钨及钨合金零部件等离子喷涂近净成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨及钨合金具有熔点高、密度高、强度高、热膨胀系数低等优异性能,随国防工业及国民经济的迅速发展,钨及钨合金薄壁或复杂形状零部件在各部门的应用日益广泛,对其性能及性价比要求也越来越高。然而,经济的高速增长也使得钨资源消耗日益严重,造成了资源的紧缺和价格的升高。此外,传统的成形方法如化学气相沉积、物理气相沉积、自蔓延高温合成、粉末冶金等在制备钨及钨合金薄壁或复杂形状零部件时存在明显的局限性。等离子喷涂成形技术因其具有高温、高速、高效、低成本、操作方便及成形件厚度易控制等技术特点,为钨及钨合金零部件的近净成形提供了一种理想的技术途径。本文采用等离子喷涂技术精密近净成形了钨喷管、钨坩埚、小型钨及钨铼合金发热体、钨药型罩、钨喉衬及95W-3.5Ni-1.5Fe薄壁回转体件,研究了高温烧结、热等静压及旋锻等后续处理对成形件显微形貌、晶粒度、相对密度、显微硬度、拉伸强度、压缩强度及屈服强度的影响规律,并深入分析了各类后处理技术的致密化机制。本文主要研究内容及结论如下:
     1.系统研究了等离子喷涂工艺参数对钨沉积层显微结构的影响,经优化后的等离子喷涂成形工艺参数为:喷涂功率40kW、喷涂距离150mm、氢气流量50L/h。经检测,等离子喷涂成形各类钨材质异形构件的开孔率、相对密度、显微硬度、拉伸强度及压缩强度分别约为7.5%.88.5%.341.7HV0.025、55.1MPa及581.3MPa。等离子喷涂成形过程中,为防止成形件因其壁厚增加而可能出现多种形式的开裂失效,可采取优化喷涂工艺、间歇式喷涂及气氛保护等有效措施严格加以控制。
     2.深入研究了等离子喷涂成形钨异形件的热等静压致密化行为及机制。研究发现,随热等静压压力升高及处理时间延长,沉积层中微观缝隙和孔隙逐渐愈合,成形件力学性能逐步提高,其中经二步热等静压处理后成形件致密度、显微硬度、拉伸强度及压缩强度分别增大至96.7%、547.8HV0.025、245.3MPa及1443.5MPa。本文提出了一个由加热、再结晶、层片重排、弹性接触、塑性流动、扩散蠕变等六个阶段组成的热等静压致密化机制。
     3.深入分析了等离子喷涂成形W/Re合金的“Re效应”。研究发现,微量Re元素的固溶强化作用即可有效抑制高温环境中W晶粒长大,还可改变材料在冷加工过程中的形变机构,不同于纯W构件的脆性断裂,W/Re合金室温压缩过程中出现了明显的屈服现象。此外,等离子喷涂成形W/Re合金的力学性能随烧结时间的延长而增大。经2300℃烧结6h后,W/Re合金显微硬度、拉伸强度、压缩强度及屈服强度分别达490.8HV0.025、384.5MPa、1922.5MPa、947.4MPa,明显高于相同烧结条件下的纯W构件的力学性能。
     4.采用高温烧结与旋锻加工的技术路线对喷涂成形件进行了致密化处理。结果表明,2300℃高温烧结可使沉积层由层片结构转化为颗粒结构,其相对密度、显微硬度及拉伸强度分别提高至97.9%、381.5HV0.025及228.5MPa。经2道次旋锻加工后钨/钼棒总压缩率达21%,沉积层致密度进一步提高至98.5%,显微硬度显著增大至620.4HV0.025。然而,经旋锻加工后沉积层由表层向内钨颗粒变形程度逐渐减弱,整个样品的变形表现出较大的不均匀性。此外,沉积层经高温烧结后为多面体钨晶粒与孔隙组成的复合体,晶粒内存在少量不可消除孔隙,旋锻加工后沉积层仍达不到全致密。
     5.等离子喷涂成形钨喉衬进行了地面点火试车实验。钨喉衬抗热震烧蚀性能良好,其线烧蚀率仅为0.08mm/20sec,各项指标均超过同尺寸传统石墨喉衬的使用性能。研究表明,钨喉衬各部位烧蚀形貌及烧蚀机理存在明显差异,收敛段以机械剥蚀为主,热化学烧蚀为辅;喉部则机械剥蚀、熔化烧蚀及热化学烧蚀等三种机理并存,其烧蚀最为严重;而扩散段则为热化学烧蚀,其烧蚀程度最低。
     6.采用高能球磨、喷雾干燥造粒及感应烧结的工艺路线制备了95W-3.5Ni-1.5Fe复合喷涂粉末,采用等离子喷涂近净成形技术制备了高密度合金薄壁回转体,研究了真空固相烧结及真空液相烧结对其显微结构和力学性能的影响。
     等离子喷涂成形高密度合金致密度为87.70%、显微硬度为388.0HVo.025、拉伸强度为102.6MPa、延伸率接近零。经1200、1300℃烧结后无液相形成,成形件仍保持原始的层片结构特征;1400℃烧结时仅产生少量液相,难以进行有效的颗粒重排,沉积层仍为层片结构,成形件断口以沿晶断裂为主;1465℃烧结时由于大量液相的产生,颗粒重排迅速发生,沉积层由原始的层片结构转变为类球形钨颗粒与网状Y相组成的两相合金组织,致密度、显微硬度、拉伸强度及延伸率分别提高至98.05%、493.5HVo.025、567.1MPa和5.7%,断口呈现以沿晶断裂为主、穿晶断裂为辅的断裂方式;当温度进一步升高至1485及1500℃时,钨颗粒显著长大,γ相蒸发加剧,成形件断口均以沿晶断裂为主,其显微硬度、拉伸强度及延伸率等性能反而有所降低。
     提出并验证了一个由早期固相烧结及再结晶阶段、液相生成与渗透阶段、溶解-析出Ⅰ阶段、颗粒重排阶段、溶解-析出Ⅱ、固相骨架形成和晶粒长大阶段等五个阶段组成的等离子喷涂成形高密度合金烧结致密化机制。
