对冲火焰条件下煤粉燃烧特性的实验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在煤粉燃烧过程和各种不同的燃煤应用系统中,煤粉从受热升温到着火燃烧的早期过程,往往经历着复杂的流场条件,使得煤粉的运动出现穿越火焰面的情况,从而使着火特性发生改变。然而受限于已有实验方法和观测条件的困难,尚未见到针对这一过程的相关报道,对其开展探索可进一步推动煤燃烧研究,提供新的视角和途径。
     针对上述科学问题,本文发展并建立了一套适用于煤燃烧研究的加压对冲火焰实验系统。设计的燃烧室可将反应气体预热至最高1600K,可调压力范围0.06-1.50MPa;基于碰撞解聚原理,自行研制了全新的微量给粉系统,具备50mg/min量级、连续1h以上不受载气流量影响的稳定给粉能力,进而实现了对冲火焰条件下煤粉的定点引入方法;研制了燃煤颗粒物采样枪;建立了SiC纤维辐射测温装置,测量了平面火焰的法向温度分布,误差小于±30K;自主开发了微机平台全参数测控软件,加快了对冲燃烧系统的启动速度,常用工况转换时的非稳态过程小于10s,极大提高了实验效率和安全性。该系统可广泛应用于对冲火焰条件下的气固相反应研究。
     随后研究了各子系统及测量方法的特点,对实验系统中煤粉给粉过程对测量结果的影响、以及ICCD光学图像拍摄方法和统计原理进行了详细分析,对完善燃煤对冲实验方法具有重要的指导作用和方法学意义。
     系统上首先开展了合成气组分影响其点火特性的实验研究,通过与国际上相关报道的数据比对,验证了系统的可靠性与测量精度。随后开展了对冲火焰中煤粉颗粒穿越火焰面的行为特性实验研究。利用先进的ICCD光学测量方法对火焰结构及煤粉热解、着火过程进行观测和表征。在此基础上建立了对冲火焰条件下煤粉热解和着火特性实验研究的方法和评价指标。
     最后建立了对冲火焰中单颗粒煤粉运动和着火特性的瞬态模型,分析了粒径、初速度、火焰温度等因素对煤粉在对冲火焰中的行为的影响,并计算不同粒径煤粉在不同火焰条件下的着火特性,对实验研究的发展具有指导意义。
     本文在新开发的燃煤对冲实验系统及实验方法基础上,对煤粉穿越火焰面的行为进行了观测和分析,为煤燃烧研究提供了新视角和重要数据。
The pyrolysis and ignition of coal, as initial steps of coal combustion, havesignificant effects on the subsequent processes such as char combustion,crushing, fine particle formation and emission of pollutants. Many of thequantitative investigations were unable to be done in the past. However, withthe continuous developments of new experimental methods and techniques, theyare being introduced into the investigations, and become a major driving forceto promote the development of coal pyrolysis and ignition research. Until now,most researchers only considered the process of coal particle pyrolysis andignition under the flameless, unstrained conditions. In fact, the coal particlescross the flame sheet frequently due to particle inertia. The ignition process ofprecipitating volatile gas phase can also be impacted by the strain rate of theflame. As a result, the ignition characteristics change. So far few literatureswere reported on the transport and combustion of pulverized coal aroundstrained flames. The aim of this work is to explore the behavior of dispersedcoal particles in gaseous strained flames by using several novel methods andtechniques.
     In this thesis, a novel counterflow flame apparatus that can meet therequirement of heterogeneous combustion of pulverized coal particles wasdeveloped and erected. The combustion chamber was designed to be heated upto1600K and at pressures from0.06MPa to1.50MPa. A new powder feedingsystem was developed based on the fundamental of collision theory, achieving aperfect dispersion of coal particles in carrier flows. The coal particle can becarried to the flames at a flow rate around50mg/min. The stability of the coalparticle introducing system is good during one hour even when the flow rate ofthe carrying gases change. This technology solved the problems of introducingthe pulverized coal to a specified position in the flame. A set of device formeasuring the normal direction of the temperature profile of flames was alsoestablished by using the thin-filament pyrometry technology with an error lessthan±30K. A data acquisition and control system was developed to monitor all the parameters to improve the safety and efficiency of the apparatus. Theconterflow flame experimental system can be started quickly and theexperimental condition can also be switched to another state within10s. Thissystem can be widely used to investigate the gas-solid phase reactions incounterflow flames.
     The experimental method and performance of each sub-system was studied.The effects of the coal particle seeder on the measurments were discussed. Themethod of ICCD optical technology and calculation theory were analyzed indetails. The proposed methods are significantly important in experimentalinvestigation of pulverized coal combustion in counterflow flames.
