超声强化液固传质动力学模型与硅中阶梯光栅湿法刻蚀技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单晶硅湿法刻蚀技术是指应用化学溶液腐蚀的手段在硅材料上制作微纳结构的技术。为降低硅器件表面粗糙度,超声波作为辅助手段被广泛应用于单晶硅湿法刻蚀工艺中。在单晶硅与腐蚀液反应过程中,超声波特有的空化效应会强化传质过程,从而达到提高反应速率与加速反应进程的目的。在湿法刻蚀工艺中,超声波频率、功率对于溶液传质系数影响的研究目前仍处于定性阶段,缺乏定量分析理论模型,无法指导实际工作。硅中阶梯光栅是利用硅的各向异性制作而成的,该领域是对单晶硅湿法刻蚀技术应用的一种扩展。超声波的引入对硅中阶梯光栅的闪耀面粗糙度有较大影响。利用单晶硅湿法刻蚀工艺制作阶梯形光栅时经常将(111)晶面作为光栅的闪耀面。目前,对于硅中阶梯光栅闪耀面粗糙度的研究相对较少,尤其是在超声波参与条件下对闪耀面粗糙度的影响规律的系统研究尚未开展。鉴于此,本文围绕单晶硅湿法刻蚀过程中的超声强化传质机理与硅中阶梯光栅湿法刻蚀工艺做了较为深入的研究。第一,基于―超声改变流速、流速改变传质‖的建模思想,借助COMSOL Multiphysics软件中声场、层流场及传质场模块,建立了一种新型定量求解传质系数与超声波频率、功率之间关系的模型。通过对超声场、溶液流速以及硅片表面浓度梯度等问题的研究,详细讨论了传质系数随超声波参数的变化规律,解决了此类研究课题无法定量求解传质系数与超声波作用关系的难题。第二,基于反应缩芯理论,给出了单晶硅湿法刻蚀过程中刻蚀速率与传质系数之间的理论关系公式。利用上述超声强化传质模型中所求得的传质系数,可以获得对应的刻蚀速率的数值,进而定量求解刻蚀速率与超声波之间的作用关系,实现对湿法刻蚀工艺实践的指导。第三、基于超声波空化作用及异丙醇增加单晶硅表面润湿性的原理,系统地讨论了超声波震荡法及润湿性增强法对中阶梯光栅闪耀面粗糙度的影响规律。实验结果表明,同时施以超声波震荡法及润湿性增强法可以制备更低粗糙度的硅中阶梯光栅。
Silicon wet etching technology is the application that productsmicro-nanostructure on silicon materials by means of chemical solution corrosion. Inorder to reduce the surface roughness of the silicon devices, ultrasonic as theassistant means is widely used in silicon wet etching process. In the reaction processbetween silicon and corrosive liquid, the ultrasonic cavitation will enhance the masstransfer process, which could achieve the goal of improving the reaction rate andaccelerating the reaction process. In the wet etching process, the study of ultrasonicenhancement on mass transfer coefficient is still in the stage of qualitative, whichcauses the lack of quantitative analysis model and failure to guide the practical work.The silicon echelle grating is fabricated using the acisotropic etching behavior ofsingle-crystal silicon, which is an extension of the application of silicon wet etchingtechnique. The introduction of ultrasound has great influence to roughness on theblazed surface. The (111) crystal plane is usually used to be the blazed surface whenfabricating echelon grating by means of silicon wet etching. At present, the study ofroughness on blazed surface is little; especially there is no investigation on theinfluence between ultrasonic parameters and roughness on blazed surface. In view of the conditions mentioned above, the thorough researches of the mechanism ofultrasound to intensity mass transfer process in silicon wet etching and the wetetching technology of silicon echelle grating are maded in this paper. First, a newcomputational model to solve mass transfer coefficient quantitatively is put forwardbased upon the ultrasound field, flow field and mass transfer field module inCOMSOL Multiphysics software, which is including the study of the change ofdistribution of the liquid velocity under ultrasound effect, and the mathematicalrelationship between mass transfer coefficient and the distribution of solutionconcentration affected by liquid velocity. The changing law of mass transfercoefficient with ultrasonic parameters is discussed in detail through the study ofultrasonic field, solution flow rate and concentration gradient of the silicon surface,and the problem of such research cannot be quantitatively calculated mass transfercoefficient and the relationship between ultrasonic actions is solved. Second, thetheoretical formula between etching silicon wet etching process rate and masstransfer coefficient is given based on the theory of shrinking core. The numericalvalue of etching rate can be gotten through solving the mass transfer coefficient bythe model established which could solve quantitatively the relationship betweenultrasound and etching rate and realize the guidance to the wet etching process.Third, based upon the ultrasonic cavitation and wettability enhanced by IPA, theeffects of ultrasonic vibration and wettability enhancement on surface roughness onblaze plane of silicon echelle grating have been discussed systematically. Theexperimental results indicated that the combination of ultrasonic vibration andwettability and optimizing of experimental parameters could fabricate the siliconechelle grating with lower surface roughness.
