自调温单元的制备工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对国内外现有自调温材料容易渗出相变工质材料、相变工质材料含量低等问题,采用有机/无机纳米复合法包覆相变工质材料制备自调温单元,研究优化制备工艺及性能评价方法。
     研究了微孔无机材料的吸附理论,提出微孔材料的吸附过程相当于工质材料对微孔的充填,其孔体积均为吸附空间。建立了一种以纳米孔道结构无机材料为载体,相变工质材料在微孔中以充填状态存在的自调温单元微观模型。应用该模型制备自调温单元,可利用材料的纳米尺寸效应和表面效应,在纳米孔道的内壁上形成吸附力的叠加,使微孔内部具有强的吸附势,可得到相变工质材料含量最大且性能稳定的自调温单元;该模型中微孔无机材料对相变工质材料的理论饱和吸附量为73.47%。
     在以上微孔吸附理论研究基础上,选用海泡石作为微孔无机材料、十二醇作为相变工质材料,对自调温单元的制备工艺参数进行了优化研究,包括:海泡石原料的选择、海泡石改性的影响、吸附温度的选择、PCM有机溶液初始浓度的选择、搅拌时间的确定、烘干方式的选择、海泡石含水量的确定,最终得到自调温单元的最佳制备工艺。
     建立了自调温单元的渗出稳定性检测以及调温效果、节能效果的评价方法。经检测,自调温单元的调温量为1.3℃时可节能12.69%。
     制备的自调温单元中工质材料最高含量可达67.96%,与理论值基本相符;其工质材料渗出比例≤1wt%,渗出稳定性达到要求。该自调温单元性能优良,在建筑材料领域具有广阔的应用前景。
This work aimed at the problems of phase change materials (PCMs) exudation and low content of PCMs, prepared temperature self-operating units (TSOUs) by the packaging method of Organic/Inorganic nano composite materials. Optimization of experimental parameters was carried out and the evaluation method of properties was studied to acquire TSOUs with the maximum PCM content and high stablity.
    The adsorption theory of micropore inorganic materials was studied to direct the preparation of TSOUs by Organic/Inorganic nano composite materials. The microstructure of TSOUs was established based on the theory that the micropore is filled during the process of micropore materials adsorption. According to the microstructure, the TSOUs are consist of two sections: the adsorbent of micropore inorganic materials and PCMs. TSOUs with the maximum PCM content and high stability may be prepared by making good use of the nano effect and surface effect of Organic/Inorganic nano composite materials. According to the microstructure, the saturated adsorption amount of micropore inorganic material is 73.47%.
    Directed by the adsorption theories, sepiolite was selected as micropore inorganic material and dodecanol was selected as PCM, and carried out the optimization of experimental parameters, such as selection of sepiolite minerals, sepiolite modification, absorption temperature, PCMs solution concentration, stirring time, drying mode, dehydration of sepiolite. By the optimization, the best conditions on TSOUs preparation were achieved.
    Measurement method of PCMs exudation was established to estimate the exudation of PCM in TSOUs, the temperature self-operating effects and energy saving effects of TSOUs was also examined. Results show that the energy saving effect of TSOUs reached 12.69% when the temperature was self-operated by 1.3 ℃
    The TSOUs with the maximum PCM content of 67.96% were prepared through this work, the value accord with the theoric adsorption amount. The PCMs exudation in TSOUs is less than lwt% that meets the requirement of stability. The TSOUs is stable enough to satisfy the demand of application in building materials, and it has broad foreground of application.
引文
[1] 何厚康,张瑜,闫卫东等.相变纤维的研究与发展.合成纤维,2002,3:18-21.
    [2] 张寅平,胡汉平,孔祥东.相变贮能-理论利应用,合肥:中国科学技术大学出版社,1996.
    [3] 张洪济.相变热传导.重庆:重庆大学出版社,1991.
    [4] 陈文振,程尚模,罗臻.水平椭圆管内相变材料接触熔化的分析.太阳能学报,1995,16(2).
    [5] 王剑峰,陈光明.理想均匀等速相变传热机理之研究.新能源,1999,21(8):1-6.
    [6] 张仁元,任振根,邹向等.多功能高效电热盘.CN 90108359.3,1990.
