我国柑橘衰退病毒的遗传多样性分析及其外壳蛋白的抗原表位鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由柑橘衰退病毒(Citrus tristeza virus, CTV)引起的柑橘衰退病是影响柑橘生长和产业发展的重要病害。CTV为长线形病毒科(Closteroviridae)长线形病毒属(Closterovirus)的成员,已知存在明显CTV株系分化和多个基因型,目前有关基因型鉴定方法和我国CTV分离物的基因型组成信息仍亟待完善。该病毒具有两个衣壳蛋白组分,即CP和CPm,二者除为结构蛋白外,还具有多种重要的生物学功能。深入研究CP和CPm的遗传变异和抗原特性可为探究CTV的系统进化特点及解析其生物学特性等提供重要信息。本研究对来源于我国部分地区CTV分离物的基因型组成、群体遗传结构以及CP的抗原表位特性进行了深入研究,取得的主要研究结果如下:
     1.我国CTV分离物的基因型研究
     以采自湖北和江西两省的10个CTV分离物为对象,采用已报道的11个基因型多重分子标记引物(VTK17、VTPOL、VT-5'、T3K17、T30K17、T30POL、T30-5'、 T36K17、T36POL、T36-5'和B165-LProⅡ)对其进行多重分子标记(MMM) RT-PCR分析,结合扩增产物测序和系统进化分析。结果表明,我国CTV种群中,除了已知的4种基因型(VT、T36、T30和T3),首次鉴定出B165和RB基因型。而且在我国CTV分离物中多种基因型混合侵染的现象较普遍,仅发现三个分离物N4、S4和BX为单一基因型侵染。同时发现,基因组5‘端的分子标记引物特异性较高,可较好区分相应的基因型,而位于POL和K17区域的分子标记特异性较低,不能特异区分VT和T3、VT和T30以及T30和RB基因型。对K17、POL和LPro II区域进行氨基酸多重比对分析的结果表明,存在基因型特异性氨基酸位点。S45-VTPOL序列虽与T36聚为一大支,但与T36相似性仅89.7%。类似地,B15-LProⅡ和B16-LProⅡ序列与B165聚为一支,但与参考分离物B165相似性很低,核苷酸和氨基酸水平分别介于70.0-81.8%和67.1-76.6%,重组分析未从这些序列中检测到重组事件,表明我国CTV种群可能存在新的基因型。此外,发现MMM与标记序列系统进化分析结果存在不一致情况,因此基因型的鉴定需采用MMM-RT-PCR与序列分析相结合。
     2.CP和CPm基因的遗传多样性和进化特点研究
     从我国4个主要柑橘产区(湖南、四川、江西和湖北省)收集柑橘叶片或枝条样品共计85份,其中6份湖北样品为已知阳性样品,四川样品均表现衰退症状。RT-PCR检测结果表明,CTV总体检出率为32.8%(26/79),而四川样品CTV检出率达100%(11/11)。采用引物CPm (F)和T36-CP (R)对32份阳性CTV样品进行扩增,从29份样品克隆到了含有部分p61基因、完整CPm和CP基因以及两者中间非编码间隔区的大片段(~1540bp)。序列分析表明各分离物之间和内部均表现较高的遗传多样性。基于1540bp片段核苷酸序列进行系统进化分析的结果表明,我国CTV分离物可以划分为6组,除已报道的5个组群(RB、T30、T36、HA和VT),新鉴定出仅含中国分离物的组群Ⅵ。来自湖南样品的CTV分离物多为RB(克服枳壳抗性)组群,而在VT组群内存在一以中国蚜传分离物AT-1为代表的中国特有亚群,该亚群分离物相比其他所有分离物,P61蛋白C端均特异插入了一个氨基酸位点,将该亚群命名为AT-1。分别采用CP和CPm基因核苷酸序列构建的系统发育树具有类似拓扑结构,但有的组群或分离物在两系统进化树中位置有变化。在CPm系统进化树中,T30基因型组群的分离物聚在RB组群,形成单一亚组RB-d,与其他3个RB亚组的遗传距离较近,介于0.024±0.005-0.037±0.005。对1540bp片段序列进行重组分析,结果表明CPm基因是CTV基因组的重组热点区域之一,在该区域共计检测到25个重组事件,而CP基因内仅检测到2个重组事件。基因漂移分析表明我国与其他国家或地区的CTV分离物存在明显的基因交流,且全球CTV分离物CP群体处于明显扩张趋势;自然选择分析表明CP和CPm基因均处于负向选择压力下;此外,从两个基因内部分别发现新的正向选择密码子,包括位于CPm基因的第9位密码子和位于CP基因的第31、41和68位密码子。以上结果表明基因漂移、基因重组和负向选择压力是我国CTV复杂种群形成的主要原因。
     3. CTV-AT-1分离物基因组全长的克隆和序列分析
     AT-1为通过蚜传获得的亚分离物,对其全基因组进行了测序,大小为19,252bp(GenBank Accession No. JQ061137)。 CP Hinf I/RFLP结合系统发育进化分析表明,该分离物属于VT基因型和RFLP第Ⅲ组群,为我国优势组群,且为单一侵染。基因组序列分析表明,AT-1与VT组群的T318A分离物相似性最高,为96.8%,并聚为一支,与属于T36组群的Qaha和Mexico两个分离物相似性最低,均为80.9%。各开放阅读框和两端非编码区相似性分析表明,在5'-UTR和3'-UTR区分别与参考分离物VT和B165的相似性最高,为98.1%和98.9%;在12个开放阅读框中,5'端ORFla和RdRp的核苷酸序列均与参考分离物VT相似性最高,而其氨基酸序列分别与参考分离物T30和T3具有最高相似性;3'端除p6外的9个基因在核苷酸和氨基酸水平上均与B165分离物相似性最高。重组分析进一步确认AT-1为VT和B165的重组子,且重组位点位于RdRp和p33之间。
     4. CTV CP的抗原表位作图和定点突变分析
     随机选取10株CTV特异性单克隆抗体,以CTV-S4分离物CP为对象,采用蛋白截短法结合Western blotting分析,鉴定出7株单克隆抗体识别的3个抗原表位区域。其中MAb5和6识别表位区域I (48LGTQQNAALNRDLFLT63), MAb3和7识别表位区域III (114LSDKLWTDVVFN125), MAb1、4和10识别表位区域Ⅱ(97DDDSTGIT104),该区域为新鉴定的抗原表位区域。采用合成多肽(97DDDSTGIT104、97DDDSTGI103和97DDDSTG102)和ELISA分析,进一步确认表位区域Ⅱ为MAb1、4和10的识别区域,且C端氨基酸T104和I103的缺失对表位识别具有显著影响。不同CTV分离物CP基因编码氨基酸多重比对分析表明,该区域高度保守。定点突变分析表明,该区域的突变会一定程度上影响抗体对表位Ⅱ的识别,其中I103M和S100T突变会显著降低MAb1、4和10对表位Ⅱ的识别能力。
     5. CTV-HB1CP与单克隆抗体互作的关键氨基酸位点的鉴定和表位结构分析
     采用上述10株单克隆抗体对CTV-HB1病毒粗提液和CP基因原核表达蛋白进行Western blotting分析,结果表明5株单抗(MAb1、4、5、6和10)不能识别。CP基因编码氨基酸序列的多重比对分析表明,位于表位区域Ⅱ的第98位点在除HB1外的所有CTV分离物中高度保守,均为天冬氨酸(D98),而HB1为甘氨酸(G98)。将S4-CP的D98突变为G98, MAb1、4和10不能识别表位Ⅱ,表明D98为这3个单抗识别大多数CTV分离物的重要位点。进一步回复突变(将HB1-CP的G98突变为D98)可以导致这3个单抗重新识别HB1CP,表明G98是HB1CP与这3个单抗互作的关键氨基酸位点。CTV-S4和CTV-HB1两个分离物CP之间的结构预测和比较分析表明,氨基酸位点G98暴露的表面积区域过小可能是不能识别的主要原因。CTV-HB1和CTV-S4在MAb5和6识别的表位区域Ⅰ(aa48-63)的序列相同,结合结构分析,可能构象变化是CTV-HB1CP不能被这两个单抗识别的主要原因。
Citrus tristeza virus is the causal agent of citrus tristeza disease, which has been one of the most important diseases affecting citrus growth and industry. CTV, a member of the genus Closterovirus in the family Closteroviridae, possesses a number of distinct and characterized strains and genotypes. Up to now, there is still incomplete understanding of the characterization method of CTV genotype, and the CTV genotype composition in China. CTV has two main structural proteins, major coat protein (CP) and minor coat protein (CPm), and both of them participate in multiple biological functions. Further study on the genetic variation and antigenic characteristics of CPm and CP will provide important information on the CTV evolution history and possible important structural or functional domains in two structural proteins. In this study, the genotype composition of CTV isolates from some regions in China, genetic structure of CTV population in China, and epitopes in CP are studied in depth. The main results are listed as follows:
     1. Genotype study of CTV isolates from China
     Totally10CTV-infected citrus samples collected from Hubei and Jiangxi provinces were used for genotype study. By using RT-PCR method with11multiple molecular markers (MMMs)(VTK17, VTPOL, VT-5', T3K17, T30K17, T30POL, T30-5', T36K17, T36POL, T36-5', and B165-LPro II), combined with sequencing of the products and phylogenetic analysis. Our results revealed four known genotypes (VT, T36, T30and T3) in Chinese CTV population, and two genotypes RB and B165were identified for the first time in China. In addition, only three isolates N4, S4and BX were singly infected, while other seven isolates were infected with mixtures of two or more genotypes. The results indicated that the MMMs in5'region were much more specific with the corresponding genotype, while MMMs in POL and K17regions were nonspecific, and could not discriminate between VT and T3, VT and T30, and T30and RB. Multiple alignments of deduced amino acid sequences in K17, POL, and LPro II regions showed genotype-specific amino acids in CTV isolates. Although the sequences of S45-VTPOL clustered with reference isolate T36, the similarity of nucleotide sequence between them was only89.7%. Similarly, the sequences of B15-LPro Ⅱ and B16-LProⅡ clustering with B165showed only70.0-81.8%nt and67.1-76.6%aa identity with the reference isolate B165. Recombination analysis showed no recombinant events in these sequences, suggesting novel genotypes existing in CTV population in China. Our results also found that that the genotype identification results showed somewhat inconsistency when comparing the RT-PCR and sequence analysis results, thus, genotype assignment of CTV cannot be based solely on the amplification profiles of MMMs, and sequencing of MMMs is required.