Tungsten and tungsten alloys are special materials of high melting point, high density, excellent strength, good ductility and toughness. Parts of near-net-shape tungsten and tungsten alloys such as heating element, crucible, rocket nozzle, kinetic energy penetrators, counter weight balances, radiation shields, and electrical contacts have been developed and found wide applications in national defence, chemical processing, mechanical engineering, airplane and aerospace industries. In addition, the consumption of tungsten resource is getting more and more serious for high speed increasing of economy. And now tungsten resource is in short supply, which leads to increasing of unit price. However, conventional industrial methods such as powder metallurgy (PM), chemical vapor deposition (CVD), physical vapor deposition (PVD) and self-propagating high-temperature synthesis (SHS) are difficult to fabricate large-scale or thin-walled W or W-based parts with complex shape due to their ultra-high melting point and high ductile-to-brittle transition temperature. People have long wished to develop a new and effective fabrication method to produce W or W-based parts of desired shapes and density. Capable of making high quality near-net-shape parts, plasma spray forming (PSF) has then come into play as a potential fabrication method of choice for W or W-based alloys. In this work, thin-walled or large-scale parts with complex shape including W nozzle, W crucible, W and W/Re alloy heating element, W shaped charge liner, W throat,95W-3.5Ni-1.5Fe thin-walled cylinder and so on were fabricated by PSF. The relationships between microstructure and mechanical properties including granularity, relative density, micro-hardness, elongation and ultimate tensile strength (UTS) of PSF deposits before and after vacuum sintering, hot isostatic pressing (HIPing) and rotary swaging were investigated in detail. In addition, densification mechanism of PSF deposits was deeply discussed. The main contents and conclusions of this thesis were shown as follows:
     1. The influences of spray power and spray distance on microstructures of PSF W deposits were systematically investigated. The optimized spray power, spray distance and hydrogen flowrate were 40 kW, 150 mm and 50 L/h, respectively. The pore ratio, relative density, micro-hardness, UTS and compressive strength of PSF W parts were 7.5 %,88.5%,341.7 HV0.025,55.1 MPa and 581.3 MPa, respectively. During PSF, all kinds of cracks were formed owing to increasing of wall thickness of PSF parts. And spraying parameters optimization, intermittent spraying and inert gas (pure Ar or N2) protection could be used to prevent formation of cracks.
