聚合物保温砂浆建筑节能体系的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前我国能源供求紧张矛盾日益突出,建筑消耗在社会能耗中占了很大的比例,实施建筑节能、研制开发新型高性能建筑节能材料具有十分重要的意义。本文开展了新型聚合物保温砂浆建筑节能体系研制开发和新型相变储能保温干粉砂浆材料的基础研究。
     采用热雾喷涂法制备了聚合物改性的膨胀珍珠岩,改性的膨胀珍珠岩吸水率40分钟时保持在20%左右,而普通膨胀珍珠岩达到饱和吸水率;强度也有了明显提高,运输过程中常出现容易破碎的问题得到了基本解决。同时热雾喷涂法简易可行,适合于工业中进行大规模连续生产。
     研究膨胀珍珠岩、可再分散乳胶粉、聚丙烯短纤维和纤维素醚含量和水泥的用量(水泥/水泥粉煤灰总量)对聚合物保温砂浆性能的影响,开发出了新型聚合物保温砂浆。结果表明:新型聚合物保温砂浆与原聚合物保温砂浆相比,导热系数由0.108w/(m·K)下降到0.082w/(m·K);粘结强度达到0.52MPa,符合建筑工程饰面砖粘结强度不应小于0.4MPa的要求;压折比由2.89下降1.83;同时具有良好的保水性和施工性能。
     研究了可再分散乳胶粉和聚丙烯短纤维对抗裂砂浆性能的影响,研究结果表明:增加可再分散乳胶粉的用量并且引入聚丙烯短纤维,抗裂砂浆的压折比由3.31下降到2.73,抗裂性能有了很大的提高。
     采用两步法研究了新型相变储能保温干粉砂浆:首先应用减压吸附工艺制备了相变膨胀珍珠岩;然后以相变珍珠岩为骨料,采用普通聚合物砂浆的配方制备相变储能保温干粉砂浆。研究表明:减压吸附工艺有效的把石蜡引入膨胀珍珠岩中,石蜡最大掺入量可达到200%。涂料包覆法和对石蜡进行乳化的乳化法能较好的解决了石蜡较大掺量时渗出的问题,涂料包覆法处理相变膨胀珍珠岩石蜡含量可以达到100%仍没出现渗出现象,乳化法可以达到70%,确定了采用经济可行的乳化法进行相变膨胀珍珠岩骨料的制备。
     采用相变储能干粉砂浆制备的相变储能板材具有比热容和蓄热系数大,导热系数较小的特点:含有70%乳化石蜡的相变储能板材蓄热系数为比空白板材高出60%;导热系数保持在0.105(W/m·K);测试温度为20℃~30℃时,比热容比空白板材高出近4倍。
     以相变储能板材制备的相变储能箱体具有显著的调温性能和工作稳定性:当温度在20℃~60℃波动时,相变储能箱体相对普通箱体可以降低8.6℃波动;相变储能箱体经过了400个循环测试,仍保持良好的调温效果,观察相变板材外壁并未发现有石蜡渗出,相变储能板材完好如初。
In recent year, the situation of energy supply has become more and more serious in China and energy consumption for buildings takes a great part of energy consumption. Both implementing building energy savings and researching energy savings product of high performance are necessary. New polymer mortar for Building Heat Preservation System and phase change mortar were developed in this thesis.
    Expanded perlite modified by polymer was prepared by spraying. The water absorption ratio of the polymer-modified expanded perlite keeped under 20% in 30 min while the expanded perlite unmodified was nearly 100%. The intension of the expanded perlite had also been improved and the problem of frangibility was solved. Meanwhile the spraying technics was feasible to be applied in industry.
    The effects of expanded pertile, polymer latex, polypropylene fiber, cellulose ether and cement (the ratio cement to cement and fly ash) on polymer-mortar were studied and a new polymer-mortar was prepared. Results showed that compared to the former polymer-mortar, the new polymer-mortar showed good performances. For example, thermal conductivity was reduced from 0.108 W/(m·K) to 0.082 W/(m·K), ratio of compressive strength to flexural strength from 2.89 to 1.83, bond strength was 0.52 MPa and water preserving capability was excellent.
    The effects of polymer latex and polypropylene fiber on the polymer-mortar were studied. Results showed that ratio of compressive strength to flexural strength of anti-crack mortar reduced from 3.31 to 2.73 after increasing the content of polymer latex and using polypropylene fiber. Crack resistance was also improved.
    Phase change mortar was prepared by two-step means. First, phase change expanded pertile was prepared by the means of decompressing adsorption, and then phase change mortar was prepared with expanded
    pertile as aggregates. Results showed that the phase change material olefin was adsorbed into the expanded pertile and the maximal content of adsorption was near 200%. Both coating and emulsification could be successfully used to solve the leakage problem when content of olefin was high, and content of the olefin reached 100% without leakage by coating and 70% by emulsification. Emulsification was used to prepare aggregate for its relative low cost.