     2. Genetic diversity and evolution characteristics of CP and CPm genes
     Totally85citrus leaf or branch samples (including six CTV positive samples from Hubei province) collected from four main citrus growing provinces (Hunan, Sichuan, Jiangxi, and Hubei) were used in this study, and most of samples from Sichuan showed decline symptoms. RT-PCR results showed that the total detection rate of CTV is32.8%(26/79), while that of CTV from samples in Sichuan was100%(11/11). By using the primer sets CPm (F) and T36-CP (R) with RT-PCR,32CTV-infected samples were further used for the cloning of an approximately1540-bp fragment consisting of partial P61, complete CPm, CP and the internal non-coding region. The fragment sequences from29isolates were obtained. Sequence analysis revealed intra-and inter-isolate sequence diversity. Phylogenetic analysis of the whole fragment nucleotide sequences revealed five known groups (RB, T30, T36, HA, and VT), and one new group VI solely consist of Chinese CTV isolates. Most of isolates from Hunan province belonged to group RB, and one popular and unique CTV subgroup representated by aphid transmissible isolate AT-1in the group VT was found in China, and this subgroup had unique aa insertion in the C-terminus end of P61, here designated as AT-1. The CPm-and CP-based phylograms shared similar tree topologies with fragment-based phylogram except for some groups. In CPm-based phylogram, isolates represented by the mild strain T30formed a subgroup RB-d, which has low genetic distance ranging from0.024±0.005to0.037±0.005with other three subgroups in the group RB. Recombination analyses of the1540-bp sequences revealed CPm gene as the new recombination hot regions across CTV genome, and25recombination events occurring in CPm were detected, while only two recombination events occurred in the CP gene. Our results revealed frequent gene flow between subpopulations from China and other countries, and the CTV subpopulations of CP gene worldwide were in a state of increasing. Analysis of synonymous and nonsynonymous substitutions indicated that both CPm and CP genes are under strong negative selections, and positively selected sites at the position9in CPm, and the positions of31,41, and68in CP were identified in CTV for the first time. Our results suggested that gene flow, recombination, and negative selection could contribute to the complex CTV population in China.
     3. Cloning and sequence analysis of the complete genomic sequence of AT-1
     Isolate CTV-AT-1was obtained by aphid transmission, and the complete genomic sequence of AT-1was cloned, sequenced, and deposited in the GenBank with an accession number JQ061137. The AT-1had19,252nt. Hinf I/RFLP analysis of CP gene combined with sequence analysis showed that AT-1was single infection and belonged to the prevalent Hinf/RFLP group III and VT genotype. Complete genome sequence analysis showed that the AT-1had the highest identity to the aphid-transmissible sub-isolate T318A (96.8%) and clustered together in whole genome-based phylogram, while the lowest identity to the isolates Qaha and Mexico (80.91%) belonging to the group T36. Sequence analysis of each gene and two UTRs revealed that AT-1had highest identity to representative isolates VT (98.1%) and B165(98.9%) in5'-UTR and3'-UTR, respectively. In addition, AT-1showed highest identity irrespective of nt and aa level with isolate B165in continuous nine genes except for p6in3'terminal, while in ORF1a and RdRp regions in5'terminal, AT-1had highest nucleotide identity with VT, and amino acid identity with T30and T3, respectively. Recombination analysis further demonstrates that AT-1was a recombinant from two parents VT and B165, and the breaking point was located in the region between RdRp and p33.
     4. Epitope mapping and site-directed mutagenesis of coat protein of CTV
     Ten monoclonal antibodies were selected randomly to map the epitopes in the coat protein of isolate CTV-S4. By using truncated coat proteins and Western blotting method, we identified three epitope regions recognized by seven monoclonal antibodies. Of them, MAb5and6recognized the epitope I region (48LGTQQNAALNRDLFLT63), MAb3and 7recognized the epitope III region (114LSDKLWTDVVFN125), and MAb1,4, and10recognized the epitope II region (97DDDSTGIT104), which was a novel epitope. The epitope was further confirmed by using synthesized oligopeptides and ELISA method, and the deletion of two amino acids (T104and1103) in the C-terminus of epitope II has significant effect on its reaction with these three MAbs. Multiple alignments of deduced amino acid sequences of CP gene showed that the epitope II region is much conserved in CTV isolates belonging to different groups. Site-directed mutagenesis analysis showed that the natural variations in this region could not abolish the reaction between MAbs and the epitope II, while I103M and S100T variation reduced the reaction signals significantly.