    [7] 张寅平,苏跃红,葛新石.共晶系相变材料融点及融解热的理论预测.中国科学技术大学学报,1995,25(4):474-478.
    [8] 余晓福,张正国,王世平.复合蓄热材料研究进展.新能源,1999,21(9):35-38.
    [9] 姜勇,丁恩勇,黎国康.相变储能材料的研究进展.广州化学,1993,(3):48-54.
    [10] 徐伟亮.常低温固-液相变材料的研制和应用.现代化工,1998,4:14-16.
    [11] 许建俊,华泽钊.Na_2SO_4·10H_2O溶液的特性及其在蓄冷空调技术中的应用.制冷学报,1997,1:1-6.
    [12] Salyer Ival O, Sircar A K. Phase change materials for heating and cooling of residential buildings and other applications. In: Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, 1990.
    [13] Salyer lval O. Polyolefin composites containing a phase change material. US 5053446, 1991.
    [14] 林怡辉,张正国,王世平.复合相变蓄能材料的研究与发展.新能源,2000,22(7):35-38.
    [15] Lorsch H G, Kaufman K W, Denton J C. Thermal Energy Storage for Solar Heating and Off-peak Air Conditioning. Energy Conversion, 1988, 151:1-8.
    [16] 司航.化工产品手册,第三版,有机化工原料.北京:化学工业出版社.1999.
    [17] 邢登清,迟广汕,阮德水等.多元醇二元体系固—固相变贮热的研究.太阳能学报,1995,16(2):131-137.
    [18] 阮德水,张道圣,张太平等.固—固相变贮热的研究.华中师范大学学报(自然科学版),1995,29(2):193-196.
    [19] Marks S. The effect of crystal size on the thermal energy storage capacity of thickened Glaubers' salt. Solar Energy, 1983, 30: 45-49.
    [20] Schroeder J, Gawron K. Latent heat storage. Energy Reaearch, 5: 103-109.
    [21] Benson D K. Solid state phase materials. 10th Energy Technology Conference, 1980, 712-720.
    [22] Sei Mikio, Kaneoka Kenji, Urano Tadashi, et al. Oily matter containing heat storage material and manufacturing method thereof. EP0481564A2, 1991.
    [23] Hatfield, James C. Encapsulation of phase change materials. US 4708812, 1987.
    
    
    [24] Hawes D W, Feldman D. Absorption of phase change materials in concrete. Solar energy materials and solar cells, 1992, 27(2): 91-101.
    [25] Salyer, Ival O. Building products incorporating phase change materials and method of making same. US 5755216, 1998.
    [26] Davis D A, Hart R L, Work D E, et al. Macrocapsules containing microencapsulated phase change materials. US 20020061954, 2002.
    [27] 吴子钊,梁金生,梁广川等.自调温功能材料.新型建筑材料,2003,4:44-47.
    [28] Royon L. Investigation of heat transfer in a polymeric phase-change material for low level heat storage. Fuel and Energy Abstracts, 1997, 38(4): 260.
    [29] 张正国,方晓明,陈中华.有机相变物/膨润土纳米复合相变储热建筑材料制备方法.CN 1327024A,2001.
    [30] 马芳梅.相变物质储能建筑材料性质研究的进展.新型建筑材料,1997,8:40-42.
    [31] 王春莹,张兴祥.调温微胶囊的研制.印染,2002,6:13-17.
    [32] 张正国,陈中华,方晓明等.有机—无机纳米复合相变储能材料的制备方法.CN 1241607,2000.
    [33] M Razvigoroa, N Budinova, V Minkova. Purification of water by activated carbons from apricot stones lignites and anthracite. Water research, 1998, 32(7): 2135-2139.
    [34] M L Bao, O Griffini, D Santianni, et al. Removal of bromate ion from water using granular activated carbon. Water research, 1999, 33(13): 2959-2970.
    [35] Hu Jian-Ying, Alzawa, Takako, et al. Adsorptive characteristics of ionogenic aromatic pesticides in water on powered activated carbon. Water Research, 1998, 32(9): 2593-2600.
    [36] Chen, Paris Honglay. Removing aquatic organic substances by anion-exchange resin and activated carbon. Environment International, 1999, 25(5): 655-662.
