多级结构介孔稀土氧化物的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米介孔材料具有非常广泛的应用前景,吸引着许多科学家投身到这个领域的研究中。对于介孔材料而言,目前的发展方向主要集中在新型介孔材料的合成以及介孔材料的功能化和应用探索方面。而稀土氧化物由于其特殊的光学、电学、磁学、催化性能,近年来受到人们的广泛研究和应用。而合成具有纳米介孔结构的稀土氧化物,使其具有特定的形貌、尺寸、维度、孔结构的纳米材料,研究其物性和结构之间的内在关系,进而组装功能性纳米稀土材料,对纳米稀土科技的研究和发展具有重要的理论意义和现实意义。
     本论文采用不同途径合成了具有介孔结构的CeO2,并以CeO2为主要研究对象,深入研究了形貌与构性的关系,为开发具有特殊形貌的稀土介孔氧化物进行了有益的探索。全文共分为六章,第一章为背景介绍,第二着重介绍表征方法,重点内容包括以下四章。
     第三章通过浸渍法制备了SBA-15负载的稀土铈银介孔复合材料并应用于抗菌性能研究。研究表明,铈的存在有利于银纳米线均匀的镶嵌于SBA-15的孔道中,同时铈能明显增强银纳米线的活性。所制备的抗菌剂对金黄色葡萄球菌和大肠杆菌均有着优异的抗菌性能。
     第四章首次报导了利用含胺基的酚醛树脂为模板剂通过水热法制备了介孔氧化铈。通过XRD,BET,TEM等对产物的结构和形貌进行了详细的分析表征。产物经负载一定量的银后,经抗菌活性测试表明,对大肠杆菌和金黄色葡萄球菌具有较强的抑杀作用。
     第五章首次通过溶剂热法合成了具有核壳结构的CeO2,采用SEM、TEM、XRD、TG-DTA等测试手段,对核壳结构CeO2的形貌进行了详细的分析和表征,并详细讨论了其形成机理。所制备的核壳CeO2具有较大的比表面积和稳定的孔结构,对紫外光具有较强的吸收,可望作为一种高效的紫外吸收剂使用。本方法具有普遍的意义,它可以发展为一般的方法并应用到其它稀士化合物纳米材料的合成中。
     第六章以葡萄糖为模板剂通过水热法可控合成了具有核壳和空壳结构的介孔CeO2。研究发现通过调节不同水醇比和葡萄糖浓度可以实现空壳和核壳的可控转化。通过考察其转化条件,提出了CeO2核壳-空壳结构的合成机理。并运用这一机理,进一步合成了一系列核壳-空壳结构的稀土氧化物。为工艺简单、条件温和、结构可控的稀土介孔氧化物的合成探索出了一条新的途径。
Nanostructure mesoporous materials have attracted extensive attention owing to their great potential applications. To date, most researches in mesoporous materials are focused on the synthesis of novel mesoporous materials and their functionalizations for application. Furthermore owing to the unique property of the electron, light, magnetism and catalysis, the mesoporous Rare-earth oxide have earned intensive research and application. The synthesizing of mesoporous rare earth oxide nanomaterials with special morphology, size, dimension and pore structure and studying the internal relationship between its physical properties and structures for further assembling functional rare earth nanomaterials are of theoretical and realistical significantion.
     In this paper, the mesoporous CeO2 was prepared through various methods meanwhile the relationship between the morphology and the structure and property has deeply studied, which attributed to the development of the rare-earth oxide mesoporous with special morphology. The whole paper has six charpters and the first charpter is the backgound introduction, the second is about the experiment and characterization, and the last four were noted as follows:
     In charpter three, the Ce and Ag composite supported on the SBA-15 was synthesized and applied in the research of antibacterial through impregnation method. The experiment result shows the exsitence of the Ce has a positive effect on the even distribution of the Ag nano wires in the pore channel, at the mean time, the Ce can greatly enhance the activity of the Ag nano-wires. The synthesized material has an excellent impact on killing the Escherichia coli and Staphylococcus aureus.
     In charpter four, the mesoporous CeO2 was prepared through hydrothermal method with phenolic resin functionlized with–NH2 as the template for the first time. The structure and morphology were characterizated by XRD, BET, TEM and so on. After loading the amount of Ag, according to the test of anti-bacterium, the material has high activity to the Escherichia coli and Staphylococcus aureus.