     2. The behaviors and mechanisms of HIPing of PSF W parts were investigated in detail. The relative density of PSF W deposits increased with HIPing pressure and dwell time owing to mitigation or elimination of micro-pores and gaps which resulting in increase of micro-hardness and UTS. After two-step HIPing, relative density, micro-hardness, UTS and compressive strength of PSF parts were increased to 96.7%,547.8 HV0.025,245.3 MPa and 1443.5MPa, respectively. A six-staged mechanism of HIPing for PSF parts including heating up, recrystallization, lamella rearrangement, elastic contiguity, plastic yielding and creeping was proposed and discussed. However, lamellar structure with distinct layer boundaries was retained in HIPed samples. As a result, HIPing temperature should be increased to mitigate or eliminate these defects.
     3. "Re effects" of PSF 95W-5Re alloys was deeply investigated. We found out that tungsten grain growth in high temperature environment could be controlled owing to fine-grain strengthening effects of Re addition. Differing from elastic deformation of W parts, W/Re alloy products deformed in an elastic-plastic mode under cold pressing. In addition, mechanical properties of PSF W/Re alloys were increased with sintering time. After vacuum sintering at 2300℃for 6h, micro-hardness, UTS, compressive strength and yield strength of PSF W/Re alloys (increased up to 490.8HV0.025,384.5MPa,1922.5MPa and 947.4MPa, respectively) were much higher than those of W parts.
     4. The PSF W parts were densificated by vacuum sintering and rotary swaging. After sintering at 2300℃for 6h, the deposits with significant grain growth transformed from lamellar into granular structure. And relative density, micro-hardness and UTS were increased to 97.9%, 381.5HV0.025 and 228.5MPa, respectively. The total compression ratio of molybdenum based W deposits was 21% after two step deformation. After vacuum sintering and rotary swaging, relative density and micro-hardness of PSF W deposits increased to 98.5% and 620.4HV0.025, respectively. In addition, the deformation content of W deposits was decreased from the exterior to the interior. As a result, microstructure of W deposits after rotary swaging was inhomogeneous.
     5. The resistance of thermal shock and ablation behavior of PSF W nozzle thorat was investigated by firing test onΦ118mm solid rocket motor (SRM). After firing test, the specimen has entire form with no macro-cracks being formed, which indicates that W nozzle throat has good resistance to thermal shock and ablation. The line ablation rate of throat was only 0.08mm/20sec. Ablation morphologies and mechanisms of convergence, laryngeal and dilation segments are different for different temperature, velocity and concentration of propellant. The primary and secondary ablation mechanisms of convergence segment were mechanical erosion and chemical ablation, respectively. Ablation of laryngeal segment was the most serious for combinative results of mechanical erosion, melted ablation and chemical ablation. In addition, ablation of dilation segment was the slightest owing to being dominated by chemical ablation only.
     6.95W-3.5Ni-1.5Fe composite feedstock was fabricated by high energy ball milling, spray drying and induction sintering. Then tungsten heavy alloy parts such as thin-walled open cylinders were fabricated by PSF. Influences of vacuum sintering on microstructure and mechanical properties of PSF deposits were studied.