     5. Identification of the critical amino acids in the interaction between CTV-HB1coat protein and monoclonal antibodies and epitope structure analysis
     The reactivity of those10monoclonal antibodies with the crude extracts and expressed coat protein of isolate CTV-HB1was evaluated by Western blotting method. Results showed that five monoclonal antibodies (MAb1,4,5,6and10) could not recognize the CP of CTV-HB1. Multiple alignments of deduced aa sequences of CP gene showed conserved and the same aa site D98in all CTV isolates except for HB1(G98). When the D98in S4-CP was replaced with G98, MAbs1,4, and10could not recognize the mutated epitope II, suggesting the important role of D98in the recognization of CP by these three MAbs. In addition, the interaction between HB1-CP and these three MAbs was recovered when G98in HB1-CP was replaced with D98, indicating that the presence of G98in CP of HB1is crucial for its interaction with them. Further comparative analysis of predicted epitope and structure of coat protein between isolates CTV-S4and CTV-HB1suggested that the less exposed surface area of G98in HB1CP might result in the negative reaction with these MAbs. Our results also suggested that the conformational differences in the epitope I (48LGTQQNAALNRDLFLT63) between the CPs of isolates S4and HB1might contribute to the different reactions of two isolates to MAbs5and6, although the amino acid sequences in the epitope I region was the same between them.
引文
1.金凤银.柑橘衰退病毒S45分离物序列分析及蚜虫传播对其群体结构的影响.[硕士学位论文].武汉:华中农业大学图书馆,2013.
    2.李芳,邓子牛,韩健,严佳文,舒广平,戴素明.湖南柑橘衰退病调查分析及弱毒系筛选.植物病理学报.2010,40:442-445.
    3.林尤剑,谢联辉,Powell CA.橘蚜传播柑橘衰退病毒的研究进展.福建农业大学学报.2001,30:59-66.
    4.潘嵩.我国部分地区柑橘衰退病毒基因型分析.[硕士学位论文].武汉:华中农业大学图书馆,2010.
    5.王彩霞.柑橘衰退病毒的血清学特性分析及其诱导寄主差异表达基因的筛选.[博士学位论文].武汉:华中农业大学图书馆,2007.
    6.王彩霞,王国平,洪霓,姜波,刘辉,吴康为.柑橘衰退病毒多克隆和单克隆抗体的制备及检测效果分析.生物工程学报.2006,22:629-634.
    7.王永江.柑橘衰退病毒全基因组克隆及其诱导甜橙miRNA的生物信息学分析.[博士学位论文].重庆:中国农业科学院柑橘研究所,2012.
    8.吴建珍.柑橘衰退病毒S45分离物的分子特点及蚜虫传播对CTV分子组成的影响.[硕士学位论文].武汉:华中农业大学图书馆,2011.
    9.杨方云.不同致病力柑橘衰退病毒株系诱导甜橙表达差异蛋白质组学研究.[博士学位论文].重庆:西南大学图书馆,2012.
    10. Agranovsky AA, Lesemann DE, Maiss E, Hull R, Atabekov JG. "Rattlesnake" structure of a filamentous plant RNA virus built of two capsid proteins. Proc. Natl. Acad. Sci. U. S. A.1995,92:2470-2473.
    11. Alavi V, Khatabi B, Salekdeh GH. Comparison of biologically distinct isolates of Citrus tristeza virus from Iran using major coat protein sequences. Australasian Plant Pathol.2005,34:577-582.
    12. Albiach-Marti MR, Guerri J, Cambra M, Garnsey SM, Moreno P. Differentiation of Citrus tristeza virus isolates by serological analysis of p25 coat protein peptide maps. J. Virol. Methods 2000,88:25-34.
    13. Albiach-Marti MR, Mawassi M, Gowda S, Satyanarayana T, Hilf ME, Shanker S, Almira EC, Vives MC, Lopez C, Guerri J, Flores R, Moreno P, Garnsey SM, Dawson WO. Sequences of Citrus tristeza virus separated in time and space are essentially identical. J. Virol.2000,74:6856-6865.
    14. Albiach-Marti MR, Robertson C, Gowda S, Tatineni S, Belliure B, Garnsey SM, Folimonova SY, Moreno P, Dawson WO. The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3'-terminal region of the viral genome. Mol. Plant Pathol.2010,11:55-67.
    15. Alzhanova DV, Napuli AJ, Creamer R, Dolja VV. Cell-to-cell movement and assembly of a plant Closterovirus:roles for the capsid proteins and Hsp70 homolog. EMBO J. 2001,20:6997-7007.
    16. Ambros S, Ruiz-Ruiz S, Pena L, Moreno P. A genetic system for Citrus tristeza virus using the non-natural host Nicotiana benthamiana:an update. Front. Microbiol.2013, 4:165. doi:10.3389/finicb.2013.00165.
    17. Ananthakrishnan G, Venkataprasanna T, Roy A, Brlansky R. Characterization of the mixture of genotypes of a Citrus tristeza virus isolate by reverse transcription-quantitative real-time PCR. J. Virol. Methods 2010,164:75-82.
    18. Andersen PH, Nielsen M, Lund O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci.2006,15:2558-2567.
    19. Armour SL, Melcher U, Pirone TP, Lyttle DJ, Essenberg RC. Helper component for aphid transmission encoded by region Ⅱ of Cauliflower mosaic virus DNA. Virology 1983,129:25-30.
    20. Ayllon MA, Lopez C, Navas-Castillo J, Mawassi M, Dawson WO, Guerri J, Flores R, Moreno P. New defective RNAs from Citrus tristeza virus:evidence for a replicase-driven template switching mechanism in their generation. J. Gen. Virol. 1999,80:817-821.
    21. Ayllon MA, Rubio L, Sentandreu V, Moya A, Guerri J, Moreno P. Variations in two gene sequences of Citrus tristeza virus after host passage. Virus Genes 2006, 32:119-128.
    22. Bak A, Gargani D, Macia JL, Malouvet E, Vernerey MS, Blanc S, Drucker M. Virus factories of Cauliflower mosaic virus are virion reservoirs that engage actively in vector transmission. J. Virol.2013,87:12207-12215.
    23. Bar-Joseph M, Loebenstein G Effects of strain, source plant, and temperature on the transmissibility of Citrus tristeza virus by the melon aphid. Phytopathology 1972, 63:716-720.
    24. Bar-Joseph M, Marcus R, Lee RF. The continuous challenge of Citrus tristeza virus control. Annu. Rev. Phytopathol.1989,27:291-316.
    25. Bar-Joseph M, Mawassi M. The defective RNAs of Closteroviridae. Front. Microbiol. 2013,4:132. doi:10.3389/fmicb.2013.00132.
    26. Batuman O, Mawassi M, Bar-Joseph M. Transgenes consisting of a dsRNA of an RNAi suppressor plus the 3'UTR provide resistance to Citrus tristeza virus sequences in Nicotiana benthamiana but not in citrus. Virus Genes 2006,33:319-327.
    27. Benjamin DC, Perdue SS. Site-directed mutagenesis in epitope mapping. Methods 1996,9:508-515.
    28. Bester R, Maree H, Burger J. Complete nucleotide sequence of a new strain of Grapevine leafroll-associated virus 3 in South Africa. Arch. Virol.2012,157: 1815-1819.
    29. Betancourt M, Fereres A, Fraile A, Garcia-Arenal F. Estimation of the effective number of founders that initiate an infection after aphid transmission of a multipartite plant virus. J. Virol.2008,82:12416-12421.
    30. Biswas KK, Tarafdar A, Sharma SK. Complete genome sequence of mandarin decline Citrus tristeza virus of the Northeastern Himalayan hill region of India: Comparative analyses determine recombinant. Arch. Virol.2012,157:579-583.
    31. Brlansky RH, Damsteegt VD, Howd DS, Roy A. Molecular analyses of Citrus tristeza virus subisolates separated by aphid transmission. Plant Dis.2003, 87:397-401.
    32. Brlansky RH, Roy A, Damsteegt VD. Stem-pitting Citrus tristeza virus predominantly transmitted by the brown citrus aphid from mixed infections containing non-stem-pitting and stem-pitting isolates. Plant Dis.2011,95:913-920.