     An experiment of ignition temperature of different synthesis gases wasused to verify the reliability and accuracy of the counterflow flame system.Then the experimental research of the pulverized coal ignition in counterflowflames was carried out. The effects of the particle size and flame temperature onthe ignition characteristics were investigated. With the advanced ICCD opticaltechnology, the behavior of coal particles across the counterflow flame wasobserved. The flame structure, the particle pyrolysis and the ignition processwere also measured. Based on the results, an experimental method andevaluation guide line for pulverized coal combustion pyrolysis and ignitioncharacteristics in counterflow flames was proposed. A transient ignition modelof single coal particle in one-dimensional reaction zone of counterflow flamewas developed to calculate the particle temperature, density and productionchanges during across the flame. The effects on the pyrolysis mechanism wereanalyzed.
     In conclusion, the behavior of the coal particle across the gaseous strainedflame was studied on a coal combustion counterflow flame system. Thisresearch provides a new approach for the coal combustion investigation.
引文
[1] Solomon P R, Fletcher T H and Pugmire R J. Progress in Coal Pyrolysis. Fuel,1993,72(5):587-597.
    [2] Serio M A, Hamblen D G, Markham J R, et al. Kinetics of Volatile Product Evolution in CoalPyrolysis-Experiment and Theory. Energy&Fuels,1987,1(2):138-152.
    [3] Solomon P R and Fletcher T H. Impact of Coal Pyrolysis on Combustion. in25th Symposium(International) on Combustion.1994. Elsevier,25(1):463-474.
    [4] Williams A, Backreedy R, Habib R, et al. Modelling Coal Combustion: The Current Position.Fuel,2002,81(5):605-618.
    [5] Wang W, Zhang J, Yang S, et al. Experimental Study on the Angle of Repose of PulverizedCoal. Particuology,2010,8(5):482-485.
    [6]常爱英.煤粉着火特性试验研究[硕士学位论文].杭州:浙江大学,2002.
    [7] Zhu M, Zhang H, Tang G, et al. Ignition of Single Coal Particle in a Hot Furnace underNormal-and Micro-Gravity Condition. Proc Combust Inst,2009,32:2029-2035.
    [8] Huang Z, Lu J, Zhang H, et al., Research on the Anthracite Pyrolysis Property byThermogravimetric Analysis, in2009Asia-Pacific Power and Energy Engineering Conference.2009. p.311-313.
    [9] Huang Z, Zhang J, Zhao Y, et al. Kinetic Studies of Char Gasification by Steam and CO2in thePresence of H-2and Co. Fuel Process Technol,2010,91(8):843-847.
    [10] Sung Y M, Moon C E, Kim J R, et al. Influence of Pulverized Coal Properties on Heat ReleaseRegion in Turbulent Jet Pulverized Coal Flames. Exp Therm Fluid Sci,2011,35(4):694-699.
    [11]应芝,张彦威,葛立超等.加压O2/CO2气氛下煤粉着火特性的实验研究.中国电机工程学报,2013,33(5):21-26.
    [12] Tang G-t, Zhang H, Zhu M-m, et al. Experimental Study on the Ignition Process of Single CoalParticles at Microgravity. Microgravity Sci Technol,2010,22(1):27-35.
    [13] Wang T, Yang H, Wu Y, et al. Experimental Study on the Effects of Chemical and MineralComponents on the Attrition Characteristics of Coal Ashes for Fluidized Bed Boilers. Energy&Fuels,2012,26(2):990-994.
    [14] Wagner S, Klein M, Kathrotia T, et al. Absolute, Spatially Resolved, in Situ Co Profiles inAtmospheric Laminar Counter-Flow Diffusion Flames Using2.3Mu M Tdlas. Applied PhysicsB-Lasers and Optics,2012,109(3):533-540.
    [15] Law C K, Zhu D L and Yu G. Propagation and Extinction of Stretched Premixed Flames. in21st Symposium (International) on Combustion.1988. Elsevier,21(1):1419-1426.
    [16] Im H G, Bechtold J K and Law C K. Counterflow Diffusion Flames with Unsteady StrainRates. Combust Sci Technol,1995,106(4-6):345-361.
    [17] Liu S L, Hewson J C, Chen J H, et al. Effects of Strain Rate on High-Pressure NonpremixedN-Heptane Autoignition in Counterflow. Combust Flame,2004,137(3):320-339.
    [18] Kreutz T G and Law C K. Ignition in Nonpremixed Counterflowing Hydrogen Versus HeatedAir: Computational Study with Detailed Chemistry. Combust Flame,1996,104(1-2):157-175.
