨海贤,等.饮高氟水小鼠脑海马回组织超微结构观察[J].中国地方病学杂,2000,19(5):333~335
    [51]张本忠,吴德生.无机氟对大小鼠胚胎中脑细胞增殖和分化的影响[J].中国地方病防治杂志,1998,13(3):129~131
    [52]Vani M L, Reddy KP. Effeets of fluoride accumulation on some enzymes of brain and gastrocnemius musele of mice[J]. Fluoride,2000,33(2):17~26
    [53]章子贵,申秀英,许晓路.碘氟联用对大鼠红细胞膜磷脂和脂肪酸的影响[J].中国公共卫生,2005,21(2):157~158
    [54]吕晓红,吕晓丽,李广生.慢性氟中毒鼠神经元与细胞凋亡相关基因的研究[J].中国地方病学杂志,2003,22(2):119~121
    [55]马龙,刘文杰,王怀星.氟对小鼠子代生长发育的影响[J].卫生研究,1995,24(5):272~274
    [56]Gao Q, Liu Y J, Guan Z Z. Oxidative stress might be a mechanism connected with the decreased a7 nicotinic receptor influenced by high-concentration of fluoride in SH-SY5Y neuroblastoma cells[J]. Toxicology in Vitro,2008,22(4):837~843
    [57]李术,徐世文,康世良.氟对奶山羊体内自由基和脂质代谢的影响[J].畜牧兽医学报,2003,25(6):129~133
    [58]张本忠,吴德生.无机氟对大鼠脑突触体膜流动性的影响[J].中国药理学与毒理学杂志,1997,11(2):143~143
    [59]申秀英,章子贵,许晓路.碘氟联用对大鼠脑细胞膜磷脂和脂肪酸组成的影响[J].卫生研究,2004,33(2):158~161
    [60]Wang Y N, Xiao K Q, Liu J L, et al. Effect of long term fluoride exposure on lipid compositin rat liver[J]. Toxicology,2000,146(12):161~169
    [61]陶新,许梓荣,汪以真.氟中毒对动物健康影响的研究进展[J].中国畜牧杂志,2006,42(3):61~63
    [62]Das T K, Susbeela A K, Gapta L P, et al. Toxic effects of chronic fluoride ingestion on the upper gastrointestinal tract [J]. Fluoride,1995,28:48~53
    [63]Shashi A. Histopathological effects of sodium fluoride on the duo-denum of rabbits[J]. Fluoride,2002,35(4):28~37
    [64]谢永平,葛相金,姜玉辛,等.高氟对人体胰岛细胞功能影响的研究[J].中国地方病学杂志,2000,19(2):84~86
    [65]边晓燕,张守臣,王志成,等.实验性氟中毒大鼠肝、肾组织的超微结构观察[J].电子显微学报,2000,19(3):227~228
    [66]申秀英,许晓路,章子贵,等.碘硒氟联用对小鼠肝肾脂褐素含量的影响[J].浙江师范大学学报(自然科学版),2003.26(1):51~52
    [67]Dvofakova-Hortova K, Sandera M, Jursova M, et al. The influence of fluorides on mouse sperm capacitation[J]. Animal Reproduction Science,2008,108(1-2): 157~170
    [68]张爱君,吴占河.细胞凋亡与氟中毒[J].中国地方病防治杂志,2003,18(1):31~34
    [69]缪庆,徐茗,刘秉慈,等.过量氟对大鼠体内、外Ⅰ型胶原蛋白的影响[J].卫生研究,2002,31(3):145~147
    [70]张文岚,孙玲,薛立娟,等.营养性低钙与慢性氟中毒大鼠细胞内钙超载相关性研究[J].中国地方病学杂志,2006,25(6):622~624
    [71]章子贵,许晓路,申秀英.不同硒水平对大鼠免疫力和血细胞的影响[J].微量元素与健康研究,2005,22(2):1-2
    [72]Krasowska A, Wostowski T. Photoperiodic elevation of testicular zinc protects seminiferous tubules against fluoride toxicity in the bank vole (Clethrionomys glareolus)[J]. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,1996,113(1):81~84
    [73]王志成,富德,关德宏,等.自由基对氟中毒发病的影响及其阻断方法的研究[A].中国氟研究文选[M],贵州院贵阳科技出版社,1995:67~72
    [74]徐辉,井玲,李相军,等.GSH/GSSG在染氟成骨细胞中的变化[J].中国地方病防治杂志,2008,23(2):83~85
    [75]Ranjan R, Swarup D, Patra R C, et al. Oxidative stress indices in erythrocutes, liver, and kidneys of fluoride-exposed rabbits[J]. Fluoride,2009,42(2):88~93
    [76]邵千里,王亚南,官志忠.自由基诱导剂对氟中毒大鼠脑氧化水平的影响[J].中华预防医学杂志,2000,34(6):330~332
    [77]Shan K R, Qi X L, Long Y G, et al. Decreased nicotinic receptors in PC 12 cells rat brains influenced by fluoride toxicity-a mechanism relating to a damage at the level in post-transcription of the receptor genes[J]. Toxicology,2004,200(2):169~179
    [78]Susa M. Heterotrimeric G protein as fluoride targets in bone[J]. International Jounal of molecular Medicine,1999,3 (2):115~126