    Specific heat capacity and coefficient of heat accumulation of phase change board for energy saving prepared by phase change mortar was high and the thermal conductivity was low. Coefficient of heat accumulation of phase change board of 70% emulsification olefin was 60% higher than that without olefin, the thermal conductivity was 0.105(W/m·K) and when test temperature was between 20℃ and 30℃, specific heat capacity is 4 times more than that without olefin.
    Phase change box prepared with Phase change board showed excellent temperature-regulating capability and stability. The temperature in phase change mortar box with phase change mortar board has a fluctuation of 8.6 ℃ less than that without phase change mortar board. The phase change board was stable and didn't show any leakage after testing 400 cycles.
引文
[1] 国家建设部,建设部能源“十五”规划纲要.施工技术,2002,31:1-6
    [2] 华虹,陈孚江,国外建筑节能与节能技术新发展.华中科技大学学报,2006,23:148-152
    [3] 江亿,我国建筑能耗趋势与节能重点.建设科技,2006
    [4] 王清勤,国际建筑节能经验对我国建筑节能发展的启发.节能,2006,1:8-10
    [5] 张轶,中外建筑节能情况对比.节能与环保,2005,4:12-14
    [6] 华虹,陈孚江,国内建筑节能与节能技术新发展.华中科技大学学报,2006.5:148-151
    [7] Jamieson Valerie, Energy savings go through the roof [J]. Physics World, 2002, 15(7): 32
    [8] Cusido J A, Eecbrick, A New Ceramic Material for Solar Buildings[J]. Renewable Energy, 1996,8(125):327~330
    [9] Dariusz Heim, Heim, Joe A, Clarke, Numerical modeling and thermal simulation of PCM-gypsum composites with ESP[J].Energy and buildings, 2004,36:795~805
    [10] 王培铭,许绮,Stark j,桥面用丁苯乳液改性水泥砂浆的力学性能.建筑材料学报,2001,(4):1-6
    [11] Ohama Y. Polymer-based admixtures. Cement and concrete composites, 1998, 20:189~212
    [12] 钟世云,陈志源,刘雪莲,聚合物乳液共混物改性砂浆性能的研究.混凝土与水泥制品,2000,(1):18-20
    [13] Sakai E, Sugita J, Composite mechanism of polymer modified cement. Cement and concrete Research, 1995, 25(1): 127~135
    [14] Gao J M, Qian C X, Wang B, Morino K, Experimental study on properties of polymer-modified cement mortars with silica fume. Cement and Concrete Research.2002,32(1):41~45
    [15] Schulze J, Influence of water-cement ratio and cement content on the properties of polymer-modified mortars. Cement and Concrete Research 1999,29:999~915
    [16] Kim J H, Robertson R E, Effects of polyvinyl alcohol on aggregate-paste bond Strength and the interfacial transition zone. Advanced Cement based Materials, 1998,(8):66~76
    [17] 买淑芳,混凝土混合物复合材料极其应用.北京:科学技术文献出版社,1996
    [18] Saija L M, Waterproofing of Portland cement mortars with a specially designed polyacrylic latex. Cement and Concrete Research, 1995, 25(3): 503~509
    [19] Ohama Y, Masaki S, Shiroishida K, Comparison of performance of polymer dispersions for cement modifiers. Proceeding of the 1980 European Conference, 1980:103~104
    [20] Ohama Y, Masaki S, Shiroishida K, Weatherability of polymer-modified mortars though ten year outdoor exposure. Proceedings of the fourth International Congress on Polymers in Concrete, 1984, 61~67
    [21] Ohama Y, Adhesion durability of polymer-modified mortars through ten year outdoor exposure. Proceedings of the Third International Concress on Polymers in concrete, 1982, 1: 209~210
    [22] Ohama Y, Polymer-based admixtures. Cement and concrete Composites, 1998, 20:189~212
    [23] Puterman M, Malorny W, Some doubts and ideas on the microstructure formation of PCC in Sandrolini F(ed.). Proceedings of IX International Congress on Polymers in Concrete, Bologna, 1998, 166~178
    [24] 黄继红,吕子义,节能建筑中应用保温砂浆的性能分析.工业建筑,2005,35:724-726