    [37] Shih Tom C, Wanqpaichitr Medhi, Suffet Mel. Evaluation of granular activated carbon technology for the removal of methyl tertiary butyl ether (MTBE) from drinking water. Water Research, 2003, 37(2): 375-385.
    [38] I V Sheveleva, A V Vojt, V Glushchenko. Adsorption of aromatic amines from solutions on the not charged and polarized surface of carbon fibres. Khimiya I Tekhnologiya Vody, 1991, 13(4): 312-316.
    [39] Yu Jya-Jyun, Chou shinn-Yow. Contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption. Chemosphere, 2000, 41: 371-378.
    [40] Lei Li, A Patricia Quinlivan, et al. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon, 2002, 40: 2085-2100.
    [41] 陈德放,白韶英.工业废水处理材料一褐煤.环境工程,1996,14(5):17-18.
    [42] 张兆春.长焰煤净化印染污水的研究.煤炭分析及利用,1994,9(2):25-29.
    [43] 刘振学.活化长焰煤处理含钒废水的研究.煤炭分析及利用,1998,8(4):36-38.
    [44] 邓晓虎,乐英红.K_2CO_3活化煤矸石制备活性炭吸附剂.应用化学,1997,14(3):2-5.
    [45] Ceyhan Ozlem Guler, Hulya Guler Raff. Adsorptlon mechanisms of phenol and methylphenols on organoclays. Adsorption Science and Technology, 1999, 17(6): 469-477.
    [46] M R Stockmeyer. Adsorption of organic compounds on organophilic bentonites. Applied Clay Science, 1991, 6(1): 39-57.
    
    
    [47] N Lemeth-Konda, P Csokan, et al. Sorption behaviour of acetocnlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil. Chemosphere, 2002, 48(5): 545-552.
    [48] 孙家寿.膨润土吸附剂对水中酚吸附性能研究.环境保护科学,1998,24(1):21-24.
    [49] Giora Rytwo, Dvora Tropp, Carina Serban. Adsorption of diquat, paraquat and methyl green on sepiolite: experimental results and model calculations. Appl Clay Sci, 2002, 20: 273-282.
    [50] Caturla F, Molina-Sabio M, Rodriguez-Reinoso F. Adsorption-desorption of water vapor by natural and heat-treated sepiolite in ambient air. Appl Clay Sci, 1999, 15: 367-380.
    [51] 周永强,李青山,韩长菊等.海泡石的组成、结构、性质及其应用.化工时刊,1999,12:7-10.
    [52] Alvarez A. Sepiolite: properties and uses. Developments in sedimentology, Amsterdam: Elsevier, 1984: 253-285.
    [53] Lazaro M J, Moliner R, Domeno C, et al. Low-cost sorbents for demetalisation of waste oils via pyrolysis. Journal of Analytical and Applied Pyrolysis, 2000, 57:119-131.
    [54] Halil Ibrahim Unal, Baki Erdogan. The use of sepiolite for decoiorization of sugar juice. Appl Clay Sci, 1998, 12: 419-429.
    [55] 宋秀芹,马建峰,杨华丽等.海泡石澄清作用在菜汁制作中的应用.化学世界,1996,37(7):349.
    [56] 曹声春,杨常礼,彭峰等.Ni-海泡石催化剂的热稳定性和抗毒型.催化学报,1995,16(4):308.
    [57] Jiang Qi, Huang Zhongtao, Deng Guokai, et al. A novel seport sepiolite of group Ⅷ: Metal catalyst for CO_2 Hydrogenation. Chinese Journal of Catalysis, 1995, 16(5): 357.
    [58] Sugiura M. Adsorption of ammonia by sepiolite in ambient air. Clay Science, 1991, 8: 87-100.
    [59] Brigatti Maria Franca, Franchini Giancarlo, Frigieri Paola, et al. Treatment of industrial wastewater using zeolitite and sepiolite, natural microporous materials. Canadian journal of chemical engineering, 1999, 77(1): 163-168.
    [60] Blanca Casal, Jesus Merino, Jose-Maria Serratosa, et al. Sepiolite-based materials for the photo and thermal-stabilization of pesticides. Applied Clay Science, 2001, 18(5): 245-254.