    [79]Refsnes M, Schwarze P E, Holme J A, et al. Fluoride-induced apoptosis in human epithelial lung cells (A 549 cells):role of different G protein-linked signal systems[J]. Human and Experiment Toxicology,2003,22 (3):111~123
    [80]Caverzasio J, Palmer G, Suzuki A, et al. Mechanism of the mitogenic effect of fluoride on osteoblast-like cells:evidences for a G protein-dependent tyrosine phosphorylation process[J]. Journal of Bone Mineral Research,1997,12 (12): 1975~1983
    [81]Anuradha C D, Kanno S, Hirano S. Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL60 cells[J]. Free Radical Biology and Medicine,2001,31 (3):367~373
    [82]陈军,陈学敏,杨克敌,等.氟对大鼠脑细胞DNA损伤及诱导凋亡的作用[J].中华预防医学杂志,2002,36(4):222~224
    [83]呼亚伟,催炳元,张津旗,等.氟中毒大鼠肝肾细胞凋亡与p53的关系[J].中国地方病防治杂志,2002,17(3):141~142
    [84]孙元明,杨福军,李雨民.细胞凋亡信息分子Fas、FasL和NF-κB在氟化物作用后破骨样细胞凋亡过程中的表达[J].中国医学科学学报,2002.24(5):491~494
    [85]刘国艳,张维东,顾金辉,等.氟对大鼠甲状腺结构和功能的影响[J].上海交通大学学报(农业科学版),2008,26(6):537~539
    [86]白云,刘风贞,于德奎.在酶系统中镁对氟毒性的拮抗研究进展[J].中国地方病防治杂志,2001,16(4):223~224
    [87]张文岚,崔亚南,高申,等.过量摄入氟后激活的成骨细胞系中原癌基因的表达[J].中华预防医学杂志,2003,37(6):246~250
    [88]李广生,张文岚,华坤,等.慢性氟中毒时成骨细胞激活的机制[J].中国地方病学杂志,2003,22(4):10~13
    [89]华坤,计国义,李广生.氟化物对成骨细胞OPGL mRNA和M-CSF mRNA表达的影响[J].中国地方病学杂志,2003,22(4):115~118
    [90]侯小东,蔺新英,边建朝,等.硒对氟诱导人脐静脉血管内皮细胞iNOS和eNOS表达的影响[J].环境与健康杂志,2008,25(3):212~214
    [91]李广生.进一步深入研究慢性氟中毒的发病机制[J].中华预防医学杂志,2003,37(4):225~226
    [92]李广生,徐辉.再谈慢性氟中毒与氧化应激[J].中国地方病学杂志,2005,24(1):3-4
    [93]Reddy G B, Khandare A L, Reddy P Y, et al. Antioxidant defence system and lipid peroxidation in patients with skeletal fluorosis and in fluoride-intoxicated rabbits [J]. Toxicological Science,2003,72(4):363~368
    [94]孙玉富.自由基与氧化应激及其在地方病氟中毒发病中的作用[J].中国地方 病学杂志,2003,18(1):37~40
    [95]Ansari M A, Roberts K N, and Scheff S W. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury[J]. Free Radical Biology and Medicine,2008,45(4):443~452
    [96]Paul V, Ekambaram P, Jayakumar A R. Effects of sodium fluoride on locomotor behavior and a few biochemical parameters in rats[J]. Environmental Toxicology and Pharmacology,1998,6:187~191
    [97]Wang J D, Ge Y M, Ning H M, et al. Effects of high fluoride and low iodine on biochemical indexes of the brain and learning-memory of offspring rats[J]. Fluoride,2004,37(4):201~208
    [98]章子贵,许晓路,申秀英,等.氟中毒对小鼠学习记忆相关脑区突触结构的影响[J].卫生研究,1999,28(3):210~212
    [99]Chioca L R, Raupp I M, Da Cunha C, et al. Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats[J]. European Journal of Pharmacology,2008,579, (1-3):196~201
    [100]王国明,李积胜,周红军,等.不同剂量慢性染氟对大鼠学习记忆行为的影响[J].微量元素与健康研究,2006,23(2):1-2
    [101]Sun Z R, Liu F Z, Wu L R, et al. Effects of high fluoride dringking water on the cerebral function of mice[J]. Fluoride,2008,41(2):148~151
    [102]Crawley J N. Exploratory behavior models of anxiety in mice[J]. Neurosci Biobehav Rev,1985,9(2):37-44
    [103]胡镜清,温泽淮,赖世隆.Morris水迷宫检测的记忆属性与方法学初探[J].广州中医药大学学报,2000,17(2):117~119
    [104]龚梦鹃,王立为,刘新民.大小鼠游泳实验方法的研究概况[J].中国比较医学杂志,2005,15(5):311~314