引文
[1]崔铮著.微纳米加工技术及其应用[M]:第二版.北京:高等教育出版社,2009.
    [2]苑伟政,马炳和等著.微机械与微细加工技术[M].西安:西北工业大学出版社,2000.
    [3]普卢默等著.硅超大规模集成电路工艺技术-理论、实践与模型[M]:严利人等译.北京:电子工业出版社,2005.
    [4] M.埃尔温斯波克, H.扬森著.硅微机械加工技术[M]:姜岩峰译.北京:化学工业出版社,2007.
    [5]王秀峰,伍媛婷著.微电子材料与器件制备技术[M].北京:化学工业出版社,2008.
    [6]巩岩,张巍.193nm光刻曝光系统的现状及发展[J].中国光学与应用光学.2008,1(1):25-35.
    [7]孔鹏,巴音贺希格等.全息光栅非对称曝光显影的理论模拟及实时监测[J].光学学报.2010,30(1):65-69.
    [8] Hahmann P. Fortagne O.50years of electron beam lithography: contributionfrom Jena (Germany)[J]. In34th International Conference on Micro&NanoEngineering.2008.
    [9] Matsui S, et al. Lithography approach for100nm fabrication by focused ionbeam [J]. J. Vac. Sci. Technol.,1986, B4:845.
    [10] Branislav Radjenovi, Marija Radmilovi-Radjenovi.3D simulations of theprofile evolution during anisotropic wet etching of silicon [J]. Thin SolidFilms.2009,57:4233–4237.
    [11]王丰,吕平临等.硅各向异性腐蚀技术[J].黑龙江商学院学报(自然科学版).2000,16(2):22-27.
    [12]周礼书,敬守勇等.用湿法刻蚀技术制作衍射光学元件[J].光子学报.2002,31(Z2):169-172.
    [13]沈桂芬,吴春瑜等.各向异性腐蚀技术研究与分析[J].传感技术学报.2001,2:140-146.
    [14]王旭迪,刘颖等.反应离子束刻蚀应用于光刻胶灰化技术研究[J].微细加工技术.2004,2:23-26.
    [15]王波.可见-近红外微型空间调制光谱仪关键技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010.
    [16] Qingbin Jiao, Bayanheshig, et al. The effects of ultrasound frequency andpower on the activation energy in Si-KOH reaction system [J]. Chin. Chem.Lett.
    [17]鞠挥,吴一辉等.硅光栅的制作与应用[J].微纳电子技术,2002,2:29-33.
    [18] Yusuf G. Adewuyi. Sonochemistry: Environmental Science and EngineeringApplications [J]. Ind. Eng. Chem. Res.2001,40:4681-4715.
    [19] L. H. Thompson, L. K. Doraiswamy. Sonochemistry: Science and Engineering[J]. Ind. Eng. Chem. Res.1999,38:1215-1249.
    [20] Kenneth S. Suslick. The Chemical Effects of Ultrasound [J]. SCIENTIFICAMERlCAN.1989,260:80-86.
    [21] E. A. NEPPIRAS, B. E. NOLTINGK. Cavitation Produced by Ultrasonics:Theoretical Conditions for the Onset of Cavitation [J]. Proc. Phys. Soc. B.1951,64:1032-1038.
    [22] E. A. NEPPIRAS, B. E. NOLTINGK. Cavitation produced by Ultrasonics [J].Proc. Phys. Soc. B.1950,63:674-685.
    [23]马空军,贾殿赠等.超声场作用下的强化传质研究进展[J].化工进展.2010,29(1):11-16.
    [24]赵之平,陈澄华.超声传质过程机理[J].化工设计.1997,6:30-33.
    [25]李敬生,沈琴等.超声波对化工过程的强化作用[J].西安建筑科技大学学报(自然科学版).2007,39(4):563-568.
    [26]李晖.超声波强化液-固传质的机理研究[J].沈阳化工学院学报.1994,8(3):175-182.
    [27] George. R. Harrison. The Production of Diffraction Grat ings: II. The Design ofEchelle Gratings and Spectrographs [J]. The Optical Society of America.1949,39(7):522-528.
    [28]安德煜,龚为穗等. ICP/Echelle中阶梯光栅光谱仪[J].光仪通讯.1993,3:44-48.
    [29]黄林玉,邵宏翔.新一代光谱仪器: LeemanICP/Echelle [J].光谱学与光谱分析.1991,11(1):70-80.
    [30]李良.谈谈地面大型天文望远镜[J].现代物理知识.2007,20(6):14-23.
    [31]武旭华,朱永田等.高分辨率阶梯光栅光谱仪的光学设计[J].光学精密工程.2003,11(5):442-447.
    [32]师潇雅.大口径主动光学实验望远镜装置研制成功—国际首架主动光学反射,施密特望远镜[J].中国科技奖励.2007,11:18-20.
    [33]李叶芳,王晓旭等.波分复用器在光纤通信中的应用[J].物理与工程.2007,17(5):26-28.