    [19] Li S, Marshall J S, Liu G, et al. Adhesive Particulate Flow: The Discrete-Element Method andIts Application in Energy and Environmental Engineering. Prog Energy Combust Sci,2011,37(6):633-668.
    [20] Zhang Y, Li S, Yan W, et al. Nanoparticle Transport and Deposition in Boundary Layer ofStagnation-Point Premixed Flames. Powder Technol,2012,227:24-34.
    [21] Zhang Y, Li S, Yan W, et al. Role of Dipole-Dipole Interaction on Enhancing BrownianCoagulation of Charge-Neutral Nanoparticles in the Free Molecular Regime. J Chem Phys,2011,134(8).
    [22] Zhuo J, Li S, Duan L, et al. Effect of Phosphorus Transformation on the Reduction ofParticulate Matter Formation During Co-Combustion of Coal and Sewage Sludge. Energy&Fuels,2012,26(6):3162-3166.
    [23]卓建坤.煤粉燃烧过程亚微米颗粒形成机理的实验研究.[博士学位论文].北京:清华大学,2008.
    [24]姚强,周俊虎,涂建华等.煤粉群非稳态统一着火模型.浙江大学学报,1996,30(4):446-454.
    [25]赵云华,何玉荣,陆慧林等.煤粉颗粒群着火和燃烧过程的数值模拟.燃烧科学与技术,2007,13(2):107-112.
    [26]周怀春,方庆艳,张志国.煤粉射流吸热着火稳燃机理及新型稳燃技术的探讨.动力工程2006,26(1):101-107.
    [27]齐永锋.煤粉再燃中着火与脱硝相互作用的实验研究及其模化.[博士学位论文].上海:上海交通大学,2009.
    [28] Faraday M and Lyell C. On Explosions in Coal Mines. Philos. Mag,1845,26:16-35.
    [29] Essenhigh R H, Misra M K and Shaw D W. Ignition of Coal Particles-a Review. CombustFlame,1989,77(1):3-30.
    [30] Essenhigh R H. On the Inter-Influence of Classieal Heteregenous Combustion Research andRelated Aerospace Problems. in11Symposium on Combustion.1967.291-305.
    [31] Howard J B and Essenhig.Rh. Pyrolysis of Coal Particles in Pulverized Fuel Flames. Ind EngChem Process Des Dev,1967,6(1):74.
    [32] Thomas G R, Harris I J and Evans D G. Ignition of Pulverized Brown Coal. Combust Flame,1968,12(4):391.
    [33] Karcz H, Kordylewski W and Rybak W. Evaluation of Kinetic-Parameters of Coal Ignition.Fuel,1980,59(11):799-802.
    [34] Solomon P R, Chien P L, Carangelo R M, et al. New Ignition Phenomenon in CoalCombustion. Combust Flame,1990,79(2):214-215.
    [35] Bandyopa.S and Bhaduri D. Prediction of Ignition Temperature of a Single Coal Particle.Combust Flame,1972,18(3):411.
    [36] Stevenso.Aj, Thomas G R and Evans D G. Modeling Ignition of Brown-Coal Particles. Fuel,1973,52(4):281-287.
    [37] Annamalai K and Durbetaki P. Theory on Transition of Ignition Phase of Coal Particles.Combust Flame,1977,29(2):193-208.
    [38] Chen M R, Fan L and Essenhigh R H. Prediction and Measurement of Ignition Temperatures ofCoal Particles. in Symp (Int) Combust.1985. Elsevier,20(1):1513-1521.
    [39] Makino A and Law C K. Quasi-Steady and Transient Combustion of a Carbon Particle: Theoryand Experimental Comparisons. in Twenty-First Symposium (International) on Combustion.1988. Pittsburgh, PA: The Combustion Institute:183-191.
    [40] Gururajan V S, Wall T F, Gupta R P, et al. Mechanisms for the Ignition of Pulverized CoalParticles. Combust Flame,1990,81(2):119-132.
    [41] Du X Y and Annamalai K. The Transient Ignition of Isolated Coal Particle. Combust Flame,1994,97(3-4):339-354.
    [42]岑可法,姚强,骆仲涣等,高等燃烧学.2003,杭州:浙江大学出版社.
    [43] Juntgen H and Vanheek K H. Update of German Nonisothermal Coal Pyrolysis Work. FuelProcess Technol,1979,2(4):261-293.
    [44] Brooks P J and Essenhigh R H. Variation of Ignition Temperatures of Fuel Particles in VitiatedOxygen Atmospheres: Determination of Reaction Mechanism. in Twenty-First Symposium(International) on Combustion.1988. Pittsburgh: The Combustion Institute,21(1):293-302.
    [45] Rhead T F E and Wheeler R V. The Mode of Combustion of Carbon. J Chem Soc,1913,103:461-489.