    33. Broadbent P, Bevington KB, Coote BG. Control of stem pitting of grapefruit in Australia by mild strain cross protection. In:Proceedings of the 11th Conference of the International Organization of Citrus Virologists (Brlansky, R.H., Lee, R.F. and Timmer, L.W., eds),1991, pp.64-70. Riverside, CA:IOCV.
    34. Cambra M, Gorris MT, Marroquin C, Roman MP, Olmos A, Martinez PC, Hermoso de Mendoza AH, Lopez A, Navarro L. Incidence and epidemiology of Citrus tristeza virus in the Valencian Community of Spain. Virus Res.2000,71,85-95.
    35. Candresse T, Saenz P, Garcia JA, Boscia D, Navratil M, Gorris MT, Cambra M. Analysis of the epitope structure of Plum pox virus coat protein. Phytopathology 2010,101:611-619.
    36. Cevik B. The RNA-dependent RNA polymerase of Citrus tristeza virus forms oligomers. Virology 2013,447:121-130.
    37. Cevik B, Lee RF, Niblett CL. In vivo and in vitro expression analysis of the RNA-dependent RNA polymerase of Citrus tristeza virus. Arch. Virol.2008, 153:315-321.
    38. Che X, Dawson WO, Bar-Joseph M. Defective RNAs of Citrus tristeza virus analogous to Crinivirus genomic RNAs. Virology 2003,310:298-309.
    39. Chen AYS, Walker GP, Carter D, Ng JCK. A virus capsid component mediates virion retention and transmission by its insect vector. Proc. Natl. Acad. Sci. U. S. A.2011, 108:16777-16782.
    40. Chen J, Liu H, Yang J, Chou KC. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 2007,33:423-428.
    41. Chen Q, Chen HY, Mao QZ, Liu QF, Shimizu T, Uehara-Ichiki T, Wu ZJ, Xie LH, Omura T, Wei TY. Tubular structure induced by a plant virus facilitates viral spread in its vector insect. PLoS Pathog.2012,8:e1003032. doi:10.1371/journal.ppat.1003032.
    42. Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. Relat. Areas Mol. Biol.1978,47:145-148.
    43. Commandeur U, Koenig R, Manteuffel R, Torrance L, Liiddecke P, Frank R. Location, size, and complexity of epitopes on the coat protein of Beet necrotic yellow vein virus studied by means of synthetic overlapping peptides. Virology 1994,198: 282-287.
    44. Costa AS, Grant TJ. Studies on transmission of the tristeza virus by the vector Aphis citricidus. Phytopathology 1951,41:103-115.
    45. Cristofani-Yaly M, Berger IJ, Tarqon MLPN, Takita MA, Dorta SO, Freitas-Astua J, de Souza AA, Boscariol-Camargo RL, Reis MS, Machado MA. Differential expression of genes identified from Poncirus trifoliata tissue inoculated with CTV through EST analysis and in silico hybridization. Genet. Mol. Biol.2007, 30:972-979.
    46. Croft H, Malinowski T, Krizbai L, Mikec I, Kajic V, Reed C, Varga A, James D. Use of Luminex xMAP-derived Bio-Plex bead-based suspension array for specific detection of PPV W and characterization of epitopes on the coat protein of the virus. J. Virol. Methods 2008,153:203-213.
    47. Davino S, Panno S, Rangel E, Davino M, Bellardi M, Rubio L. Population genetics of Cucumber mosaic virus infecting medicinal, aromatic and ornamental plants from northern Italy. Arch. Virol.2012,157:739-745.
    48. Davino S, Rubio L, Davino M. Molecular analysis suggests that recent Citrus tristeza virus outbreaks in Italy were originated by at least two independent introductions. European J. Plant Pathol.2005,111:289-293.
    49. Dawson WO, Folimanova S. Virus-based transient expression vectors for woody crops:A new frontier for vector design and use. Ann. Rev. Phytopathology 2013,51: 321-337.
    50. Dawson WO, Garnsey SM, Tatineni S, Folimonova SY, Harper SJ, Gowda S. Citrus tristeza virus-host interactions. Front. Microbiol.2013,4:98. doi: 10.3389/fmicb.2013.00088.
    51. Dell'Orco M, Saldarelli P, Minafra A, Boscia D, Gallitelli D. Epitope mapping of Grapevine virus A capsid protein. Arch. Virol.2002,147:627-634.
    52. Desbiez C, Gal-On A, Raccah B, Lecoq H. Characterization of epitopes on Zucchini yellow mosaic potyvirus coat protein permits studies on the interactions between strains. J. Gen. Virol.1997,78:2073-2076.
    53. Dolja VV, Koonin EV. The Closterovirus-derived gene expression and RNA interference vectors as tools for research and plant biotechnology. Front. Microbiol. 2013,4:83. doi:10.3389/fmicb.2013.00083.
    54. Dolja VV, Kreuze JF, Valkonen JPT. Comparative and functional genomics of closteroviruses. Virus Res.2006,117:38-51.
    55. Dore I, Altschuh D, Al Moudallal Z, Van Regenmortel MHV. Immunochemical studies of tobacco mosaic virus-VII. Use of comparative surface accessibility of residues in antigenically related viruses for delineating epitopes recognized by monoclonal antibodies. Mol. Immunol.1987,24:1351-1358.
    56. Drucker M, Froissart R, Hebrard E, Uzest M, Ravallec M, Esperandieu P, Mani JC, Pugniere M, Roquet F, Fereres A, Blanc S. Intracellular distribution of viral gene products regulates a complex mechanism of Cauliflower mosaic virus acquisition by its aphid vector. Proc. Natl. Acad. Sci. U. S. A.2002,99:2422-2427.
    57. El-Manzalawy Y, Honavar V. Recent advances in B-cell epitope prediction methods. Immunome Res.2010,6 (Suppl 2), S2. doi:10.1186/1745-7580-6-S2-S2.
    58. El-Mohtar C, Dawson WO. Exploring the limits of vector construction based on Citrus tristeza virus. Virology 2014,448:274-283.
    59. Emini EA, Hughes JV, Perlow DS, Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol.1985, 55:836-839.
    60. Fagoaga C, Pensabene-Bellavia G, Moreno P, Navarro L, Flores R, Pena L. Ectopic expression of the p23 silencing suppressor of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts. Mol. Plant Pathol.2011,12:898-910.
    61. Farooq AB, Ma YX, Wang ZQ, Zhuo N, Xu WX, Wang GP, Hong N. Genetic diversity analyses reveal novel recombination events in Grapevine leafroll-associated virus 3 in China. Virus Res.2013,171:15-21.
    62. Febres VJ, Ashoulin L, Mawassi M, Frank A, Bar-Joseph M, Manjunath K, Lee RF, Niblett CL. The p27 protein is present at one end of Citrus tristeza virus particles. Phytopathology 1996,86:1331-1335.
    63. Febres VJ, Pappu HR, Anderson EJ, Pappu SS, Lee RF, Niblett CL. The diverged copy of the Citrus tristeza virus coat protein is expressed in vivo. Virology 1994, 201:178-181.
    64. Flores R, Ruiz-Ruiz S, Soler N, Sanchez-Navarro J, Fagoaga C, Lopez C, Navarro L, Moreno P, Pena L. Citrus tristeza virus p23:A unique protein mediating key virus-host interactions. Front. Microbiol.2013,4:98. doi:10.3389/fmicb.2013.00098.
    65. Folimonova SY. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J. Virol.2012, doi:10.1128/JVI.00310-12.
    66. Folimonova SY. Developing an understanding of cross-protection by Citrus tristeza virus. Front. Microbiol.2013,4:76. doi:10.3389/fmicb.2013.00076.
    67. Folimonova SY, Folimonov AS, Tatineni S, Dawson WO. Citrus tristeza virus: Survival at the edge of the movement continuum. J. Virol.2008,82:6546-6556.