    [105]Aydin M, Yilmaz B, Alcin E, et al. Effects of letrozole on hippocampal and cortical catecholaminergic neurotransmitter levels, neural cell adhesion molecule expression and spatial learning and memory in female rats[J]. Neuroscience,2008, 151(1):186~194
    [106]严进,王春安.心理性应激引起的大鼠行为,血浆皮质酮及脑区氨基酸水平的变化[J].第二军医大学报,1997,18(3):330~333
    [107]侯公林.心理应激对大白鼠自由基损伤的影响[J].心理科学,2000,23(2):175~179
    [108]Teng E, Squire L R. Memory for places learned long ago is intact after hippocampal damage[J]. Nature,1999,400(6745):675~677
    [109]Gozal D, Daniel J M, Dohanich G P. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat[J]. Neuroscience:the official joural of the Society for Neuroscience,2001,21(4):2442~2450
    [110]Guan Z Z, Wang Y N, Xiao K Q, et al. Influence of Chronic Fluorosis on Membrane Lipids in Rat Brain[J]. Neurotoxicology and Teratology,1998,20(5): 537~542
    [111]Nagy A, Delgado-Escueta A V. Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll)[J]. Journal of Neurochemistry,1984,43(2):1114~1123
    [112]Hensley K, Carney J, Hall N, et al. Electron paramagnetic resonance investigations of free radical-induced alterations in neocortical synaptosomal membrane protein infrastructure[J]. Free Radical Biology and Medicine,1994, 17(5):321~331
    [113]华玥,程时,卢景雾,等.金属硫蛋白对大鼠心肌细胞羟自由基损伤保护作用的自旋标记研究[J].科学通报,1992,13(2):1217~1219
    [114]Cader A A, Butterfield D A, Watkins B A, et al. Electron spin resonance studies of fatty acid-induced alterations in membrane fluidity in cultured endothelial cells[J].The International Journal of Biochemistry & Cell Biology,1995,27(7): 665~673
    [115]Jorgensen P L, Nielsen J M, Rasmussen J H, et al. Structure-function relationships of E1-E2 transitions and cation binding in Na, K-pump protein[J]. Biochimca Biophysica Acta,1998.1365(1-2):65-70
    [116]Angela B, Clement, Gerald Gimpl, et al. Oxidative stress resistance in hippocampal cells is associated with altered membrane fluidity and enhanced nonamyloidogenic cleavage of endogenous amyloid precursor protein[J]. Free Radical Biology and Medicine,2010,48(9):1236~1241
    [117]李亚,王建军,蔡景霞.衰老及促智药影响神经细胞膜流动性机制的研究进展[J].动物学研究,2005,26(2):220~224
    [118]刘早玲,贾汉,巴杭,等.氟对大鼠肝肾磷脂脂肪酸组成的影响及维生素C拮抗作用的研究[J].中国地方病防治杂志,2006,21(2):68~70
    [119]边建朝,赵力军,叶平,等.氟中毒大鼠肝肾自由基代谢及硒对其影响[J].生物化学与生物物理进展,1997,24(6):561~564
    [120]Ohyama H, Hiramatsu M, Ogawa N, et al. Age-related differences in synaptosomal membrane fluidity[J]. Biochemistry and Molecular Biology,1995, 37(3):133~140
    [121]Hou X Y, Zhang G Y, Zong Y Y. Suppression of postsynaptic density protein 95 expression attenuates increased tyrosine phosphorylation of NR2A subunits of N-methyl-D-aspartate receptors and interactions of Src and Fyn with NR2A after transient brain ischemia in rat hippocampus [J]. Neuroscience Letters,2003, 343(2):125~128
    [122]Nithianantharajah J, Levis H, Murphy M. Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins[J]. Neurobiology of Learning and Memory,2004,81(3):200~210