    [46] L. G A,1935: U.S. Bureau of Mines Bulletin.
    [47] Hartmann I, Nagy J and Brown H R, Inflammability and Explosibility of Metal Powders,1943,U.S. Bureau of Mines.
    [48] Seixas J P S and Essenhigh R H. Ignition Temperatures of a High-Ash Portuguese Anthracite-Comparison with a Low-Ash Pennsylvania Anthracite. Combust Flame,1986,66(2):215-218.
    [49] Solomon P R, Hamblen D G, Carangelo R M, et al. General-Model of Coal Devolatilization.Energy&Fuels,1988,2(4):405-422.
    [50] Solomon P R, Serio M A and Suuberg E M. Coal Pyrolysis-Experiments, Kinetic Rates andMechanisms. Prog Energy Combust Sci,1992,18(2):133-220.
    [51] Gavalas G R, Coal Pyrolysis.1982, New York: Elsevier.
    [52] Saxena S C. Devolatilization and Combustion Characteristics of Coal Particles. Prog EnergyCombust Sci,1990,16(1):55-94.
    [53] Berkowitz N, The Chemistry of Coal.1985, New York: Elsevier.
    [54] Juntgen H. Review of the Kinetics of Pyrolysis and Hydropyrolysis in Relation to the ChemicalConstitution of Coal. Fuel,1984,63(6):731-737.
    [55] Smith K L, Smoot L D and Fletcher T H, The Structure and Reaction Processes of Coal.1994,New York: Springer.
    [56] Fletcher T H, Kerstein A R, Pugmire R J, et al. Chemical Percolation Model forDevolatilization.3. Direct Use of C-13Nmr Data to Predict Effects of Coal Type. Energy&Fuels,1992,6(4):414-431.
    [57] Jamaluddin A S, Truelove J S and Wall T F. Devolatilization of Bituminous Coals at Mediumto High Heating Rates. Combust Flame,1986,63(3):329-337.
    [58] Cai H Y, Guell A J, Dugwell D R, et al. Heteroatom Distribution in Pyrolysis Products as aFunction of Heating Rate and Pressure. Fuel,1993,72(3):321-327.
    [59] Griffin T P, Howard J B and Peters W A. Pressure and Temperature Effects in BituminousCoal Pyrolysis-Experimental-Observations and a Transient Lumped-Parameter Model. Fuel,1994,73(4):591-601.
    [60] Yeasmin H, Mathews J F and Ouyang S. Rapid Devolatilisation of Yallourn Brown Coal atHigh Pressures and Temperatures. Fuel,1999,78(1):11-24.
    [61] Howard J B, Fundamentals of Coal Pyrolysis and Hydropyrolysis.1981, New York: Willey.
    [62] Kimber G M and Gray M D. Rapid Devolatilization of Small Coal Particles. Combust Flame,1967,11(4):360-362.
    [63] Anthony D B. Rapid Devolatilization and Hydrogasification of Pulverized Coal.[PhD].Massachusetts Institute of Technology,1974.
    [64] Suuberg E M. Rapid Pyrolysis and Hydropyrolysis of Coal.[PhD]. Massachusetts Institute ofTechnology,1978.
    [65] Wall T F, Liu G S, Wu H W, et al. The Effects of Pressure on Coal Reactions DuringPulverised Coal Combustion and Gasification. Prog Energy Combust Sci,2002,28(5):405-433.
    [66] Suuberg E M. Rapid Pyrolysis and Hydropyrolysis of Coal.[PhD]. Massachusetts Institute ofTechnology,1977.
    [67] Solomon P R, Hamblen D G, Yu Z Z, et al. Network Models of Coal Thermal-Decomposition.Fuel,1990,69(6):754-763.
    [68] Niksa S and Kerstein A R. The Distributed-Energy Chain Model for Rapid CoalDevolatilization Kinetics.1. Formulation. Combust Flame,1986,66(2):95-109.
    [69] Fong W S, Khalil Y F, Peters W A, et al. Plastic Behavior of Coal under Rapid-HeatingHigh-Temperature Conditions. Fuel,1986,65(2):195-201.
    [70] Solomon P R, Best P E, Yu Z Z, et al. An Empirical-Model for Coal Fluidity Based on aMacromolecular Network Pyrolysis Model. Energy&Fuels,1992,6(2):143-154.
    [71] Vankrevelen D W, Huntjens F J and Dormans H N M. Chemical Structure and Properties ofCoal Xvi-Plastic Behaviour on Heating. Fuel,1956,35(4):462-475.
    [72] Nomura M, Kidena K, Hiro M, et al. Mechanistic Study on the Plastic Phenomena of Coal.Energy&Fuels,2000,14(4):904-909.