    68. Folimonova SY, Robertson CJ, Shilts T, Folimonov AS, Hilf ME, Garnsey SM., Dawson WO. Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. J. Virol.2010,84:1314-1325.
    69. Gandia M, Conesa A, Ancillo G, Gadea J, Forment J, Pallas V, Flores R, Duran-Vila N, Moreno P, Guerri J. Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology 2007,367:298-306.
    70. Garcia-Arenal F, Escriu F, Aranda MA, Alonso-Prados JL, Malpica JM, Fraile A. Molecular epidemiology of Cucumber mosaic virus and its satellite RNA. Virus Res. 2000,71:1-8.
    71. Garnsey SM, Gonsalves D, Purcifule DE. Rapid diagnosis of Citrus tristeza virus infections by sodium dodecyl sulphate-immunodiffusion procedures. Phytopathology 1978,68:88-95.
    72. Garnsey SM, Bar-Joseph M, Lee RF. Applications of serological indexing to develop control strategies for Citrus tristeza virus. In Proceedings. International Society of Citriculture,1981, pp.448-452. Edited by the Editorial Committee (1981), International Citrus Congress Organizing Committee, Japan Chapter ISC, Okitsu, Shimizu, Shizuoka, Japan.
    73. Gershoni JM, Roitburd-Berman A, Siman-Tov DD, Tarnovitski Freund N, Weiss Y. Epitope mapping:The first step in developing epitope-based vaccines. BioDrugs 2007,21:145-156.
    74. Gillings M, Broadbent P, Indsto J, Lee R. Characterization of isolates and strains of citrus tristeza closterovirus using restriction analysis of the coat protein gene amplified by the polymerase chain reaction. J. Virol. Methods 1993,44:305-317.
    75. Gomes CPC, Nagata T, de Jesus Jr WC, Borges Neto CR, Pappas Jr GJ, Martin DP. Genetic variation and recombination of RdRp and HSP 70h genes of Citrus tristeza virus isolates from orange trees showing symptoms of citrus sudden death disease. Virology J.2008,5:9.
    76. Gottwald TR, Cambra M, Moreno P, Camarasa E, Piquer J. Spatial and temporal analyses of Citrus tristeza virus in Eastern Spain. Phytopathology 1996,86:45-55.
    77. Gowda S, Ayllon MA, Satyanarayana T, Bar-Joseph M, Dawson WO. Transcription strategy in a Closterovirus:a novel 5'-proximal controller element of Citrus tristeza virus produces 5'-and 3'-terminal subgenomic RNAs and differs from 3'open reading frame controller elements. J. Virol.2003a,77:340-352.
    78. Gowda S, Satyanarayana T, Ayllon MA, Moreno P, Flores R, Dawson WO. The conserved structures of the 5'nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 2003b,317:50-64.
    79. Gowda S, Satyanarayana T, Davis CL, Navas-Castillo J, Albiach-Marti MR, Mawassi M, Valkov N, Bar-Joseph M, Moreno P, Dawson WO. The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology 2000, 274:246-254.
    80. Gowda S, Tatineni S, Folimonova SY, Hilf ME, Dawson WO. Accumulation of a 5' proximal subgenomic RNA of Citrus tristeza virus is correlated with encapsidation by the minor coat protein. Virology 2009,389:122-131.
    81. Hajeri S, Killiny N, EI-Mohtar C, Dawson WO, Gowda S. Citrus tristeza virus-based RNAi in citrus plants induces gene silencingin Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J. Biotechnol.2014, 176:42-49.
    82. Harper SJ.2013. Citrus tristeza virus:Evolution of complex and varied genotypic groups. Front. Microbiol.4:93. doi:10.3389/fmicb.2013.00093.
    83. Harper SJ, Dawson TE, Pearson MN. Complete genome sequences of two distinct and diverse Citrus tristeza virus isolates from New Zealand. Arch. Virol.2009, 154:1505-1510.
    84. Harper SJ, Dawson TE, Pearson MN. Isolates of Citrus tristeza virus that overcome Poncirus trifoliata resistance comprise a novel strain. Arch. Virol.2010, 155:471-480.
    85. He XH, Harper K, Grantham G, Yang CH, Creamer H. Serological characterization of the 3'-proximal encoded proteins of beet yellows closterovirus. Arch. Virol.1998, 143:1349-1363.
    86. Herron CM, Mirkov TE, da Graca JV, Lee RF. Citrus tristeza virus transmission by the Toxoptera citricida vector:In vitro acquisition and transmission and infectivity immunoneutralization experiments. J. Virol. Methods 2006,134:205-211.
    87. Hilf ME, Karasev AV, Albiach-Marti MR, Dawson WO, Garnsey SM. Two paths of sequence divergence in the Citrus tristeza virus complex. Phytopathology 1999, 89:336-342
    88. Hilf ME, Mavrodieva VA, Garnsey SM. Genetic marker analysis of a global collection of isolates of Citrus tristeza virus:Characterization and distribution of CTV genotypes and association with symptoms. Phytopathology 2005,95:909-917.
    89. Hoh F, Uzset M, Drucker M, Plisson-Chastang C, Bron P, Blanc S, Dumas C. Structural insights into the molecular mechanisms of Cauliflower mosaic virus transmission by its insect vector. J. Virol.2010,84:4706-4713.
    90. Holzem A, Nahring JM, Fischer R. Rapid identification of a Tobacco mosaic virus epitope by using a coat protein gene-fragment-pVIII fusion library. J. Gen.Virol. 2001,82:9-15.
    91. Hopp TP, Woods KR, Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. U. S. A.1981,78:3824-3828.
    92. Irving MB, Pan O, Scott JK. Random-peptide libraries and antigen-fragment libraries for epitope mapping and the development of vaccines and diagnostics. Curr. Opin. Chem. Biol.2001,5:314-324.
    93. Jameson BA, Wolf H. The antigenic index:A novel algorithm for predicting antigenic determinants. Comput. Appl. Biosci.1988,4:181-186.
    94. Jiang B, Hong N, Wang GP, Hu J, Zhang JK, Wang CX, Liu Y, Fan XD. Characterization of Citrus tristeza virus strains from southern China based on analysis of restriction patterns and sequences of their coat protein genes. Virus Genes 2008,37:185-192.
    95. Karasev AV. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathology 2000,38:293-324.
    96. Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, Niblett CL, Cline K, Gumpf DJ, Lee RF, Garnsey SM, Lewandowski DJ, Dawson WO. Complete sequence of the Citrus tristeza virus RNA genome. Virology 1995,208:511-520.
    97. Karplus PA, Schulz GE. Prediction of chain flexibility in proteins. Naturwissenschaften 1985,72:212-213.
    98. Kelley LA, Sternberg MJE. Protein structure prediction on the Web:A case study using the Phyre server. Nat. Protoc.2009,4:363-371.
    99. Khelifa M, Journou S, Krishnan K, Gargani D, Esperandieu P, Blanc S, Drucker M. Electron-lucent inclusion bodies are structures specialized for aphid transmission of Cauliflower mosaic virus. J. Gen. Virol.2007,88:2872-2880.
    100.Kringelum JV, Nielsen M, Padkj?r SB, Lund O. Structural analysis of B-cell epitopes in antibody:protein complexes. Mol. Immunol.2013,53:24-34.
    101.Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.1982,157:105-132.
    102.Lassaux P, Peri C, Ferrer-Navarro M, Gourlay LJ, Gori A, Conchillo-Sole O, Rinchai D, Lertmemongkolchai G, Longhi R, Daura X, Colombo G, Bolognesi M. A structure-based strategy for epitope discovery in Burkholderia pseudomallei OppA antigen. Structure 2013,21:167-175.
    103.Ling KS, Zhu HY, Drong RF, Slightom JL, McFerson JR, Gonsalves D. Nucleotide sequence of the 3'-terminal two-thirds of the Grapevine leafroll-associated virus 3 genome reveals a typical monopartite Closterovirus. J. Gen. Virol.1998, 79:1299-1307.