     In charpter five, the CeO2 with the morphology of core-shell was created by the solvent-thermal method firstly. With the help of SEM, TEM, XRD and TG-DTA, the morphology of the CeO2 was fully analysed and characterized, as a result of which the formation mechanism was also covered. The prepared core-shell CeO2 has a large surface area and stable pore structure and above all has strong adsorption of the ultra-violate,which maybe become a high efficiency UV shielding .The synthesis method used in this paper is universally significant, it can be developed into a general method and applied to nanomaterial synthesis of other rare earth oxides.
     In charter six, the mesoporous CeO2 with core-shell and hollow sphere was prepared with hydro-thermal methods using glucose as the template. Through the adjustment of ratio between the water and the ethanol and the concentration of the glucose, the realization of the change from the hollow sphere to the core-shell is aviliable. With regard to the change condition, the formation mechanism of the core-shell and hollow sphere was proposed, moreover using such mechanism, a series of other core-shell rare earth oxides were fabricated, which pave a way to a simple, moderate synthesize of the morphology-controllable mesoporous rare-earth oxide.
引文
1. 李颖, 赵永亮. 稀土材料在高科技领域中的应用. 内蒙古石油化工[J]. 2005, 5: 9-12.
    2. 陈占恒. 稀土新材料及其在高技术领域的应用. 稀土[J]. 2000, 21(1): 53-57.
    3. 孙家跃, 杜海燕.《无机材料制造与应用》[M].化学工业出版社 2001, 3.
    4. 谢平波, 段昌奎, 张慰萍, 尹民, 楼立人, 夏上达. 纳米 Y2O3:Eu 荧光粉的光致发光研究.发光学报[J]. 1998, 19(2): 123-128.
    5. 谢平波, 张慰萍, 尹民, 陶冶, 夏上达. 纳米 Ln2O3:Eu(Ln=Gd,Y)荧光粉的燃烧法合成及其光致发光性质.无机材料学报[J]. 1998, 13(1): 53-58.
    6. Y.C. Kang, D.J. Seo, S.B. Park, H.D. Park. Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis. Materials Research Bulletin[J]. 2002, 37(2): 263-269.
    7. G. Wakefield, E. Holland, P.J. Dobson, J.L. Hutchison. Luminescence Properties of Nanocrystalline Y2O3:Eu. Adv.Mater.[J]. 2001, 13(20): 1557-1560.
    8. B.M. Tissue, D.K. Williams, B. Bihari, J.M. McHale. Preparation and Fluorescence Spectroscopy of Bulk Monoclinic Eu3+:Y2O3 and Comparison to Eu3+:Y2O3 Nanocrystals. J. Phys. Chem. B.[J]. 1998, 102(6): 916-920.
    9. J.Guzman, S.Carrettin, A.Corma. J. Am. Chem. Soc.[J]. 2005, 127(10): 3286-3287.
    10. 唐志阳. 稀土氧化物在陶瓷中的应用.山东陶瓷[J]. 2005, 28(2): 16-19.
    11. 詹志洪. 稀土在功能陶瓷中的应用及市场前景. 稀土信息[J]. 2005, 3(1): 8-10.
    12. Y.L. Aung, S. Nakayama, M. Sakamoto. Electrical properties of MREGeO4 (M = Li, Na, K; RE = rare earth) ceramics. Journal of Materials Science[J]. 2005, 40(1): 129-133.
    13. 姚义俊, 丘泰, 焦宝祥, 沈春英. Y2O3, La2O3, Sm2O3 对氧化铝瓷烧结及力学性能的影响. 中国稀土学报[J]. 2005, 23(2): 156-159.
    14. 梁金生, 梁广川, 祁洪飞, 冀志江, 金宗哲, 吴子钊. 稀土复合磷酸盐无机抗菌材料对陶瓷活化水性能的影响. 中国稀土学报[J]. 2003, 21(2): 421-423.
    15. 刘雪峰,张利,涂铭旌. 纳米 Ce/TiO2 无机抗菌剂的制备及其性能评价. 过程工程学报[J].2004, 4(3): 256-260.