    [73] Solomon P R, Serio M A, Despande G V, et al. Cross-Linking Reactions During CoalConversion. Energy&Fuels,1990,4(1):42-54.
    [74]王启民,张海,吕俊复等.双通道低氮煤粉燃烧器飞灰碳形成机理的研究.煤炭转化,2009,32(3):65-67,77.
    [75] Helble J J. Mechanisms of Ash Formation and Growth During Pulverized CoalCombustion.[PhD]. Massachusetts Institute of Technology,1987.
    [76] Quann R J. Ash Vaporization under Simulated Pulverized Coal Combustion Conditions.[PhD].Massachusetts Institute of Technology,1982.
    [77] Graham K A. Submicron Ash Formation and Interaction with Sulfur Oxides During PulverizedCoal Combustion.[PhD]. MIT,1990.
    [78] Yousif S, Lockwood F C and Abbas T. Modeling of Toxic Metal Emissions from Solid FuelCombustors. in Symp (Int) Combust.1998. Elsevier,27(2):1647-1654.
    [79] Taylor D D and Flagan R C. The Influence of Combustor Operation on Fine Particles fromCoal Combustion. Aerosol Sci Technol,1982,1(1):103-117.
    [80] Kauppinen E I and Pakkanen T A. Mass and Trace Element Size Distributions of AerosolsEmitted by a Hospital Refuse Incinerator. Atmospheric Environment. Part A. General Topics,1990,24(2):423-429.
    [81] Linak W P and Wendt J O L. Toxic Metal Emissions from Incineration-Mechanisms andControl. Prog Energy Combust Sci,1993,19(2):145-185.
    [82] Seames W S. An Initial Study of the Fine Fragmentation Fly Ash Particle Mode GeneratedDuring Pulverized Coal Combustion. Fuel Process Technol,2003,81(2):109-125.
    [83] Quann R J and Sarofim A F. Vaporization of Refractory Oxides During Pulverized CoalCombustion. in Nineteenth Symposium (International) on Combustion.1982.19(1):1429-1440.
    [84] Sandelin K and Backman R. A Simple Two-Reactor Method for Predicting Distribution ofTrace Elements in Combustion Systems. Environ Sci Technol,1999,33(24):4508-4513.
    [85] Wei F, Zhang J Y and Zheng C G. Simulation of Sub-Micron Particle Formation and GrowthDuring Combustion Processes. Prog Nat Sci,2005,15(4):358-362.
    [86] Smith P J, Sowa W A and Hedman P O. Furnace Design Using Comprehensive CombustionModels. Combust Flame,1990,79(2):111-121.
    [87] Sarofim A F, Lighty J and Eddings E G. Keynote Address. Combustion Generated Aerosols:Health Effects, Characterization, Mechanisms of Formation, and Modeling. Abstracts of Papersof the American Chemical Society,2002,224: U568-U569.
    [88] Lee C M, Davis K A, Heap M P, et al. Modeling the Vaporization of Ash Constituents in aCoal-Fired Boiler. in Twenty-Eighth Symposium (International) on Combustion.2000.28(2):2375-2382.
    [89]隋建才,徐明厚,丘纪华等.燃煤过程中亚微米颗粒生成的数值模拟.动力工程,2005,25(3):369-403.
    [90]顾璠,沈红梅.大颗粒煤燃烧传递动力学破碎理论模型.煤炭转化,1994,17(4):21-25.
    [91] Dacombe P, Pourkashanian M, Williams A, et al. Combustion-Induced FragmentationBehavior of Isolated Coal Particles. Fuel,1999,78(15):1847-1857.
    [92] Wigley F and Williamson J. Modelling Fly Ash Generation for Pulverised Coal Combustion.Prog Energy Combust Sci,1998,24(4):337-343.
    [93]于敦喜,徐明厚,易帆等.燃煤过程中颗粒物的形成机理研究进展.煤炭转化,2004,27(4):7-12.
    [94] Sarofim A F, Padia A S and Howard J B. The Physical Transformation Action of the MineralMatter in Pulverized Coal under Simulated Combustion Conditions. Combust Sci Technol,1997,16:187-204.
    [95]俞云,徐明厚,于敦喜等.燃烧过程中脱挥发分引起煤颗粒破碎的研究.华中科技大学学报,2005,33(8):8-11.
    [96]于敦喜,徐明厚.煤焦破碎的模拟研究.中国电机工程学报,2005,25(9):90-93.
    [97] Gray V R. The Role of Explosive Ejection in the Pyrolysis of Coal. Fuel,1988,67(9):1298-1304.
    [98] Solomon P R, Hamblen D G and Schlosberg R H, Chemistry of Coal Conversion.1985, NewYork: Plenum Press.