    [34] Jie Qiao, Feng Zhao, et al. A thermalized low-loss echelle-grating-basedmultimode dense wavelength division demultiplexer [J]. APPLIED OPTICS.2002,41(31):6567-6575.
    [35] Serge Bidnyk, Ashok Balakrishnan, et al.Novel Architecture for Design ofPlanar Lightwave Interleavers [J]. Journal of Lightwave Technology.2005,23(3):1435-1440.
    [36]赵复垣.刻划阶梯光栅的原理和应用特性[J].光谱学与光谱分析.1993,13(3):101-107.
    [37] Kendall D L, Shoultz R A. Wet chemical etching of silicon and SiO2and tenchallenges for micromachiners//Rai-Coudhury P. Handbook ofMicrolithography, Micromachining and Microfabrication [M]. USA, SPIEOptical Engineering Press&IEE,1997.
    [38] Y. Fujii, K. I. Aoyama, et al. Optical demultiplexer using a silicon echelettegrating [J]. IEEE J. Quantum Electron.1980, QE-16:165-169.
    [39] P. Philippe, S. Valette, et al. Wavelength demultiplexer: using echelette gratingson silicon substrate [J]. Appl. Opt.1985,24(7):1006-1011.
    [40] J. Sarathy, D. C. Diaz, et al. Crystallographically limited submicrometergratings in (100) and (211) silicon [J]. Opt. Lett.1995,20(10):1216-1218.
    [41] J. Fruhauf, S. Kronert. Wet etching of silicon gratings with triangular profiles[J]. Microsyst. Technol.2005,11:1287-1291.
    [42] M. P. Kowalski, R. K. Heilmann, et al. Near-normal-incidenceextreme-ultraviolet efficiency of a flat crystalline anisotropically etched blazedgrating [J]. Appl. Opt.2006,45(6):1676-1679.
    [43] Flint, E. B., Suslick, K. S. The Temperature of Cavitation [J]. Science.1991,253(5026),1397-1399.
    [44] Margulis, M. A. Fundamental Aspects of Sonochemistry [J]. Ultrasonics.1992,30(3),152-155.
    [45] Lepoint, T., Mullie, F. What exactly is Cavitation Chemictry [J]. Ultrason.Sonochem.1994,1(1), S13-S22.
    [46] Hua, I., Hochemer, R. H., et al. Sonolytic Hydrolysis of p-Nitrophenyl Acetate:The Role of Supercritical Water [J]. J. Phys. Chem.1995,99(8),2335-2342.
    [47]李林.超声场下空化气泡运动的数值模拟和超声强化传质研究[D]:[硕士毕业论文].四川:四川大学,2006.
    [48]马空军,黄玉代等.超声空化泡相界面逸出时相间传质的研究[J].声学技术.2008,27(4):486-491.
    [49]马空军,贾殿赠等.相界面上超声空化气泡聚并、滑移促进的传质[J].声学技术.2009,28(6):742-746.
    [50]马空军,吴晓霞等.超声空化引起界面湍动促进的传质机理[J].应用声学.2013,32(5):348-353.
    [51] J. M. Crishal, A. L. Harrington. A selective etch for elemental silicon [J].Journal of Electrochemical society.1962,109(3): C71-C71.
    [52] W. T. Tsang, S. Wang. Preferentially etched diffraction gratings in silicon [J]. J.Appl. Phys.1975,46(5):2163-2166.
    [53] Hulthen, E., Neuhaus, H. Diffraction gratings in immersion [J]. Nature.1954,173:442-443.
    [54] Günter Wiedemann, Donald E. Jennings. Immersion grating for infraredastronomy [J]. APPLIED OPTICS.1993,32(7):1176-1178.
    [55] Paul J. Kuzmenko, Dmo R. Ciarlo, et al. Fabrication and testing of a siliconimmersion grating for infrared spectroscopy [J]. SPIE.1994,2266:566-577.
    [56] U. U. Graf, D. T. Jaffe, et al. Fabrication and evaluation of an etched infrareddiffraction grating [J]. APPLIED OPTICS.1994,33(1):96-102.
    [57] D.T. Jaffe, Luke D. Keller, et al. Micromachined silicon diffraction gratings forinfrared spectroscopy [J]. SPIE.1998,3354:201-212.
    [58] Luke D. Keller, Daniel T. Jaffe, et al. Fabrication and testing of chemicallymicromachined silicon echelle gratings [J]. APPLIED OPTICS.2000,39(7):1094-1105.
    [59] J. P. Marsh, D. J. Mar, et al. Production and evaluation of silicon immersiongratings for infrared astronomy [J]. APPLIED OPTICS.2007,46(17):3400-3416.
    [60] Ge, J., et al. The First Light of the World's First Silicon Grisms [J]. Bulletin ofthe American Astronomical society.1999,31:1504-1508.
    [61] Ge, J., et al. High spectral and spatial resolution spectroscopy of YSOs with asilicon grism and adaptive optics [J]. Bulletin of the American Astronomicalsociety.2000,32:1489-1492.