    [61] Aramendia Maria, Borou Victoriano, Corredor Juan, et al. Characterization of the struture and catalytic activity of Pt-sepiolite catalysts. Journal of colloid and interface science, 2000, 227(2):469-475.
    [62] Salyer, Ival O. Heat storage system utilizing phase materials government. US 6116330, 2000.
    [1] 刘振宇,郑经堂,刘平光等.粘胶活性炭纤维的吸附性能及其孔结构表征.合成纤维工业,1998,21(2):24-26.
    [2] 杨全红,郑经堂,王茂章等.微孔炭的纳米孔结构和表面微结构.材料研究学报,2000,14(2):113-122.
    [3] 陈蕾,唐妹娟.吸附技术及其应用.化工设计通讯,2002,28(3):56-60.
    [4] 吴志超,麦穗海,杨彩凤等.沸石吸附去除城市污水厂初沉池出水中氨氮的研究.环境污染治理技术与设备,2002,3(11):47-49.
    [5] M. Jaroniec, R.Madey. Physical Adsorption on Heterogeneous Solids. 北京:化学工业出版社,1997.
    [6] 天津大学物理化学教研室.物理化学.北京:高等教育出版社,1993.
    [7] 冯孝庭.吸附分离技术.北京:化学工业出版社,2000.
    [8] 杨庆贤,卢学栋.气体吸附理论的研究.应用科学学报,1998,16(6):191-199.
    [9] 严继民,张启元,高敬琮.吸附与凝聚,北京:科学出版社,1986.
    
    
    [10] 张正国,陈中华,方晓明等.有机—无机纳米复合相变储能材料的制备方法.CN1241607,2000.
    [11] 张正国,方晓明,陈中华.有机相变物/膨润土纳米复合相变储热建筑材料制各方法.CN 1327024A,2001.
    [12] Royon. L, et al. Investigation of heat transfer in a polymeric phase-change material for low level heat storage. Fuel and Energy Abstracts, 1997, 38(4): 260.
    [13] 刘振宁,郑经堂,王茂章等.PAN基ACF的孔结构表征.材料研究学报,1999,13(5):477-482.
    [1] Sabah E, Turan M, Celik M S. Adsorption mechanism of cationic surfactants onto acid- and heat-activated sepiolites. Water Research, 2002, 36: 3957-3964.
    [2] Hernandez LG, Rueda LI, Diaz AR, et al. Preparation of amorphous silica by acid dissolution of sepiolite: kinetic and textural study. J Colloid Interface Sci, 1986, 109: 150-60.
    [3] 李松军,罗来涛.海泡石的改性研究.江西科学,2001,19(1):61-66.
    [4] Imre Dekany, Laszlo Turi, Antonio Fonseca, et al. The structure of acid treated sepiolites: small-angle X-ray scattering and multi MAS-NMR investigations. Appl Clay Sci, 1999, 14: 141-160.
    [5] Kaasinen H. The absorption of phase change substances into commonly used building materials. Solar energy materials and solar cells, 1992, 27(2): 173-179.
    [6] Hawes D W, Feldman D. Absorption of phase change materials in concrete. Solar energy materials and solar cells, 1992, 27(2): 91-101.
    [1] Sei Mikio, Kaneoka Kenji, Urano Tadashi, et al. Oily matter containing heat storage material and manufacturing method thereof. EP, 0481564A2. 1991.
    [2] Hawes D W, Banu D, Feldman D. The stability of phase change materials in concrete. Solar energy materials and solar cells, 1992, 27(2): 103-118.
    [3] 蒋刚,王钊,邱金营.国产滤纸吸力-含水量关系率定曲线的研究.岩土力学,2000,21(1):72-75.
    [4] T.K.修伍德,R.L.皮克福特,C.R.威尔基.传质学.北京:化学工业出版社,1988.
    [5] 李汝辉.传质学基础.北京:北京航空学院山版社,1987.
    [6] Thorncroft G E, Gunnerson, Fred S. Performance evaluation of a solid state phase change material for thermal storage applications. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1991, 4: 285-289.
    [7] Hawlader, Mna, Uddin, et al. Preparation and evaluation of a novel solar storage material: microencapsulated paraffin. International Journal of Solar Energy, 2000, 20(4): 227-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700