    [99] Burke S P and Schumann T E W. Diffusion Flames. Industrial and Engineering Chemistry,1928,20(1):998-1004.
    [100]Karatas A E, Commodo M and Guelder O L. Soot Formation in Co-and Counter-FlowLaminar Diffusion Flames of Binary Mixtures of Ethylene and Butane Isomers and SynergisticEffects. Energy&Fuels,2010,24:4912-4918.
    [101]Cuoci A, Frassoldati A, Faravelli T, et al. Frequency Response of Counter Flow DiffusionFlames to Strain Rate Harmonic Oscillations. Combust Sci Technol,2008,180(5):767-784.
    [102]Liu Y-y, Most J-m, Bauer P, et al. Reaction Zone Characterization of Counter-Flow DiffusionFlame with Diluted and Preheated Reactants. International Journal of Minerals Metallurgy andMaterials,2009,16(3):278-284.
    [103]Niemann U, Seshadri K and Williams F A. Effect of Pressure on Structure and Extinction ofnear-Limit Hydrogen Counterflow Diffusion Flames. Proc Combust Inst,2013,34:881-886.
    [104]曹甄俊,朱彤. CO2稀释对甲烷-高温空气扩散燃烧及NO生成特性影响的化学动力学分析.燃烧科学与技术,2012,18(2):123-130.
    [105]Chen S and Zheng C. Counterflow Diffusion Flame of Hydrogen-Enriched Biogas under MildOxy-Fuel Condition. Int J Hydrogen Energy,2011,36(23):15403-15413.
    [106]Choi B C, Choi S K and Chung S H. Soot Formation Characteristics of Gasoline SurrogateFuels in Counterflow Diffusion Flames. Proc Combust Inst,2011,33:609-616.
    [107]Narayanan P, Baum H R and Trouve A. Effect of Soot Addition on Extinction Limits ofLuminous Laminar Counterflow Diffusion Flames. Proc Combust Inst,2011,33:2539-2546.
    [108]Sun W, Uddi M, Ombrello T, et al. Effects of Non-Equilibrium Plasma Discharge onCounterflow Diffusion Flame Extinction. Proc Combust Inst,2011,33:3211-3218.
    [109]Bufferand H, Tosatto L, La Mantia B, et al. Experimental and Computational Study ofMethane Counterflow Diffusion Flames Perturbed by Trace Amounts of Either Jet Fuel or a6-Component Surrogate under Non-Sooting Conditions. Combust Flame,2009,156(8):1594-1603.
    [110]Tsuji H. Counterflow Diffusion Flames. Prog Energy Combust Sci,1982,8(2):93-119.
    [111]Mitchell R E, Sarofim A F and Clomburg L A. Experimental and Numerical Investigation ofConfined Laminar Diffusion Flames. Combust Flame,1980,37(3):227-244.
    [112]Melvin A, Moss J B and Clarke J F. Structure of a Reaction-Broadened Diffusion Flame.Combust Sci Technol,1971,4(1):17.
    [113]Ibiricu M M and Gaydon A G. Spectroscopic Studies of Effect of Inhibitors on CounterflowDiffusion Flames. Combust Flame,1964,8(1):51-62.
    [114]Potter A E and Butler J N. A Novel Combustion Measurement Based on the Extinguishment ofDiffusion Flames. Ars Journal,1959,29(1):54-56.
    [115]Otsuka Y and Niioka T. Deviation of Flame from Stagnation Point in Opposed Jet DiffusionFlames. Combust Flame,1972,19(2):171.
    [116]Pandya T P and Weinberg F J. Structure of Flat Counterflow Diffusion Flames. Proceedings ofthe Royal Society of London Series a-Mathematical and Physical Sciences,1964,279(1376):544.
    [117]Simmons R F and Wolfhard H G. Some Limiting Oxygen Concentrations for Diffusion Flamesin Air Diluted with Nitrogen. Combust Flame,1957,1(2):155-161.
    [118]Law C K, Combustion Physics.2006: Cambridge University Press.
    [119]Dixon-Lewis G, David T, Gaskell P H, et al. Calculation of the Structure and Extinction Limitof a Methane-Air Counterflow Diffusion Flame in the Forward Stagnation Region of a PorousCylinder. in20TH Symposium (International) on Combustion.1985. Elsevier,20(1):1893-1904.
    [120]Kee R J, Miller J A, Evans G H, et al. A Computational Model of the Structure and Extinctionof Strained, Opposed Flow, Premixed Methane-Air Flames. in Symp (Int) Combust.1989.Elsevier,22(1):1479-1494.
    [121]Williams F A. Theory of Combustion in Laminar Flows. Annual Review of Fluid Mechanics,1971,3:171.