    [62] Jian Ge, Dan McDavitt, et al. Development of Silicon Grisms and ImmersionGratings for High Resolution Infrared Spectroscopy [J]. Proceedings of SPIE.2002,4485:393-404.
    [63]黄信凡,李联珠等.利用硅上倾斜V形槽结构制作闪耀光栅[J].光学学报.1988,8(1):89-92.
    [64]鞠挥,张平等.偏晶向(111)硅片闪耀光栅的制作[J].光子学报.2004,33(6):755-757.
    [65]盛斌,徐向东等.真空紫外硅闪耀光栅的制作[J].光学精密工程.2010,18(1):94-99.
    [66]盛斌.利用天然氧化层掩模的真空紫外硅闪耀光栅的湿法刻蚀制作[D]:[博士学位论文].合肥:中国科技大学,2009.
    [67] Bin Sheng, Xiangdong Xu, et al. Vacuum–ultraviolet blazed silicon gratinganisotropically etched by native-oxide mask [J]. Optical Society of America.2009,34(8):1147-1149.
    [68]陈勇,邱克强等.1000线/毫米软X射线自支撑闪耀投射光栅的设计与制作[J].物理学报.2012,61(12):120702-1-120702-7.
    [69] Л. Д.朗道, E. M.栗弗席茨著.流体力学[M]:孔祥言等译.北京:高等教育出版社,1983.
    [70] H.欧特尔等著.普朗特流体力学基础[M]:朱自强等译.北京:科学出版社,2008.
    [71] P. M.莫尔斯, K. U.英格特著.理论声学[M]:杨训仁等译.北京:科学出版社,1986.
    [72]杜功焕等著.声学基础[M].南京:南京大学出版社,2001.
    [73]何祚镛等著.声学理论基础[M].北京:国防工业出版社,1988.
    [74] Schlichting, H. Boundary Layer Theory,6th ed.[M]. New York, McGraw-Hill,1968.
    [75] Streeter, V. L. Fluid Dynamics [M]. New York, McGraw-Hill,1948.
    [76] D.J. Tritton, Physical Fluid Dynamics,2nd ed.[M]. New York, OxfordUniversity Press,1988.
    [77] Deissler, R. G. Derivation of the Navior-Stokes equation [J]. Am. J. Phys.1976,44:1128-1130.
    [78] James R. Welty, Charles E. Wicks, Robert E. Wilson, et al. Fundamentals ofMomentum, Heat, and Mass Transfer [M]. New York, John Wiley&Sons,2007.
    [79] Samuel Glasstone, Keith J. Laidler, et al. The Theory of Rate Processes [M].New York, McGraw-Hill,1941.
    [80] W. M.凯斯, M. E.克拉福德等著.对流传热与传质[M]:第4版.赵镇南译.北京:高等教育出版社,2007.
    [81] E. L. Cussler. Diffusion: Mass Transfer in Fluid Systems,3rd ed.[M]. NewYork, Cambridge University Press,2009.
    [82] Smith J M. Chemical Engineering Kinetics,3rd ed.[M]. New York,McGraw-Hill,1981.
    [83] Ishide M. Wen C Y. Comparison of kinetic and diffusional model for solid-gasreaction [J]. AIChEJ,1968,14:311-317.
    [84] Vijayanand. Moholkar, Marijn. C. G. Warmoeskerken. Mechanism ofMass-transfer enhancement in textiles by ultrasound [J]. AIChE J.2004,50:58-64.
    [85] Cunshan Zhou, Haile Ma. Ultrasonic degradation of polysaccharide from a redalgae (porphyra yezoensis)[J]. J. Agric. Food. Chem.2006,54:2223-2228.
    [86] V. S. Moholkar, M. M. C. G. Warmoeskerken, Investigations in mass transferenhancement in textiles with ultrasound [J]. Chem. Eng. Sci.2004,59:299-311.
    [87] Cass T. Miller, Michele M. Poirier-MeNeil. Dissolution of trapped nonaqueousphase liquids: Mass transfer characteristics [J]. Water Resour. Res.1990,26:2783-2796.
    [88] Susan E. Powers, Linda M. Abriola. An experimental investigation ofnonaqueous phase liquid dissolution in saturated subsurface systems: Steadystate mass transfer rates [J]. Water Resour. Res.1992,28:2691-2705.
    [89] A. W. Nienow. Dissolution mass transfer in a turbine agitated baffled vessel [J].Can. J. Chem. Eng.1969,47:248-258.
    [90] Alex S. Mayer, Cass T. Miller. The influence of mass transfer characteristicsand porous media heterogeneity on nonaqueous phase dissolution [J]. WaterResour. Res.1996,32:1551-1567.
    [91] Wolfgang Dreybrodt, Dieter Buhmann. A mass transfer model for dissolutionand precipitation of calcite from solutions in turbulent motion [J]. Chem. Geol.1991,90:107-122.
    [92] G. H. Brimhall. Lithologic determination of mass transfer mechanisms ofmultiple-stage porphyry copper mineralization at Butte, Montana; veinformation by hypogene leaching and enrichment of potassium-silicate protore[J]. Econ. Geol.1979,74:556-589.