    16. 胡伯平. 稀土永磁材料及其应用. 电气技术[J]. 2007, 10: 24-26.
    17. 杨遇春. 稀土高温超导体开发应用进展. 稀土[J].1999, 20(5): 67-73.
    18. 郭瑞华, 李梅. 稀土抛光粉的发展现状及应用. 稀土[J]. 2005, 26(1): 82-85
    19. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc.[J]. 1992, 114(27): 10834-10843.
    20. J.C. Vartuli, K.D. Schmitt, C.T. Kresge, W.J. Roth, M.E. Leonowicz, S. B. McCullen, S.D. Hellring, J.S. Beck, J.L. Schlenker. Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications. Chem. Mater.[J]. 1994, 6(12): 2317-2326.
    21. J.C. Vartuli, C.T. Kresge, M.E. Leonowicz, A.S. Chu, B.M. S., I.D. Johnson, E.W. Sheppard. Synthesis of Mesoporous Materials: Liquid-Crystal Templating versus Intercalation of Layered Silicates Chem. Mater[J]. 1994, 6(11): 2070-2077.
    22. C. Chen, S.L. Burkett, H. Li, M.E. Davis. Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Micro. Mater.[J]. 1993, 2(1): 27-34.
    23. A. Monnier, F. Schuth, Q.S. Huo, D. Kumard, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurth, P. Petroff, A. Firouzi, M. Janicke, B.F. Chmelka. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science [J]. 1993, 261: 1299-1303.
    24. Q. Huo, D.L. Margolese, U. Ciesla, P. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schuth, G.D. Stucky. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature[J]. 1994, 368: 317-321.
    25. Q. Huo, D.L. Margolese, U. Ciesla, D.G. Demuth, P. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka, F. Schuth, G.D. Stucky. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem. Mater[J]. 1994, 6(8): 1176-1191.
    26. P.T. Tanev, T.J. Pinnavaia. A Neutral Templating Route to Mesoporous Molecular Sieves. Science[J]. 1995, 267: 865-867.
    27. S.A. Bagshaw, E. Prouzet, T.J. Pinnavaia. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. Science[J]. 1995, 269: 1242-1244.
    28. P.T. Tanev, T.J. Pinnavaia, W.Zhang, M.Froba, J.Wang. Mesoporous Titanosilicate Molecular Sieves Prepared at Ambient Temperature by Electrostatic (S+I-, S+X-I+) and Neutral (S I ) Assembly Pathways: A Comparison of Physical Properties and Catalytic Activity for Peroxide Oxidations. J. Am. Chem. Soc. [J]. 1996; 118(38): 9164-9171.
    29. D.M. Ntonelli, J.Y. Ying. Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism. Angew. Chem. Int. Ed. [J]. 1996, 35(4): 426-430.
    30. G.S. Attard, J.C. Glyde, C.G. Gltner. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature[J]. 1995, 378: 366-368.
    31. G.S. Attard, P.N. Bartlett, N.R.B. Coleman, J.M. Elliott, J.R. Owen, J.H. Wang. Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases. Science[J]. 1997, 278: 838-840.
    32. Y.F. Lu, R. Ganguli, C.A. Drewien, M.T. Anderson, C.J. Brinker, W.L. Gong, Y.X. Guo, H. Soyez, B. Dunn, M.H. Huang, J.I. Zink. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating .Nature[J]. 1997, 389: 364-368.
    33. P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature[J]. 1998, 396: 152-155.
    34. P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, G.D. Stucky. Hierarchically Ordered Oxides. Science[J]. 1998, 282, 2244-2246.
    35. D. Zhao, P. Yang, D.I. Margolese, B.F. Chmelka, G.D. Stucky. Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures. Chem.Commun.[J]. 1998, 22: 2499-2500.
    36. D. Zhao, P. Yang, N. Melosh, B.F. Chmelka, G.D. Stucky. Continuous Mesoporous Silica Films with Highly Ordered Large Pore Structures. Adv. Mater.[J]. 1998, 10(16): 1380-1385.
    37. S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. J. Am. Chem. Soc.[J]. 2000,122(43): 10712-10713.
    38. R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec. Ordered Mesoporous Carbons. Adv. Mater.[J]. 2001, 13(9): 677-681.