     Relative density, micro-hardness and UTS of PSF parts (with no measurable elongation) were 87.70%,388.0HV0.025 and 102.6MPa, respectively. Without liquid phase formation, initial lamellar structure was remained in tested samples after sintering at 1200 and 1300℃. At 1400℃, which is located between solidus-liquidus temperature with certain amount of liquid phase attending sintering, initial lamellae with intergranular rupture was presented in fracture surface. While sintering at 1465℃, initial lamellar structure disappeared within 5 minutes and turned into two phase composites with coarsened spheroidal W grains dispersed and embedded in y phase. Relative density, micro-hardness, UTS and elongation were increased to 98.05%,493.5HV0.025,567.1MPa and 5.7%, respectively. And the fracture surface was dominated by intergranular rupture and ductile avulsion of y phase. The decrease of micro-hardness, UTS and elongation were attributed to quick vaporization of y phase and W particles coarsening as sintering temperatures increasing up to 1485 and 1500℃. And fracture surfaces were dominated by intergranular rupture again.
     A five-stage sintering mechanism including solid state sintering and recrystallization, liquid phase formation and infiltration, solution and precipitation, particle rearrangement, solution-precipitation and coalescence was proposed and double checked by experimental results.
引文
[1]稀有金属应用编写组.第一版.北京:冶金工业出版社,1974:25~28
    [2]白淑文,张胜华.钨钼丝加工原理.第一版.北京:轻工业出版社,1983:8-10
    [3]稀有金属材料加工手册编辑组.稀有金属材料加工手册.北京:冶金工业出版社,1982
    [4]吕文树.小发动机钨渗铜喉衬的烧蚀冲刷探讨.推进技术,1986,(3):15-19
    [5]宋桂明,周玉,王玉金,雷延权.固体火箭发动机喉衬材料.固体火箭技术,1998,21(2):51~55
    [6]胡昌义,邓德国,高逸群,尹志民.CVD铱涂层/铼基复合喷管研究进展.宇航材料工艺,1998,3:7-10
    [7]张全孝,高云,贾万明,陈继森.机械合金化铜-钨药型罩材料的研究.兵器材料科学与工程,2000,23(3):44-50
    [8]吴志盈,窦永庆.稀土用钨坩埚的研制.稀有金属快报,2001,(1):21-22
    [9]吴德荣.发热体的动向.工业炉,1995,77(3):57-58
    [10]J. J. Park. Creep strength of a tungsten-rhenium-hafnium carbide alloy from 2200 to 2400K. Materials Science and Engineering A,1999,265(1~2):174~ 178
    [11]S. W. H. Yih, C. T. Wang. Tungsten sources, metallurgy, properties and applications. New York, Plenum Press,1979
    [12]付洁,李中奎,郑欣,张廷杰,张小明,丁旭,袁晓波.钨及钨合金的研发和应用现状.稀有金属快报,2005,11:11-15
    [13]夏耀勤,王鼎春,王敬生.掺杂稀土元素的高温钼合金的研究.中国钼业,2001,(4):76~78
    [14]J. C. Carlen, B. D. Bryskin. Rheniunra unique rare metal. Material Manufacture Process,1994,9(6):1087~1104
    [15]B. D. Bryskin. Rhenium and its alloys.Advanced Materials & Process,1992, 142(3):22~27