    [93] C.Vu, K. N.Han. Effect of system geometry on the leaching behavior of cobaltmetal: Mass transfer controlling case [J]. Matall. Trans. B.1979,10:57-62.
    [94] Octave Levenspiel. Chemical Reaction Engineering, third ed.[M]. John Wiley&Sons, New York,1999.
    [95] Margulis, M. A. Sonoluminescence and Sonochemical Reactions in CavitationFields. A Review [J]. Ultrasonics.1985,23:157-169.
    [96] Margulis, M. A. Fundamental Aspects of Sonochemistry [J]. Ultrasonics.1992,30:152-155.
    [97] Margulis, M. A. Fundamental Problems of Sonochemistry and Cavitation [J].Ultrason. Sonochem.1994,1:87-90.
    [98] Kenneth S. Suslick, David A. Hammerton, et al. The Sonochemical Hot Spot[J]. J. Am. Chem. Soc.1986,108:5641-5642.
    [99] Ying Chongfu, AN Yu. Distributions of the high temperature and the highpressure inside a single acoustically driven bubble [J]. Sci. China, Ser. A.2002,45:926-936.
    [100] Hong Lei, Daniel Henry, et al. Acoustic force model for the fluid flow understanding waves [J]. Applied Acoustics.2011,72:754-759.
    [101] M. Chouvellon, A. Largillier, et al. Velocity study in an ultrasonic reactor [J].Ultrason. Sonochem.2000,7:207–211.
    [102] Yoshihiro Kojima, Yoshiyuki Asakura, et al. The effects of acoustic flow andmechanical flow on the sonochemical efficiency in a rectangular sonochemicalreactor [J]. Ultrason. Sonochem.2010,17:978–984.
    [103] A. Mandroyan, R. Viennet, et al. Modification of the ultrasound inducedactivity by the presence of an electrode in a sonoreactor working at two lowfrequencies (20and40kHz). Part I: active zone visualization by lasertomography [J]. Ultrason. Sonochem.2009,16:88–97.
    [104] A. Mandroyan, M.L. Doche, et al. Modification of the ultrasound inducedactivity by the presence of an electrode in a sonoreactor working at two lowfrequencies (20and40kHz). Part II: mapping flow velocities by particle imagevelocimetry (PIV)[J]. Ultrason. Sonochem.2009,16:97–104.
    [105] Y. Kojima, Y. Asakura, et al. The effects of acoustic flow and mechanical flowon the sono-chemical efficiency in a rectangular sonochemical reactor [J].Ultrason. Sonochem.2010,17:978–984.
    [106] F. J. Trujillo, K. Knoerzer. A computational modeling approach of the jet-likeacoustic streaming and heat gene-ration induced by low frequency high powerultrasonic horn reactors [J]. Ultrason. Sonochem.2011,18:1263–1273.
    [107] James R. Welty, Charles E. Wicks, et al. Fundamentals of Momentum, Heatand Mass Transfer, fifth ed.[M]. New York, John Wiley&Sons,2000.
    [108] A. B. Bauer. Impedance Theory and Measurements on Porous Acoustic Liners[J]. J. Aircr.1977,14:720-728.
    [109] Paul Mattaboni, Edward Schreiber. Method of pulse transmissionmeasurements for determing sound velocities [J]. J. Geophys. Res.1967,72:5160-5163.
    [110] Γ.C.金泽里, A.M.札叶兹德尼著.声学基础[M]:冯秉铨等译.北京:高等教育出版社,1955.
    [111] R. L. Panton. Incompressible Flow,2nd ed.[M]. New York, John Wiley&Sons,1996.
    [112] P. M. Gresho, R. L. Sani. Incompressible Flow and the Finite Element Method,Volume2: Isothermal Laminar Flow [M]. New York, John Wiley&Sons,2000.
    [113] G. Hauke, T. J. R. Hughes. A Unified Approach to Compressible andIncompressible Flows Comp [J]. Meth. Appl. Mech. Engrg.1994,133:389–395
    [114] G. Hauke. Simple Stabilizing Matrices for the Computation of CompressibleFlows in Primitive Variables [J]. Comp. Meth. Appl. Mech. Engrg.2001,190:6881–6893.
    [115] Said Boluriaan, Philips J. Morris. Acoustic streaming: from Rayleigh to today[J]. Aeroacoustics.2003,2(3-4):255-292.
    [116] W. L. Nyborg. Acoustic streaming due to attenuated plane waves [J]. J. Acoust.Soc. Am.1953,25:68-75.
    [117] L. Rayleigh. Theory of Sound [M]. New York, Dover Publications,1896.
    [118] P. J. Westervelt. The theory of steady rotational flow generated by a sound field[J]. J. Acoust. Soc. Am.1953,25:60-67.
    [119] L. K. Zarembo. Acoustic streaming, in: LD. Rozenberg (Ed.), High IntensityUltrasonic Fields [M]. Plenum Press, New York, London,1971, pp.141~169.
    [120] W. M. Kays, M. E. Crawford. Convective Heat and Mass Transfer, third ed.[M]. New York, McGraw-Hill, Inc.1993.