    [122]Davis S G and Law C K. Determination of and Fuel Structure Effects on Laminar FlameSpeeds of C-1to C-8Hydrocarbons. Combust Sci Technol,1998,140(1-6):427-449.
    [123]Law C K, Sung C J, Yu G, et al. On the Structural Sensitivity of Purely Strained PlanarPremixed Flames to Strain-Rate Variations. Combust Flame,1994,98(1-2):139-154.
    [124]Im H G, Bechtold J K and Law C K. Response of Counterflow Premixed Flames to OscillatingStrain Rates. Combust Flame,1996,105(3):358-372.
    [125]Higgins B, McQuay M Q, Lacas F, et al. An Experimental Study on the Effect of Pressure andStrain Rate on Ch Chemiluminescence of Premixed Fuel-Lean Methane/Air Flames. Fuel,2001,80(11):1583-1591.
    [126]Im H G, Law C K, Kim J S, et al. Response of Counterflow Diffusion Flames to OscillatingStrain Rates. Combust Flame,1995,100(1-2):21-30.
    [127]Sung C J, Liu J B and Law C K. Structural Response of Counterflow Diffusion Flames toStrain-Rate Variations. Combust Flame,1995,102(4):481-492.
    [128]Sun C J, Sung C J and Law C K. Response of Counterflow Premixed and Diffusion Flames toStrain Rate Variations at Reduced and Elevated Pressures. in26TH Symposium (International)on Combustion.1996. Elsevier,26(1):1111-1120.
    [129]Zheng X L and Law C K. Ignition of Premixed Hydrogen/Air by Heated Counterflow underReduced and Elevated Pressures. Combust Flame,2004,136(1-2):168-179.
    [130]戴鹏,陈正,陈十一.正癸烷/甲苯扩散火焰的着火特性.工程热物理学报,2012,33(10):1815-1818.
    [131]Dai P, Chen Z and Chen S. Numerical Study on the Ignition Process of N-Decane/TolueneBinary Fuel Blends. Energy&Fuels,2012,26(11):6729-6736.
    [132]马鸿雁.超细水雾作用下乙醇火的抑制特性研究.[硕士学位论文].河南:河南理工大学,2011.
    [133]Zhang C, Atreya A and Lee K. Sooting Structure of Methane Counterflow Diffusion Flameswith Preheated Reactants and Dilution by Products of Combustion. in24TH/Symposium(International) on Combustion.1992. Elsevier,24(1):1049-1057.
    [134]Zachariah M R, Chin D, Semerjian H G, et al. Silica Particle Synthesis in a CounterflowDiffusion Flame Reactor. Combust Flame,1989,78(3-4):287-298.
    [135]Chagger H K, Hainsworth D, Patterson P M, et al. The Formation of Sio2fromHexamethyldisiloxane Combustion in Counterflow Methane-Air Flames. in26TH Symposium(International) on Combustion.1996. Elsevier,26(2):1859-1865.
    [136]Wooldridge M S. Gas-Phase Combustion Synthesis of Particles. Prog Energy Combust Sci,1998,24(1):63-87.
    [137]Pratsinis S E. Flame Aerosol Synthesis of Ceramic Powders. Prog Energy Combust Sci,1998,24(3):197-219.
    [138]Li S C, Libby P A and Williams F A. Spray Structure in Counterflowing Streams with andwithout a Flame. Combust Flame,1993,94(1-2):161-177.
    [139]Darabiha N, Lacas F, Rolon J C, et al. Laminar Counterflow Spray Diffusion Flames-aComparison between Experimental Results and Complex Chemistry Calculations. CombustFlame,1993,95(3):261-275.
    [140]Cao L P, D'angelo Y, Silverman I, et al. Quantitative Comparison of Detailed NumericalComputations and Experiments in Counterflow Spray Diffusion Flames. in26TH Symposium(International) on Combustion.1996. Elsevier,26(1):1739-1746.
    [141]Carrier G F, Fendell F E, Fink S F, et al. Particle Transport in a Counter-Flow. Combust Flame,2001,126(3):1630-1639.
    [142]Li S C. Spray Stagnation Flames. Prog Energy Combust Sci,1997,23(4):303-347.
    [143]Wendt J O L, Kram B M, Masteller M M, et al. Coal Pyrolysis in Flat, Laminar, Opposed JetCombustion Configurations. in Twenty-First Symposuim (International on Combustion).Elsevieer,21(1):419-426.
    [144]Puri I K and Libby P A. Droplet Behavior in Counterflowing Streams. Combust Sci Technol,1989,66(4-6):267-292.