    39. S.H. Joo, S. Jun, R. Ryoo. Synthesis of ordered mesoporous carbon molecular sieves CMK-1. Micropor. Mesopor. Mater.[J]. 2001, 44(6): 153-158.
    40. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature[J]. 2001, 412: 169-172.
    41. F. Gao, Q. Lu, D. Zhao. Synthesis of Crystalline Mesoporous CdS Semiconductor Nanoarrays Through a Mesoporous SBA-15 Silica Template Technique. Adv. Mater.[J]. 2003, 15(9): 739-742.
    42. L.J. Bian, H.A. Xi, X.F. Qian. Synthesis and luminescence property of rare earth complex nanoparticles dispersed within pores of modified mesoporous silica. Mater. Res. Bull.[J]. 2002, 37(14): 2293-2301.
    43. L.S. Fu, Q.H. Xu, H.J. Zhang ,Q.G. Meng, R.R. Xu. Preparation and luminescence properties of the mesoporous MCM-41s intercalated with rare earth complex. Mater. Sci. Eng. B[J]. 2002, 88(1): 68-72.
    44. M.N. Timofeeva, S.H. Jhung, Y.K. Hwang, D.K. Kim, V.N. Panchenko, M.S. Melgunov, Y.A. Chesalov, J.S. Chang. Ce-silica mesoporous SBA-15-type materials for oxidative catalysis: Synthesis, characterization, and catalytic application. Applied Catalysis A: General[J]. 2007,
    317(1): 1-10.
    45. Anil K. Sinha, Kenichirou Suzuki. Preparation and Characterization of Novel Mesoporous Ceria-Titania. J. Phys. Chem. B[J]. 2005, 109(5): 1708-1714.
    46. Q. Yuan,Q. Liu,W.G. Song,W. Feng,W. L. Pu,L.D. Sun,Y.W. Zhang,C.H. Yan. Ordered Mesoporous Ce1-xZrxO2 Solid Solutions with Crystalline Walls. J. Am. Chem. Soc.[J]. 2007,
    129(21): 6698-6699.
    47. B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, D. Zhao. General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave-Digested Mesoporous Silica. Adv. Mater.[J]. 2003, 15(16): 1370-1374.
    48. E. Rossinyol, J. Arbiol, F. Peiro, A. Cornet, J.R. Morante, B. Tian, D. Zhao. Nanostructuredmetal oxides synthesized by hard template method for gas sensing applications. Sens. Actuators, B[J]. 2005, 109(1): 57-63.
    49. S.C. Laha, R. Ryoo. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem. Commun.[J]. 2003, 17: 2138-2139.
    50. W.H. Shen, X.P. Dong, Y.F. Zhu, H.R. Chen, J.L. Shi. Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property. Micropor. Mesopor. Mater.[J]. 2005, 85(1): 157-162.
    51. J. Roggenbuck, H. Sch?fer, T. Tsoncheva, C. Minchev, J. Hanss, M. Tiemann. Mesoporous CeO2: Synthesis by nanocasting, characterisation and catalytic properties. Micropor. Mesopor. Mater.[J]. 2007, 101(3): 335-341.
    52. D. Terribile, A. Trovarelli, J. Llorca, C.D. Leitenburg, G. Dolcetti. The synthesis and characteri2zation of mesoporous high surface area ceria prepared using a hybrid organic/inorganic route. Journal of catalysis[J]. 1998, 178(1): 299-307.
    53. S. Velu, M.P. Kapoor, S. Inagaki, K. Suzuki. Vapor phase hydrogenation of phenol over palladium supported on mesoporous CeO2 and ZrO2. Applied Catalysis A : General[J]. 2003, 245(2): 317-331.
    54. J.H. Zhang, Y.Q. Yang, J.M. Shen, J.A. Wang. Mesostructured CeO2 and Pd/CeO2 nanophases: templated synthesis , crystalline structure and catalytic properties. Journal of Molecular Catalysis A : Chemical[J]. 2005, 237(1~2): 182-190.
    55. M.L. Daniel, M.R. Kevin, A.M. Michael. Preparation of ordered mesoporous ceria with enhanced thermal stability. Journal of Materials Chemistry[J]. 2002, 12(4): 1207-1212.