    [121] Herbert Oertel. Prandtl-Essentials of Fluid Mechanics, third ed.[M]. New York,Springer,2010.
    [122] J. Wu, G. Du. Acoustic streaming generated by a focused Gaussian beam andfinite amplitude tonebursts [J]. Ultrasound Med. Biol.1993,19:167-176.
    [123] S. I. Aanonsen, T. Barkve, et al. Distortion and harmonic generation in thenearfield of a finite amplitude sound beam [J]. J. Acoust. Soc. Am.1984,75:49-768.
    [124] K. R. Nightingale, G. E. Trahey. A finite element model for simulating acousticstreaming in crytic breast lesions with experimental validation [J]. IEEE Trans.Ultrason. Ferr.2000,47:01-215.
    [125] Arrhenius, S. A. On the dissociation of substances dissolved in water [J]. Z.Phys. Chem.1887,1:285-298.
    [126] Falkenhagen. H, Dole, M. Die innere reibung von elektrolytischen losungenund ihre deutung nach der Debyeschen theorie [J]. Phys. Z.1929,30:611-622.
    [127] Grinnell Jones, Malcolm Dole. The viscosity of aqueous solutions of strongelectrolytes with special reference to barium chloride [J]. J. Am. Chem. Soc.1929,51:2950-2964.
    [128] Grinnell Jones, Samuel K. Talley. The Viscosity of Aqueous Solutions as aFunction of the Concentration [J] J. Am. Chem. Soc.1933,55:624-642.
    [129] Manfred Kaminsky. Ion-solvent interaction and the viscosity ofstrong-electrolyte solutions [J]. Z. Phy. Chem.1957,12:206-231.
    [130] Kern, D. Q. Process Heat Transfer [M]. New York, McGraw-Hill,1950.
    [131] H. Seidel, L. Csepregi, et al. Anisotropic Etching of Crystalline Silicon inAlkaline Solutions: I. Orientation Dependence and Behavior of Passivation [J].J. Electrochem. Soc.1990,137:3612-3626.
    [132] Jue Peng, Chen Chao,et al. Micro-patterning of0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3single crystals by ultrasonic wet chemicaletching[J]. Mater. Lett.2008,62:3127-3130.
    [133] J.W. Chen, Walter M. Kalback. Effect of ultrasound on chemical reaction rate[J]. Ind. Eng. Chem. Fundam.1967,6:175-178.
    [134] E. Herr, H. Baltes. KOH etching of high-index crystal planes in silicon [J]. Sens.Actuators A: Phys.1992,31:283-287.
    [135] P.M. Zavrocky, T. Earles, et al. Fabrication of vertical sidewalls by anisotropicetching of silicon (100) wafers [J]. J. Electrochem. Soc.1994,141:3182-3188.
    [136] Q.B. Jiao, Bayanheshig, et al. Numerical simulation of ultrasonic enhancementon mass transfer in liquid-solid reaction by a new computational model [J].Ultrason. Sonochem.2014,21:535-541.
    [137]黄子卿.电解质溶液理论导论[M].北京:科学出版社,1964.
    [138] Lars Onsager, Raymond M. Fuoss. Irreversible processes in electrolytes:diffusion, conductance, and viscous flow in arbitrary mixtures of strongelectrolytes [J]. J. Phys. Chem.1932,36:2689-2778.
    [139] Robinson, R. A., Stokes, R. H. Electrolyte Solutions [M]. London, Butterworth,1959.
    [140] R. H. Stokes. Electrophoretic contributions to the diffusion of electrolytes [J]. J.Am. Chem. Soc.1953,75:2533-2534.
    [141] R. H. Stokes. The electrophoretic corrections to the diffusion coefficient of anelectrolyte solution [J]. J. Am. Chem. Soc.1953,75:4563-4566.
    [142] Pierre Turq, Louisiane Orcil, et al. Transport properties and their coupling withion aggregate formation [J]. Pure&Appl. Chem.1987,59:1083-1092.
    [143] O. Bernard, T. Cartailler, et al. Mutual diffusion coefficients in electrolytesolutions [J]. Journal of Molecular Liquids.1997,73,74:403-411.
    [144] Tohru Morita, Kazuo Hiroike. A New Approach to the Theory of ClassicalFluids. I [J]. Progress of Theoretical Physics.1960,23:1003-1027.
    [145] W. Kunz, P. Calmettes, et al. Structure of nonaqueous electrolyte solutions bysmallangle neutron scattering, hypernetted chain, and Brownian dynamics [J].The Journal of Chemical Physics.1990,92:2367-2373.
    [146] P. S. Ramanathan, Harold L. Friedman. Study of a Refined Model for Aqueous1-1Electrolytes [J]. The Journal of Chemical Physics.1971,54:1086-1099.
    [147] J. L. Lebowitz, J. K. Pzircus. Mean Syherical Model for Lattice Gases withExtended Hard Cores and Continuum Fluids [J]. Physical Review.1966,144:251-258.