    104.Liu Y, Wang GP, Wang ZQ, Yang F, Wu GW, Hong N. Identification of differentially expressed genes in response to infection of a mild Citrus tristeza virus isolate in Citrus aurantifolia by suppression subtractive hybridization. Sci. Hortic.2012, 134:144-149.
    105.Lollier V, Denery-Papini S, Larre C, Tessier D. A generic approach to evaluate how B-cell epitopes are surface-exposed on protein structures. Mol. Immunol.2011, 48:577-585.
    106.Lopez C, Ayllion MA, Navas-Castillo J, Guerri J, Moreno P, Flores R. Molecular variability of the 5'-and 3'-terminal regions of Citrus tristeza virus RNA. Phytopathology 1998,88:685-691.
    107.Lopez C, Cervera M, Fagoaga C, Moreno P, Navarro L, Flores R, Pena L. Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime. Mol. Plant Pathol. 2010,11:33-41.
    108.Lu R, Folimonov A, Shintaku M, Li WX, Falk BW, Dawson WO, Ding SW. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc. Natl. Acad. Sci. U. S. A.2004,101:15742-15747.
    109.Lutz L, Raikhy G, Leisner SM. Cauliflower mosaic virus major inclusion body protein interacts with the aphid transmission factor, the virion-associated protein, and gene VII product. Virus Res.2012,170:150-153.
    110.Ma B, Elkayam T, Wolfson H, Nussinov R. Protein-protein interactions:structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc. Natl. Acad. Sci. U. S. A.2003,100:5772-5777.
    111.Marroquin C, Olmos A, Gorris MT, Bertolini E, Martinez MC, Carbonell EA, Hermoso de Mendoza AH, Cambra M. Estimation of the number of aphids carrying Citrus tristeza virus that visit adult citrus trees. Virus Res. 2004,100,101-108.
    112.Martelli GP, Abou Ghanem-Sabanadzovic N, Agranovsky AA, Al Rwahnih M, Dolja VV, Dovas CI, Fuchs M, Gugerli P, Hu JS, Jelkmann W, Katis NI, Maliogka VI, Melzer MJ, Menzel W, Minafra A, Rott ME, Rowhani A, Sabanadzovic S, Saldarelli P. Taxonomic revision of the family Closteroviridae with special reference to the reference to the grapevine leafrollassociated members of the genus Ampelovirus and the putative species unassigned to the family. J. Plant Pathol.2012,94:7-19.
    113.Martelli GP, Agranovsky AA, Bar-Joseph M, Boscia D, Candresse T, Courts RHA, Dolja VV, Falk BW, Gonsalves D, Jelkmann W, Karasev AV, Minafra A, Namba S, Vetten HJ, Wisler GC, Yoshikawa N. The family Closteroviridae revised. Arch. Virol. 2002,147:2039-2044.
    114.Martin S, Sambade A, Rubio L, Vives MC, Moya P, Guerri J, Elena SF, Moreno P. Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. J. Gen. Virol.2009,90:1527-1538.
    115.Martini ere A, Bak A, Macia JL, Lautredou N, Gargani D, Doumayrou J, Garzo E, Moreno A, Fereres A, Blanc S, Drucker M. A virus responds instantly to the presence of the vector on the host and forms transmission morphs. Elife 2013, doi: 10.7554/eLife.00183.
    116.Matos LA, Hilf ME, Cayetano XA, Feliz AO, Harper SJ, Folimonova SY. Dramatic change in Citrus tristeza virus populations in the Dominican Republic. Plant Dis. 2013,97:339-345.
    117.Mawassi M, Karasev AV, Mietkiewska E, Gafny R, Lee RF, Dawson WO, Bar-Joseph M. Defective RNA molecules associated with Citrus tristeza virus. Virology 1995a, 208:383-387.
    118.Mawassi M, Mietkiewska E, Gofman R, Yang G, Bar-Joseph M. Unusual sequence relationships between two isolates of Citrus tristeza virus. J. Gen. Virol.1996,77: 2359-2364.
    119.Mawassi M, Mietkiewska E, Hilf ME, Ashoulin L, Karasev AV, Gafny R, Lee RF, Garnsey SM, Dawson WO, Bar-Joseph M. Multiple species of defective RNAs in plants infected with Citrus tristeza virus. Virology 1995b,214:264-268.
    120.Melzer MJ, Borth WB, Sether DM, Ferreira S, Gonsalves D, Hu JS. Genetic diversity and evidence for recent modular recombination in Hawaiian Citrus tristeza virus. Virus Genes 2010,40:111-118.
    121.Melzer MJ, Sugano JS, Uchida JY, Borth WB, Kawate MK, Hu JS. Molecular characterization of closteroviruses infecting Cordyline fruticosa L. in Hawaii. Front. Microbiol.2013,4:39. doi:10.3389/fmicb.2013.00039.
    122.Meyer D, Aebischer A, Muller M, Grummer B, Greiser-Wilke I, Moennig V, Hofmann MA. New insights into the antigenic structure of the glycoprotein Erns of Classical swine fever virus by epitope mapping. Virology 2012,433:45-54.
    123.Moreno P, Ambros S, Albiach-Marti MR, Guerri J, Pena L. Plant diseases that changed the world-Citrus tristeza virus:a pathogen that changed the course of the citrus industry. Mol. Plant Pathol.2008,9:251-268.
    124.Neuvirth H, Raz R, Schreiber G. ProMate:A structure based prediction program to identify the location of protein-protein binding sites. J. Mol. Biol.2004,338:181-199.
    125.Ng JCK, Falk BW. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathology 2006, 44:183-212.
    126.Ng JCK, Tian T, Falk BW. Quantitative parameters determining whitefly (Bemisia tabaci) transmission of Lettuce infectious yellows virus and an engineered defective RNA. J. Gen. Virol.2004,85:2697-2707.
    127.Nikolaeva OV, Karasev AV, Garnsey SM, Lee RF. Serological differentiation of the Citrus tristeza virus isolates causing stem pitting in sweet orange. Plant Dis.1998, 82:1276-1280.
    128.Nikolaeva OV, Karasev AV, Powell CA, Gumpf DJ, Garnsey SM, Lee RF. Mapping of epitopes for Citrus tristeza virus-specific monoclonal antibodies using bacterially expressed coat protein fragments. Phytopathology 1996,86:974-979.
    129.Novotny J, Handschumacher M, Haber E, Bruccoleri RE, Carlson WB, Fanning DW, Smith JA, Rose GD. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc. Natl. Acad. Sci. U. S. A.1986, 83:226-230.
    130.Ofran Y, Schlessinger A, Rost B. Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes. J. Immunol.2008,181:6230-6235.
    131.Papayiannis L, Santos C, Kyriakou A, Kapari T, Nolasco G. Molecular characterization of Citrus tristeza virus isolates from Cyprus on the basis of the coat protein gene. J. Plant Pathol.2007,89:291-295.
    132.Pappu HR, Pappu SS, Kano T, Koizumi M, Cambra M, Moreno P, Su HJ, Garnsey SM, Lee RF, Niblett CL. Mutagenic analysis and localization of a highly conserved epitope near the amino terminal end of the Citrus tristeza closterovirus capsid protein. Phytopathology 1995,85:1311-1315.
    133.Pappu HR, Pappu SS, Manjunath KL, Lee RF, Niblett CL. Molecular characterization of a structural epitope that is largely conserved among severe isolates of a plant virus. Proc. Natl. Acad. Sci. U. S. A.1993,90:3641-3644.
    134.Parry N, Fox G, Rowlands D, Brown F, Fry E, Acharya R, Logan D, Stuart D. Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. Nature 1990,347:569-572.