    [16]G. A. Geach, J. E. Hughes. The alloys of rhenium with molybdenum or with tungsten and having good high temperature properties.2nd Plansee Seminar (ed. By Benesovskyf), Pergamon, London,1956
    [17]王芦燕,王从曾,马捷,侯艳艳.化学气相沉积钨铼合金工艺研究.中国表面工程,2006,19(6):39~42
    [18]E. Y. Ivanov, C. Suryanarayana, B. D. Bryskin. Synthesis of a nanocrystalline W-25 wt.% Re alloy by mechanical alloying. Materials Science and Engineering A,1998,251(1-2):255~261
    [19]谭强.铼及铼合金在高技术工业中的应用.稀有金属与硬质合金,1992,(110):48~51
    [20]郭宏勤,廖雷,苟宝梅.抗震钨铼丝的研制.稀有金属快报,2007,26(2):32-35
    [21]马运柱.纳米级钨基复合粉末的制备及其合金特性研究:[博士学位论文].长沙:中南大学,2004
    [22]R. M. German, K. S. Churn. Sintering Atmosphere Effects on the Ductility of W-Ni-Fe Heavy Metals. Metallurgical Transaction A,1984,15A(4):747~750
    [23]E. Ariel, J. Barta, P. Brandon. Powder Metallurgical International,1973,5:126 ~130
    [24]马运柱,刘文胜,范景莲,黄伯云.镧-钇对纳米粉90W-Ni-Fe合金显微组织和性能的影响.中国有色金属学报,2007,17(9):1434-1439
    [25]李鹏.高密度钨合金研究现状与发展趋势.稀有金属与硬质合金,2004,32(3):32-35
    [26]王国栋,郭让民,冯宝奇,赵鸿磊,刘建章.W-Ni-Fe断裂行为与断口形貌分析.稀有金属,2005,29(1):115-118
    [27]王琴华.科学发展钨钼业.中国金属通报,2005,46:14-17
    [28]V. Piotter, B. Zeep, P. Norajitra, R. Ruprecht, A. V. D. Weth, J. Hausselt. Development of a powder metallurgy process for tungsten components. Fusion Engineering and Design,2008,83(10~12):1517~1520.
    [29]杨西,杨玉华.化学气相沉积技术的研究与应用进展.甘肃水利水电技术.2008,44(3):211-213
    [30]马捷,毕安国,王从曾,周美玲.化学气相沉积制备钼钨合金.真空科学与技术学报,2005,25(3):229~232
    [31]李汉广,彭志辉.氟化物CVD法直接制取特纯高致密异型钨制品.稀有金属材料与工程,1994,23(6):74-77
    [32]李汉广.独联体国家的难熔金属氟化物化学气相沉积技术.稀有金属与硬质合金,1994,(119):59-62
    [33]J. P. Wittenauer, T. G.Nieh, J. Wadsworth. Tungsten and Its Alloys. Advanced Materials Process,1992,142(3):28~37
    [34]S. W. H. Yia, C. T. Wang. Tungsten, Plenum Press,1979
    [35]莫继良.物理气相沉积(PVD)涂层的摩擦学行为研究:[博士学位论文].重庆:西南交通大学,2008
    [36]郑伟涛.薄膜材料与薄膜技术.化学工业出版社,北京,2004
    [37]戴达煌,周克崧,袁镇海.现代材料表面技术科学.冶金工业出版社,北京,2004
    [38]Y. Miyamoto, M. Koizumi, O. Yamada. High-pressure self-combustion sintering for ceramics. Journal of the American Ceramic Society,1984, 67(11):224~225
    [39]G. Merzhanov, I. P. Borovinskaya. New class of combustion process. Combustion Science and Technology,1975,10(5-6):195~201
    [40]M. Ouabdesselam, Z. A. Munir. The sintering of combustion-synthesized titanium diboride. Journal of Materials Science,1987,22(5):1799~1807
    [41]B. Manley, J. B. Holt, Z. A. Munir. Sintering of Combustion- systhesized Titanium Carbide. Materials Science Research,1984,16:303~316
    [42]Yamada, Y. Miyamoto, M. Koizumi. High pressure self-combustion sintering of silicon carbide. American Ceramic Society Bulletin,1985,64(2):319~321