    [25] Zalba B, Marin J M, Cabeza L F, et al, Review on thermal energy storage with phase change materials heat analysis and applications[J]. Applied Thermal Engineering, 2003, 23:251~83
    [26] Hasnain, Energy convers.Mgmt, 1998, 39(11): 1127~1138
    [27] 王信刚,马保国,王凯,李相国,郝先成,相变储能建筑材料的研究进展.节能,2005,12:10-14
    [28] 张东,周剑敏,吴科如,相变储能建筑材料的分析与研究.保温材料与建筑节能,2003,9:42-44
    [29] 李爱菊等,定形相变储能材料的研究进展及其应用.技术新工艺,2004,2:45-48
    [30] Carl Vener, Phase Change Thermal Energy Storage. PHD. Thesis
    [31] Feldman, banu, Themochimica Acta. 1996(267): 253~251
    [32] 孙建忠,吴子钊,建材用相变工质材料渗出程度评价方法的研究[J].保温材料与建筑节能,2004(7):75-75
    [33] Takeshi, Konda, Research on the thermal storage of PCM Wallboard
    [34] 张东,周剑敏,吴科如,李宗津,颗粒型相变储能复合材料.复合材料学报,2004,5:103-109
    [35] Lane G A, Solar Heat Storage: Latent Heat Materi2al: Vol. 2[M]. Boca Raton: CRC press Inc, 1986
    [36] Hawes D W, Feldman D, Absorption of Phase Change Materials in Concrete [J]. Solar Energy Materials and Solar Cells, 1992, 27(2): 91~101
    [37] Hadjieva M, Stoykov R, Filipova T Z. Composite Salt-hydrate Concrete System for Building Energy Storage [J]. Renew able Energy, 2000, 19(1): 111~115
    [38] Lee T, Hawes D W, Banu D, et al, Control Aspects Latent Heat Storage and Recovering in Concrete[J]. Solar Energy Materials and Solar Cells, 2000, 62: 217~237
    [39] Kurklu A, Energy Storage Applications in Greenhouses by means of Phase Change Materials (PCMs). Renewable Energy, 1998, 13(1): 89~103
    [40] 张寅平,胡汉平,孔祥冬等,相变贮能——理论和应用[M].合肥:中国科学技术大学出版社,1996,308-310
    [1] 陶吉林,徐亚宏,低温用憎水膨胀珍珠岩(珠光砂)的性能与应用[J].深冷技术,2005,(2):34-35
    [2] 黄月文,刘伟区,水泥混凝土中的高性能高分子界面活性剂[J].广州化学,2005,30(1):39—45
    [3] Su Z, Larbri J A, Bijen J M, Interface between polymer-modified cement paste and aggregate. Cement and concrete Research, 1991,21(6): 983~990
    [4] Afridi M U K, Ohama Y, Iqbal M Z, Demura K, Behaviour of Ca(OH)_2 in polymer-modified mortars. Int. J. Cem, Compos. Lightweight Concrete, 1989, 11: 235~244
    [5] Afridi M U K, Ohama Y, Iqbal M Z. Demura K, Morphology of Ca(OH)_2 in polymer-modified mortars and effect of freezing and thawing action on its stability. Cem. Concr. Compos, 1990, 12:163~173
    [6] Yoshihiko Ohama, Handbook of Polymer Modified Concrete and Mortars. USA Noyes Publications, 1995
    [7] 龚益,沈荣熹,李青海,杜拉纤维在土建工程中的应用.机械工业出版社
    [8] 小林一辅,纤维补强混凝土[M].邹崇富译.北京:中国铁道出版社,1985
    [9] 史淑兰,Jakob Wolfisberg,夏哗煦,可再分散胶粉及憎水性添加剂在薄抹灰外墙外保温系统中的应用.新型建筑材料,2004,(3):50-53
    [10] 马保国,赫先成,张琴,外墙外保温抗裂砂浆抗裂性能研究.新型建筑材料,2006,(3):61-64
    [11] 刘丽芳,王培铭,杨晓杰,纤维参数对水泥砂浆断裂韧性的影响.混凝土与水泥制品,2006,1:40-43
    [1] Feldman D, Banu D, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gyp sum wallboard [J]. Solar Energy Material, 1991, 22:231~242
    [2] 吴涛,孙德军,石蜡微小乳状液WPE的合成及其在分散体系中的应用研究.山东大学学报(理学版),2006,8:141-144
    [3] 黄继红,吕子义,郑卫峰,节能建筑中应用保温砂浆的性能分析.工业建筑,005,35:724-726
    [4] Stovall T K, What are the potential Benefits of including latent storage in common wallboard [J]. Transactions of the ASME, 1995, 117:318~325
    [5] Rudd A F, Phase change material wallboard for distributed thermal storage in buildings [J]. A Share Transactions Research, 1993,339~346
    [6] Farid M M, Khudhair A M, Razack S A, et al, A review on phase change energy storage materials and applications [J]. A Share Transactions Research, 1993, 339~346
    [7] He B, Martin V, Setterwall F, Phase transition temperature ranges and storage density of paraffin wax phase change materials [J].Energy, 2004,29:1785~1804

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700