    56. M. Lundberg, B. Skarman, L.R. Wallenberg. Crystallography and porosity effects of CO conversion on mesoporous CeO2. Micropor. Mesopor. Mater. [J]. 2004, 69(1): 187-195.
    57. I.M. Hung, H.P. Wang, W.H. Lai, K.Z. Fung, M.H. Hon. Preparation of mesoporous cerium oxide templated by tri-block copolymer for solid oxide fuel cell. Electrochimica Acta[J]. 2004, 50(1~2): 745-748.
    58. 杨儒, 刘建红, 李敏. 非表面活性剂合成 CeO2 介孔材料. 中国稀土学报[J]. 2004, 22(6):739-745.
    59. M. Yada, H. Kitamura, M. Machida, T. Kijima. Yttrium-Based Porous Materials Templated by Anionic Surfactant Assemblies. Inorg. Chem.[J]. 1998, 37(25): 6470-6475.
    60. M. Yada, M. Mihara, S. Mouri, M. Kuroki, T. Kijima. Rare Earth (Er, Tm, Yb, Lu) Oxide Nanotubes Templated by Dodecylsulfate Assemblies. Adv. Mater.[J]. 2002, 14(4): 309-313.
    61. M.L. Daniel, M.R. Kevin, A.M. Michael. Preparation of a series of mesoporous lanthanide oxides by a neutral supramolecular templating route. Journal of Materials Chemistry[J]. 2004, 14(13): 1976-1981.
    62. S.Thammanoon, C. Sumaeth, N. Supachai, Y. Susumu. A simple route utilizing surfactant-assisted templating sol–gel process for synthesis of mesoporous Dy2O3 nanocrystal. Journal of Colloid and Interface Science[J]. 2006, 300(1): 219-224.
    63. C.Yolanda, J.L.Beatriz, B. C′edric, B.Viana, H. Amenitsch, G. David, C.Sanchez1. Synthesis, characterization and optical properties of Eu2O3 mesoporous thin films. Nanotechnology[J]. 2007, 18(5): 055705.
    64. S.F. Wang, F. Gu, C.Z. Li, M.K. Lü. Synthesis of Mesoporous Eu2O3 Microspindles .Crystal Growth & Design[J]. 2007, 7(12): 2670-2674.
    65. J.H. He, W.S. Ma, S.Z. Tan, J.Q. Zhao. Study on surface modification of ultrafine inorganic antibacterial particles. Appl. Surf. Sci.[J]. 2005, 241(3): 279-286.
    66. 汤戈, 王振家. 无机抗菌材料的发展和应用. 材料科学与工程[J]. 2002, 20(2): 298-301.
    67. M. Rivera-Garza, M.T. Olguín, I. García-Sosa, D. Alcántara, G. Rodríguez-Fuentes. Silver supported on natural Mexican zeolite as an antibacterial material. Micropor. Mesopor. Mater.[J]. 2000, 39(3): 431-444.
    68. H.J. Jeon, S.C. Yi, S.G. Oh. Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterial[J]. 2003, 24(27): 4921-4928.
    69. 童云. 纳米 SiO2 载银抗菌剂的研究. 化学工程师[J]. 2005, 121(10): 06-08.
    70. 梁金生,金宗哲,王静,王毅敏. 纳米 SiO2 银抗菌剂的研究. 硅酸盐学报[J]. 1999, 27(5): 601-604.
    71. A. Oya, S. Yoshida, Y. Abe. Antibacterial activated carbon fiber derived from phenolic resincontaining silver nitrate. Carbon[J]. 1993, 31(1): 71-73.
    72. Y.L. Wang, Y.Z. Wan, X.H. Dong. Preparation and characterization of antibacterial viscose-based activated carbon fiber supporting silver. Carbon[J]. 1998, 36(11): 1567-1571.
    73. S.J. Park, Y.S. Jang. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J. Coll Inter Sci.[J]. 2003, 261(2): 238-243.
    74. Y.J. Han, J.M. Kim, G.D. Stucky. Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15. Chem. Mater.[J]. 2000, 12(8): 2068-2069.