    [123]Bachevalier J, Mishkin M. Mnemonic and neuropathological effects of occluding the posterior cerebral artery in Macaca mulatta[J]. Neuropsychologia,1989,27(1): 83-105
    [124]Jiang M L, Han T Z, Yang D W, et al. Morphological alteration of the hippocampal synapses in rats prenatally exposed to magnetic resonance imaging magnetic fields[J]. Acta Physiologica Sinica,2003,55(6):705~710
    [125]徐晓虹,章子贵.葛根素对D-半乳糖致衰老小鼠记忆行为和海马突触结构的影响[J].药学学报,2002,37(1):1-4
    [126]罗永坚,蔺心敬,李吕力,等.血管性痴呆模型大鼠海马神经元凋亡和病理改变的实验研究[J].中国老年学杂志,2008,28(9):1788~1790
    [127]王佩,王维平,王海祥,等.戊四氮诱导癫痫大鼠空间学习记忆受损及海马突触后致密物95表达减少[J].基础医学与临床,2007,27(11):1227~1230
    [128]Xiang Q Y, Zhou M H, Wu M, et al. Relationships between daily total fluoride intake and dental fluorosis and dental caries[J]. Journal of Nanjing Medical University,2009,23(1):33~39
    [129]Kumar H, Boban M, Tiwari M. Skeletal fluorosis causing high cervical myelopathy[J]. Journal of Clinical Neuroscience,2009,16(6):828~830
    [130]Kobayashi C A, Leite A L, Silva T L, et al. Proteomic analysis of kidney in rats chronically exposed to fluoride[J]. Chemico-Biological Interactions,2009,180(2): 305~311
    [131]Xiong X Z, Liu J L, He W H, et al. Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children[J]. Environmental Research,2007,103(1):112~116
    [132]Zhu W J, Zhang J, Zhang Z G Effects of Fluoride on Synaptic Membrane Fluidity and PSD-95 Expression Level in Rat Hippocampus[J]. Biological Trace Element Reasearch,2010, online first
    [133]Shiyaraiashankara Y M, Shiyaraiashankara A R, Gopalakrishna B P, et al. Histological changes in the brain of young fluoride-intoxicated rats[J]. Fluoride, 2002,35(1):12~21
    [134]Shashi A, Singh J P, Thapar S P. Effect of long-term administerration of fluoride on levels of protein, free amino acids and RNA in rabbit brain[J]. Fluoride,1994, 27(3):155-159
    [135]Mubeen A A, Kelly N R, Stephen W S. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury[J]. Free Radical Biology and Medicine,2008,45(1):443~452
    [136]Bassand P, Bernard A, et al. Differential interaction of the tSXV motifs of the NR1 and NR2A NMDA receptor subunits with PSD-95 and SAP97[J]. The European Journal of Neuroscience,1999,11(6):2031~2043
    [137]Rao A, Kim E. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture[J]. Journal of Neuroscience,1998,18(4):1217~1229
    [138]Lin C S, Tao P L, Jong Y J, et al. Prenatal morphine alters the synapfic complex of postsynaptic density 95 with N-methyl-dnspartate receptor subunit in hippocampal CA1 subregion of rat offspring leading to long-term cognitive deficits[J]. Neuroscience,2009,158(4):1326~1337
    [139]Du C P, Gan J, Tai J M, et al. Increased tyrosine phosphorylation of PSD-95 by Src family kinases after brain ischaemia[J]. Journal of Biochemistry,2009,417(1): 277~285
    [140]Chen S Y, Wang Q, Xiong L Z, et al. Effect of sodium ferulate on activation of postsynaptic density-95 after transient cerebral arerty occlusion in the rat brain[J]. Journal of Fourth Militaris Medicine University,2002,23(12):1150~1152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700