    135.Peng WP, Hou Q, Xia ZH, Chen D, Li N, Sun Y, Qiu HJ. Identification of a conserved linear B-cell epitope at the N-terminus of the E2 glycoprotein of Classical swine fever virus by phage-displayed random peptide library. Virus Res.2008,135: 267-272.
    136.Permar TA, Garnsey SM, Gumpf DJ, Lee RF. A monoclonal antibody that discriminates strains of Citrus tristeza virus. Phytopathology 1990,80:224-228.
    137.Peroni LA, Lorencini M, dos Reis JRR, Machado MA, Stach-Machado DR. Differential diagnosis of Brazilian strains of Citrus tristeza virus by epitope mapping of coat protein using monoclonal antibodies. Virus Res.2009,145:18-25.
    138.Prokhnevsky AI, Peremyslov VV, Napuli AJ, Dolja VV. Interaction between long-distance transport factor and Hsp70-related movement protein of Beet yellow virus. J.Virol.2002,76:11003-11011.
    139.Powell CA, Pelosi RR, Rundell PA, Cohen M. Break down of cross-protection of grapefruit from decline-inducing isolates of Citrus tristeza virus following introduction of the brown citrus aphid. Plant Dis.2003,87,1116-1118.
    140.Ramos C, Castillo JC, Fernandez O, Rangel B, Keremane ML, Lee RF. Molecular characterization of Citrus tristeza virus isolates from Panama. International Organization of Citrus Virologists Proceedings,16th Conference.2007, Pgs. 159-164.
    141.Rocha-Pena MA, Lee RF. Serological techniques for detection of Citrus tristeza virus. J. Virol. Methods 1991,34:311-331.
    142.Rocha-Pena MA, Lee RF, Lastra R, Niblet CL, Ochoa-Corona FM, Garnsey SM, Yokomi RK. Citrus tristeza virus and its vector Toxoptera citricida. Plant Dis.1995, 79,437-445.
    143.Roistacher CN, Bar-Joseph M. Transmission of tristeza and seedling yellows tristeza virus by Aphis gossypii from sweet orange, grapefruit and lemon to Mexican lime, grapefruit and lemon. In:Proceedings of the 9th Conference of the International Organization of Citrus Virologists (Garnsey, S.M., Timmer, L.W. and Dodds, J.A., eds), pp.1984,9-18. Riverside, CA:IOCV.
    144.Roistacher CN, Moreno P. The worlwide threat from destructive isolates of Citrus tristeza virus. A review. In:Proceedings of the 11th Conference of the International Organization of Citrus Virologists (Brlansky, R.H., Lee, R.F. and Timmer, L.W., eds), 1991, pp.7-19. Riverside, CA:IOCV.
    145.Roy A, Brlansky RH. Genotype classification and molecular evidence for the presence of mixed infections in Indian Citrus tristeza virus isolates. Arch. Virol. 2004,149:1911-1929.
    146.Roy A, Brlansky RH. Population dynamics of a Florida Citrus tristeza virus Isolate and aphid-transmitted subisolates:Identification of three genotypic groups and recombinants after aphid transmission. Phytopathology 2009,99:1297-1306.
    147.Roy A, Brlansky RH. Genome analysis of an orange stem pitting Citrus tristeza virus isolate reveals a novel recombinant genotype. Virus Res.2010,151:118-130.
    148.Roy A, Choudhary N, Hartung JS, Brlansky RH. The prevalence of the Citrus tristeza virus Trifoliate resistance breaking genotype among Puerto Rican isolates. Phytopathology 2013,97:1227-1234.
    149.Roy A, Manjunath K, Brlansky R. Assessment of sequence diversity in the 5'-terminal region of Citrus tristeza virus from India. Virus Res.2005,113:132-142.
    150.Rubinstein ND, Mayrose I, Halperin D, Yekutieli D, Gershoni JM, Pupko T. Computational characterization of B-cell epitopes. Mol. Immunol.2008, 45:3477-3489.
    151.Rubio L, Ayllon MA, Kong P, Fernandez A, Polek M, Guerri J, Moreno P, Falk BW. Genetic variation of Citrus tristeza virus isolates from California and Spain:evidence for mixed infections and recombination. J. Virol.2001,75:8054-8062.
    152.Rubio L, Guerri J, Moreno P. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front. Microbiol.2013,4:151. doi: 10.3389/fmicb.2013.00151.
    153.Rubio L, Yeh HH, Tian T, Falk BW. A heterogeneous population of defective RNAs is associated with Lettuce infectious yellows virus. Virology 2000,271:205-212.
    154.Ruiz-Ruiz S, Moreno P, Guerri J, Ambros S. The complete nucleotide sequence of a severe stem pitting isolate of Citrus tristeza virus from Spain:comparison with isolates from different origins. Arch. Virol.2006,151:387-398.
    155.Ruiz-Ruiz S, Navarro B, Gisel A, Pena L, Navarro L, Moreno P, Di Serio F, Flores R. Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt) mapping preferentially at the 3'-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol. Biol.2011,75:607-619.
    156.Ruiz-Ruiz S, Soler N, Sanchez-Navarro J, Fagoaga C, Lopez C, Navarro L, Moreno P, Pena L, Flores R. Citrus tristeza virus p23:Determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Mol. Plant Microbe Interact.2013,26:306-318.
    157.Rwahnih MA, Dolja VV, Daubert S, Koonin EV, Rowhani A. Genomic and biological analysis of Grapevine leafroll-associated virus 7 reveals a possible new genus within the family Closteroviridae. Virus Res.2012,163:302-309.
    158.Saasa N, Yoshida H, Shimizu K, Sanchez-Hernandez C, Romero-Almaraz MdL, Koma T, Sanada T, Seto T, Yoshii K, Ramos C, Yoshimatsu K, Arikawa J, Takashima I, Kariwa H. The N-terminus of the Montano virus nucleocapsid protein possesses broadly cross-reactive conformation-dependent epitopes conserved in rodent-borne hantaviruses. Virology 2012,428:48-57.
    159.Sambade A, Ambros S, Lopez C, Ruiz-Ruiz S, de Mendoza AH, Flores R, Guerri J, Moreno P. Preferential accumulation of severe variants of Citrus tristeza virus in plants co-inoculated with mild and severe variants. Arch. Virol.2007,152:1115-1126.
    160.Sambade A, Lopez C, Rubio L, Flores R, Guerri J, Moreno P. Polymorphism of a specific region in gene p23 of Citrus tristeza virus allows discrimination between mild and severe isolates. Arch.Virol.2003,148:2325-2340.
    161.Satyanarayana T, Gowda S, Ayllon MA, Albiach-Marti MR, Dawson WO. Mutational analysis of the replication signals in the 3'-nontranslated region of Citrus tristeza virus. Virology 2002a,300:140-152.
    162,Satyanarayana T, Gowda S, Ayllon MA, Albiach-Marti MR, Rabindran S, Dawson WO. The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. J. Virol.2002b,76:473-483.
    163.Satyanarayana T, Gowda S, Ayllon MA, Dawson WO. Closterovirus bipolar virion: Evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5'region. Proc. Natl. Acad. Sci. U. S. A.2004,101:799-804.
    164.Satyanarayana T, Gowda S, Boyko VP, Albiach-Marti MR, Mawassi M, Navas-Castillo J, Karasev AV, Dolja V, Hilf ME, Lewandowski DJ, Moreno P, Bar-Joseph M, Garnsey SM, Dawson WO. An engineered Closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proc. Natl. Acad. Sci. U. S. A.1999,96:7433-7438.
    165.Satyanarayana T, Gowda S, Mawassi M, Albiach-Marti MR, Ayllion MA, Robertson C, Garnsey SM, Dawson WO. Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 2000, 278:253-265.
    166.Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol.2011,12:938-954.