    [145]Chen N H, Rogg B and Bray K N C. Modelling Laminar Two-Phase Counterflow Flames withDetailed Chemistry and Transport. in24TH Symposium (International) on Combustion.1992.Elsevier,24(1):1513-1521.
    [146]Ju Y and Law C K. Dynamics and Extinction of Non-Adiabatic Particle-Laden PremixedFlames. Proc Combust Inst,2000,28(2):2913-2920.
    [147]Joulin G. Asymptotic Analysis of Non-Adiabatic Flames: Heat Losses Towards Small InertParticles. in Eighteenth Symposium (International) on Combustion.1981. Elsevier,18(1):1395–1404.
    [148]Mitani T. A Flame Inhibition Theory by Inert Dust and Spray. Combust Flame,1981,43(3):243-253.
    [149]Joulin G and Cambray P. Temperature-Lags and Radiative-Transfer in Particle-Laden GaseousFlames.2. Unsteady Propagations. Combust Sci Technol,1987,52(4-6):397-412.
    [150]Joulin G. Temperature-Lags and Radiative-Transfer in Particle-Laden Gaseous Flames.1.Steady Planar Fronts. Combust Sci Technol,1987,52(4-6):377-395.
    [151]Blouquin R, Cambray P and Joulin G. Radiation-Affected Dynamics of Enclosed SphericalFlames Propagating in Particle-Laden Premixtures. Combust Sci Technol,1997,128(1-6):231-255.
    [152]韩才元,煤粉燃烧.2001,北京:科学出版社.
    [153]Musarra S P, Fletcher T H, Niksa S, et al. Heat and Mass-Transfer in the Vicinity of aDevolatilizing Coal Particle. Combust Sci Technol,1986,45(5-6):289-307.
    [154]Zhang D K. Laser-Induced Ignition of Pulverized Fuel-Particles. Combust Flame,1992,90(2):134-142.
    [155]D. C.科尼什, G.杰普森, M. J.斯默思韦特,工艺过程分析器的取样系统.1989,北京:化学工业出版社.
    [156]Peter B. Kuhn, Bin Ma, Blair C. Connelly, et al. Soot and Thin-Filament Pyrometry Using aColor Digital Camera. Proc Combust Inst,2011,33:743-750.
    [157]Fotache C G. Ignition in Convective-Diffusive Systems.[PhD]. Princeton: PrincetonUniversity,1997.
    [158]Sung C-J and Law C K. Fundamental Combustion Properties of H2/CO Mixtures: Ignition andFlame Propagation at Elevated Pressures. Combust Sci Technol,2008,180(6):1097-1116.
    [159]Davis S G, Joshi A V, Wang H, et al. An Optimized Kinetic Model of H2/CO Combustion.Proc Combust Inst,2005,30:1283-1292.
    [160]Li J, Zhao Z, Kazakov A, et al. A Comprehensive Kinetic Mechanism for CO, CH2O, andCH3OH Combustion. Int J Chem Kinet,2007,39(3):109-136.
    [161]Fotache C G, Tan Y, Sung C J, et al. Ignition of CO/H2/N2Versus Heated Air in Counterflow:Experimental and Modeling Results. Combust Flame,2000,120(4):417-426.
    [162] Peterson R C, Laurendeau N. The emittance of yttrium-beryllium oxide thermocouplecoating. Combust Flame,1985:60(3):279-284.
    [163]傅维标,煤燃烧理论及宏观规律.2003,北京:清华大学出版社.
    [164]Annamalai K, and Ryan W. J Prog Energ Combust,1993,19:383-446.
    [165]于娟,章明川,周月桂等.挥发分火焰对碳粒燃烧的影响.燃烧科学与技术,2006,12(2):121-125.
    [166]Young B C,Niksa S. Combustion rate for selected low-rank coal chars. Fuel,1988,67(2):155-164.
    [167]傅维标,张燕屏,韩洪樵等.煤粒热解通用模型(Fu-Zhang模型).中国科学,1988,12:1283-1290.
    [168]Field M,Gill D.,Morgan B,et al. Combustion of Pulverized Coal.1967, Beura: Leatherhead.P186-192.
    [169]Mithchell R E. An intrinsic kinetics-based, particle-population balance model for charoxidation during pulverized coal combustion. Proc Combust Inst,2000,28(2):2261-2270.
    [170]Talbot L, Cheng R K, Schefer R W, et al. Thermophoresis of particles in a heated boundarylayer. J Fluid Mech,1980,101(4):737-758.
    [171] Loyalka S K and Ferziger J H. Model Dependence of the Slip Coefficient. Phys. Fluids,1967,10(8):1833-1839.
    [172]Ivchenko I N and Yalamov Yu I, Russ J Phys Chem,1971,45:317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700