    [148] Waisman, Eduardo, Lebowitz, J. L. Exact Solution of an Integral Equation forthe Structure of a Primitive Model of Electrolytes [J]. Journal of ChemicalPhysics.1970,52:4307-4309.
    [149] L. Blum. Mean spherical model for asymmetric electrolytes. I. Method ofsolution [J]. Molecular Physics.1975,30:1529-1535.
    [150] L. Blum, J. S. H ye. Mean Spherical Model for Asymmetric Electrolytes.2.Thermodynamic Properties and the Pair Correlation Function [J]. The Journalof Physical Chemistry.1977,81:1311-1316.
    [151] J. F. Dufreche, O. Bernard, et al. Transport equations for concentratedelectrolyte solutions: Reference frame, mutual diffusion [J]. Journal ofChemical Physics.2002,116:2085-2097.
    [152] Zheng Xu, Keiji Yasuda, et al. Numerical simulation of liquid velocitydistribution in a sonochemical reactor [J]. Ultrason. Sonochem.2013,20:452-459.
    [153] Y. Kojima, Y. Asakura, et al. The effects of acoustic flow and mechanical flowon the sonochemical efficiency in a rectangular sonochemical reactor [J].Ultrason. Sonochem.2010,17:978–984.
    [154] S. D hnke, K.M. Swamy, et al. Modeling of three-dimensional pressure fieldsin sonochemical reactors with an inhomogeneous density distribution ofcavitation bubbles: comparison of theoretical and experimental results [J].Ultrason. Sonochem.1999,6:31–41.
    [155] K. Yasui, T. Kozuka, et al. FEM calculation of an acoustic field in asonochemical reactor [J]. Ultrason. Sonochem.2007,14:605–614.
    [156] Nilesh P. Vichare, Parag R. Gogate, et al. Mixing time analysis of asonochemical reactor [J]. Ultrason. Sonochem.2001,8:23-33.
    [157] Parag R. Gogate, Vinayak S. Sutkar, et al. Sonochemical reactors: Importantdesign and scale up considerations with a special emphasis on heterogeneoussystems [J]. Chem. Eng. J.2011,166:1066-1082.
    [158] Octave Levenspiel. Chemical Reaction Engineering,3rd ed.[M]. New York,John Wiley&Sons,1999.
    [159] Paul J. Kuzmenko, Dino R. Ciarlo. Improving the optical performance of etchedsilicon gratings [J]. SPIE.1998,3354:357-367.
    [160] Czochralski. Ein neues Verfahren zur Messung desKristallisationsgeschwindigikeit der Metalle [A new method for themeasurement of crystallization rate of metals][J]. Z. Phys. Chem.1918,92:219-221.
    [161] W. Keller. Floating Zone Silicon [M]. New York, Dekker,1981.
    [162] Chin-Hao Chang, R. K. Heilmann, et al. Fabrication of sawtooth diffractiongratings using nanoimprint lithography [J]. J. Vac. Sci. Technol. B.2003,21(6):2755-2759.
    [163] Chin-Hao Chang, J. C. Montoya, et al. High fidelity blazed grating replicationusing nanoimprint lithography [J]. J. Vac. Sci. Technol. B.2004,22(6):3260-3264.
    [164] G. Binning, C. F. Quate, et al. Atomic force microscope [J]. Phys. Rev. Lett.1986,56(9):930-.
    [165]马礼敦.近代X射线多晶体衍射-实验技术与数据分析[M].北京:化学工业出版社,2004.
    [166]郭运德.硅片清洗方法探讨[J].上海有色金属.1999,20(4):162-165.
    [167]李文昊.平面及Ⅳ型凹面全息光栅曝光系统设计与掩模制作关键技术研究
    [D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2008.
    [168]孔鹏.平场全息凹面光栅设计方法及制作关键技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011.
    [169]韩建.全息光栅曝光光学系统优化及光栅掩模参数控制方法研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2012.
    [170]H.Lin,L.F.Li,etal.Fabrication of extreme-ultraviolet blazed gratings by useof direct argon-oxygen ion-beam etching through a rectangular photoresistmask [J]. Appl. Opt.2008,47(33):6212-.
    [171] H. Lin, L. C. Zhang, et al. High-efficiency multilayer-coated ion-beam-etchedblazed grating in the extreme-ultraviolet wavelength region [J]. Opt. Lett.2008,33(5):485-.
    [172] J M Lai, W H Chieng, et al. Precision alignment of mask etching with respect tocrystal orientation [J]. J. Micromech. Microeng.1998,8:327~329.
    [173] Sievert W. Preparation and characterization of buffered oxideetchants//Semiconductor Fabtech.8th edition [M]. London, SemiconductorMedia Limited,1996.
    [174] G. R. Harrison, S. W. Thompson, et al.750-mm ruling engine producing largegratings and echelles [J]. Journal of the Optical Society of America.1972,62(6):751~756.
    [175]李晓天,巴音贺希格,等.机械刻划光栅的刻线弯曲与位置误差对平面光栅性能影响及其修正方法[J].中国激光.2013,40(3):0308009.