    167.Scott KA, Hlela Q, Zablocki O, Read D, Vuuren SV, Pietersen G Genotype composition of populations of grapefruit-crossprotecting Citrus tristeza virus strain GFMS12 in different host plants and aphid-transmitted sub-isolates. Arch. Virol. 2013,158:27-37.
    168.Sekiya ME, Lawrence SD, McCaffery M, Cline K. Molecular cloning and nucleotide sequencing of the coat protein gene of Citrus tristeza virus. J. Gen. Virol.1991, 72:1013-1020.
    169.Shukla DD, Tribbick G, Mason TJ, Hewish DR, Geysen HM, Ward CW. Localization of virus-specific and group-specific epitopes of plant potyviruses by systematic immunochemical analysis of overlapping peptide fragments. Proc. Natl. Acad. Sci. U. S. A.1989,86:8192-8196.
    170.Silmon AE. Replication, Recombination, and symptom-modulation properties of the satellite RNAs of Turnip crinkle virus. Curr. Top Micobiol. Immunol.1999, 239:19-36.
    171.Silva G, Marques N, Nolasco G The evolutionary rate of Citrus tristeza virus ranks among the rates of the slowest RNA viruses. J. Gen. Virol.2012,93:419-429.
    172.Singh AB, Chakraborty NK. Transmission of Citrus tristeza virus by a membrane feeding technique. Hortic. Res.1978,17:83-86.
    173.Singh KJ, Tarafdar A, Sharma SK, Biswas KK. Evidence of recombinant Citrus tristeza virus isolate occurring in Acid lime cv. pant lemon orchard in Uttarakhand Terai region of Northern Himalaya in India. Indian J. Virol.2013,24:35-41.
    174.Soler N, Plomer M, Fagoaga C, Moreno P, Navarro L, Flores R, Pena L. Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnol. J. 2012,10:597-608.
    175.Stewart LR, Medina V, Tian T, Turina M, Falk BW, Ng JC. A mutation in the Lettuce infectious yellows virus minor coat protein disrupts whitefly transmission but not in planta systemic movement. J. Virol.2010,84:12165-12173.
    176.Suastika C, Natsuaki T, Terui H, Kano T, Ieki H, Okuda S. Nucleotide sequence of Citrus tristeza virus seedling yellows isolate. J. Genl. Plant Pathol.2001,67:73-77.
    177.Sun J, Xu T, Wang S, Li G, Wu D, Cao Z. Does difference exist between epitope and non-epitope residues? Analysis of the physicochemical and structural properties on conformational epitopes from B-cell protein antigens. Immunome Res.2011,7:1-11.
    178.Syller J. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol.2012,13:204-216.
    179.Tatineni S, Gowda S, Dawson WO. Heterologous minor coat proteins of Citrus tristeza virus strains affect encapsidation, but the coexpression of HSP70h and p61 restores encapsidation to wild-type levels. Virology 2010,402:262-270.
    180.Tatineni S, Dawson WO. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J. Virol.2012,86:7850-7857.
    181.Tatineni S, Robertson CJ, Garnsey SM, Bar-Joseph M, Gowda S, Dawson WO. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology 2008,376:297-307.
    182.Tatineni S, Robertson CJ, Garnsey SM, Dawson WO. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc. Natl. Acad. Sci. U.S.A.2011,108:17366-17371.
    183.Thornton JM, Edwards MS, Taylor WR, Barlow DJ. Location of "continuous" antigenic determinants in the protruding regions of proteins. EMBO J.1986, 5:409-413.
    184.Tian T, Rubio L, Yeh HH, Crawford B, Falk BW. Lettuce infectious yellows virus:In vitro acquisition analysis using partially purified virions and the whitefly Bemisia tabaci. J. Gen. Virol.1999,80:1111-1117.
    185.Vela C, Cambra M, Cortes E, Moreno P, Miguet JG, De San Roman CP, Sanz A. Production and characterization of monoclonal antibodies specific for Citrus tristeza virus and their use for diagnosis. J. Gen. Virol.1986,67:91-96.
    186.Velazquez-Monreal JJ, Mathews DM, Dodds JA. Segregation of distinct variants from Citrus tristeza virus isolate SY568 using aphid transmission. Phytopathology 2009,99,1168-1176.
    187.Vives MC, Rubio L, Navas-Castillo J, Albiach-Marti MR, Dawson WO, Guerri J, Flores R, Moreno P. The complete genome sequence of the major component of a mild Citrus tristeza virus isolate. J. Gen.Virol.1999,80:811-816.
    188.Vives MC, Rubio L, Sambade A, Mirkov TE, Moreno P, Guerri J. Evidence of multiple recombination events between two RNA sequence variants within a Citrus tristeza virus isolate. Virology 2005,331:232-237.
    189.Wang CX, Hong N, Wang GP, Zhang JK, Hui L. Molecular analysis of a Chinese Citrus tristeza virus isolate showing anomalous serological reactions. J. Plant Pathol. 2007,89:377-383.
    190.Wang JB, Bozan O, Kwon SJ, Dang T, Rucker T, Yokomi RK, Lee RF, Folimonova SY, Krueger FR, Bash J, Greer G, Diaz J, Serna R, Vidalakis G. Front. Microbiol. 2013,4:366. doi:10.3389/fmicb.2013.00366.
    191.Wei TY, Kikuchi A, Moriyasu Y, Suzuki N, Shimizu T, Hagiwara K, Chen HY, Takahashi M, Ichiki-Uehara T, Omura T. The spread of Rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures. J. Virol.2006, 80:8593-8602.
    192.Weng Z, Barthelson R, Gowda S, Hilf ME, Dawson WO, Galbraith DW, Xiong ZG. Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity. PLoS One 2007, 2:e917.
    193.White KA, Morris TJ. RNA determinants of junction site selection in RNA virus recombinants and defective interfering RNAs. RNA 1995,1:1029-1040.
    194.Yang F, Wang GP, Jiang B, Liu YH, Liu Y, Wu GW, Hong N. Differentially expressed genes and temporal and spatial expression of genes during interactions between Mexican lime(Citrus aurantifolia) and a severe Citrus tristeza virus isolate. Physiol. Mol. Plant Pathol.2013,83:17-24
    195.Yang G, Mawassi M, Gofman R, Gafny R, Bar-Joseph M. Involvement of a subgenomic mRNA in the generation of a variable population of defective Citrus tristeza virus molecules. J. Virol.1997,71:9800-9802.
    196.Yang SQ, Wang T, Bohon J, Gagne MEL, Bolduc M, Leclerc D, Li HL. Crystal structure of the coat protein of the flexible filamentous Papaya mosaic virus. J. Mol. Biol.2012,422:263-273.
    197.Yang ZN, Mathews DM, Dodds JA, Mirkov TE. Molecular characterization of an isolate of Citrus tristeza virus that causes severe symptoms in sweet orange. Virus Genes 1999,19:131-142.
    198.Zablocki Olivier, Pietersen G. Characterization of a novel Citrus tristeza virus genotype within three cross-protecting source GFMS12 sub-isolates in South Africa by means of Illumina sequencing. Arch. Virol.2014, DOI 10.1007/s00705-014-2041-3.
    199.Zhao L, Li J. Mining for the antibody-antigen interacting associations that predict the B cell epitopes. BMC Struct. Biol.2010,10 (Suppl.1), S6.
    200.Zhou F, Pu YY, Wei TY, Liu HJ, Deng WL, Wei CH, Ding B, Omura T, Li Y. The P2 capsid protein of the nonenveloped rice dwarf phytoreovirus induces membrane fusion in insect host cells. Proc. Natl. Acad. Sci. U. S. A.2007b,104:19547-19552.
    201.Zhou Y, Zhou CY, Song Z, Liu KH, Yang FY. Characterization of Citrus tristeza virus isolates by indicators and molecular biology methods. Agric. Sci. China 2007a,6, 573-579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700