    75. 陆春华, 倪亚茹, 许仲梓, 张其士. 无机抗菌材料及其抗菌机理. 南京工业大学学报[J]. 2003, 25(1): 107-110.
    76. W.P. Hsu, L. Ronnquist, E. Matijevic.Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium(IV). Langmuir[J]. 1988,4(1): 31-37.
    77. Z.X. Hao, B. Guo, H. Liu, L.H. Gan, Z.X. Xu, L.W. Chen. Synthesis of mesoporous silica using urea–formaldehyde resin as an active template. Micropor. Mesopor. Mater.[J]. 2006, 95(1): 350-359.
    78. L.Y. Xu, Z.G. Shi, Y.Q. Feng. A facile route to a silica monolith with ordered mesopores and tunable through pores by using hydrophilic urea formaldehyde resin as a template. Micropor. Mesopor. Mater.[J]. 2007, 98(1): 303-308.
    79. Z.G. Shi, L.Y. Xu, Y.Q. Feng. A new template for the synthesis of porous inorganic oxide monoliths. Journal of Non-Crystalline Solids[J]. 2006, 352(38): 4003-4007.
    80. C.W. Sun, J. Sun, G.L. Xiao, H.R. Zhang, X.P. Qiu, H. Li, L. Q. Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres. Chen. J. Phys. Chem. B[J]. 2006, 110(27): 13445-13452.
    81. K.B. Zhou, X. Wang, X.M. Sun, Q. Peng, Y.D. Li. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis[J]. 2005, 229(1): 206-212.
    82. C.C. Tang, Y. Bando, B.D. Liu, D.Golber. Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes. adv. Mater.[J]. 2005, 17(24): 3005-3009.
    83. M. Lundberg , S. Bjorn, C. Fredrik, L. R. Wallenberg. Mesoporous thin films of high-surface-area crystalline cerium dioxide. Micropor. Mesopor. Mater.[J]. 2002, 54(1): 97-103.
    84. M.C. Cabus-Llaurado, Y. Cesteros, F. Medina, P. Salagre, J.E. Sueiras. Microporous high-surface area layered CeO2. Micropor. Mesopor. Mater.[J]. 2006,100(1): 167-172.
    85. C.M. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai. Morphology Controllable Synthesis of Mesoporous CeO2 Nano- and Microstructures. Chem. Mater.[J]. 2005, 17(17): 4514-4522.
    86. Y.L. Zhang, Z.T. Kang, J. Dong, H. Abernathy, M.L. Liu. Self-assembly of cerium compound nanopetals via a hydrothermal process: Synthesis, formation mechanism and properties. Journal of Solid State Chemistry[J]. 2006, 179(6): 1733-1738.
    87. G.J. Zhang, Z.R. Shen, M. Liu, C.H. Guo, P.C. Sun, Z.Y. Yuan, B.H. Li, D.T. Ding, T.H. Chen. Synthesis and Characterization of Mesoporous Ceria with Hierarchical Nanoarchitecture Controlled by Amino Acids. J. Phys. Chem. B[J]. 2006,110(51): 25782-25790.
    88. L.S. Zhong, J.S. Hu, A.M. Cao, Q. Liu, W.G. Song, L.J. Wan. 3D Flowerlike Ceria Micro/Nanocomposite Structure and Its Application for Water Treatment and CO Removal. Chem. Mater.[J]. 2007, 19(7): 1648-1655.
    89. H.X. Li, Z.F. Bian, J. Zhu, D.Q. Zhang, G.S. Li, Y.N. Huo, H. Li, Y.F. Lu. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity J. Am. Chem. Soc.[J]. 2007, 129(27): 8406-8407.
    90. C.W. Guo, Y. Cao, S.H. Xie, W.L. Dai, K.N. Fan. Fabrication of mesoporous core-shell structured titania microspheres with hollow interiors, Chem. Commun.[J]. 2003, 6: 700-701.
    91. H.G. Yang, H.C. Zeng. Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. J. Phys. Chem. B[J]. 2004, 108(11): 3492-3495.
    92. B. Liu, H.C. Zeng. Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors. Small[J]. 2005, 1(5): 566-571.
    93. X.M. Sun, J.F. Liu, Y.D. Li. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chemistry - A European Journal[J]. 2006, 12(7): 2039-2047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700