    [176]李晓天,巴音贺希格,等.刻线误差与面型误差对平面光栅光谱性能影响的二维快速傅里叶变换分析方法[J].光学学报.2012,32(11):1105001.
    [177]谭鑫,李文昊,等.紫外全息闪耀光栅的制作[J].光学精密工程.2010,18(7):1536~1544.
    [178]吴娜,谭鑫,等.闪耀全息光栅离子束刻蚀工艺模拟及实验验证[J].光学精密工程.2012,20(9):1904~1912.
    [179]谭鑫,刘颖,等.13.9nm Laminar分束光栅的研制[J].光学精密工程.2009,12(1):33~37.
    [180]韩建,巴音贺希格,等.全息曝光系统轴向调节误差对光栅衍射波像差的影响[J].光学学报.2012,32(7):0705002.
    [181]韩建,巴音贺希格,等.全息光栅制作中光栅掩模形状随曝光量及干涉场条纹对比度的变化规律[J].光学学报.2012,32(3):0305001.
    [182] R. M. A. Azzam, N. M. Bashara. Polarization characteristics of scatteredradiation from a diffraction grating by ellipsometry with application to surfaceroughness [J]. Physical Review B.1972,5(12):4721~4729.
    [183] John C. Stover. Optical scattering measurement and analysis [M]. New York,McGraw-Hill,1990.
    [184] Jing Chen, Litian Lin, et al. Study of anisotropic etching of (100) Si withultrasonic agitation [J]. Sensors and Actuators A: Physical.2002,96(2-3):152~156.
    [185] Chii-Rong Yang, Po-Ying Chen, et al. Effects of mechanical agitation andsurfactant additive on silicon anisotropic etching in alkaline KOH solution [J].Sensors and Actuators A: Physical.2005,119(1):263~270.
    [186] Theo Baum, David J Schiffrin. AFM study of surface finish improvement byultrasound in the anisotropic etching of Si (100) in KOH for micromachiningapplication [J]. J. Micromech. Microeng.1997,7(4):338~342.
    [187] K. Ohwada, Y. Negoro, et al. Groove depth uniformization in (110) Sianisotropic etching by ultrasonic wave and application to accelerometerfabrication [C]. Proceedings of the IEEE Micro Electro Mechanical Systems.1995.
    [188] I. Zubel, M. Kramkowska. The effect of isopropyl alcohol on etching rate androughness of (100) Si surface etched in KOH and TMAH solutions [J]. Sens.Actuators A.2001,93(2):138~147.
    [189] S. A. Campbell, K. Cooper, et al. Inhibition of pyramid formation in the etchingof Si P <100> in aqueous potassium hydroxide-isopropanol [J]. J. Micromech.Microeng.1995,5(3):209~218.
    [190] C. Strandman, L. Rosengren, et al. Fabrication of45°mirrors together withwell-defined V-grooves using wet anisotropic etching of silicon [J]. J.Microelectromech. Syst,1995,4(4):213~219.
    [191] Y. Backlund, L. Rosengren. New shapes in (100) Si using KOH and EDP etches[J]. J. Micromech. Microeng,1992,2(2):75~79.
    [192] I. Zubel. Silicon anisotropic etching in alkaline solutions III: on the possibilityof spatial structures forming in the course of Si (100) anisotropic etching inKOH and KOH+IPA solutions [J]. Sens. Actuators A.2000,84(1-2):116~125.
    [193] C. Moldovan, R. losub, et al. Anisotropic etching of silicon in complexant redoxalkaline system [J]. Sens. Actuators B.1999,58(1-3):438~449.
    [194] C. Moldovan, R. losub, M. Modreanu. Elimination of silicon hillocks using analkaline complexant etching system [J]. Int. J. Inorg. Mater.2001,3(8):1173~1176.
    [195] R. Divan, H. Camon, et al. Limiting roughness in anisotropic etching [C].Semiconductor conference. IEEE.1997,2:553~556.
    [196] R. Divan, N. Moldovan, et al. Roughning and smoothing dynamic during KOHsilicon etching [J]. Sens. Actuators A.1999,74(1-3):18~23.
    [197] I Zubel, I. Barycka, et al. Silicon anisotropic etching in alkaline solutions IV:the effect of organic and inorganic agents on silicon anisotropic etching process[J]. Sens. Actuators A.2001,87(3):163~171.
    [198] I Zubel, M. Kramkowska. The effect of alcohol additives on etchingcharacteristics in KOH solutions [J]. Sens. Actuators A.2002,101(3):255~261.
    [199] Minseung Ahn, Ralf K. Heilmann, et al. Fabrication of ultrahigh aspect ratiofreestanding gratings on silicon-on-insulator wafers [J]. J. Vac. Sci. Technol. B.2007,25(6):2593~2597.
    [200] Minseung Ahn, Ralf K. Heilmann, et al. Fabrication of200nm period blazedtransmission gratings on silicon-on-insulator wafers [J]. J. Vac. Sci. Technol. B.2008,26(6):2179~2182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700