    [43]曹雯,陈祖熊.热爆SHS法制备金属陶瓷块体工艺过程研究.华东理工大学学报,1997,23(1):73~78
    [44]黄培云,金展鹏,陈振华.粉末冶金基础理论与新技术.中南工业大学出版社,长沙,1995
    [45]吴子健,张虎寅,堵新心,吕艳红.大直径钨管发热体等离子喷涂成形制造技术.粉末冶金工业,2005,15(5):1-4
    [46]R. M. German. Sintering Theory and Practice. Wiley, New York, NY,1996:230 ~235
    [47]V. M. Hovis, Jr. Kingston, W. G. Northcutt, Jr. O. Ridge. Method of Fabricating Thin-walled Articles of Tungsten-Nickel-Iron Alloy. US Patent 4 332 617,1 Jun 1982
    [48]郭让民.高纯钨溅射靶材制取工艺研究.稀有金属材料与工程,1998,27:70~72
    [49]孔昭庆.中国钨矿业资源现状与可持续发展.中国矿业,2001,10(1):29-31
    [50]欧小龙,李自如.国有钨矿山现状及发展对策浅析.湖南有色金属,2000,16(3):51~53
    [51]曾昭明.末期国有钨矿山的生存与发展.中国有色金属,2010,(12):34-35
    [52]徐栋.钨的现在和未来.中国有色金属,2010,(6):32~33
    [53]安秀清.国土资源部关于下达2010年钨、锑和稀土矿开采总量控制指标的通知.稀土信息,2010,38(4):27-28
    [54]刘晓秋,陈敏,张宁.制造加工中的金属近净成形技术.中国科技信息,2007,(26):290~292
    [55]朱有利.采用热喷涂进行金属陶瓷复合材料的近净成形.表面工程,1997,(4):45-47
    [56]曾晓雁,吴懿平.表面工程学.机械工业出版社,北京,2001
    [57]高荣发.热喷涂.化学工业出版社,北京,1992
    [58]王文权.等离子喷涂纳米陶瓷热障涂层组织与性能研究:[博士学位论文].长春:吉林大学,2005
    [59]徐滨士,李长久,刘世参,马世宁.表面工程与热喷涂技术及其发展.中国表面工程,1998,11(1):3~10
    [60]P. D. Prichard, R. P. Dalal. "Spraycast-X Superalloy for Aerospace Applications" Proceedings of Superalloys 1992. S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, P.D. Kissinger, D.L. Klarstorm, The minerals, metals and materials society,1992:205-214
    [61]M. Thorpe. Spray time,2000,72:22~25
    [62]S. Matthews, M. Hyland, J. de Reuck. Spray time,2001,81:6~7
    [63]米青田,陈建平,冯耀坤.爆炸喷涂技术的发展及应用.材料工程,1990,(6):1~5
    [64]吴和元,孙金贵.爆炸喷涂技术的现状和应用.湖南冶金,2002,(6):3-5
    [65]D. W. Parker, G. L. Kutner. HVOF-Spray Technology Poised for Growth. Advanced Materials & Processes.1991,139(4):68~74
    [66]D. D. Marios, M. G. Nasr, S. L. Adrienne. Kinetic modeling of phase selection during non-equilibrium solidification of a tunsten-carbon system. Acta Materialia, 2002,50(6):1421~1432
    [67]C. J. Li, Y. Y. Wang, T. Wu. Effect of types of ceramic materials in aggregated powder on the adhesive strength of high velocity oxy-fuel sprayed ceramic coatings. Surface and Coatings Technology,2001,145(1~3):113~120
    [68]解永杰,牛二武,曹晓明.超音速火焰喷涂技术的发展与特点.天津冶金,2004,(2):32~35
    [69]樊自栓,孙冬柏,俞宏英.超音速火焰喷涂技术研究进展.材料保护,2004,37(9):33-35
    [70]徐宾士,米绍华.表面工程理论与实践.机械工业出版社,北京,1994
    [71]徐宾士,刘世参.表面工程.机械工程出版社,北京,2000
    [72]范群波,王鲁,王富耻.等离子喷涂过程中飞行颗粒熔化状态的数值仿真.兵工学报,2005,26(4):510-514
    [73]宫文彪.等离子喷涂三元纳米ZrO2-Y2O3/CeO2热障陶瓷涂层组织与性能研究:[博士学位论文].长春:吉林大学,2007
    [74]李行志,胡树兵.等离子喷涂的发展及其应用.湖北汽车工业学院学报,2004,18(2):35-38
    [75]邓世均.高科技时代的热喷涂技术.材料保护,1995,28(8):12-15
    [76]王宁,耿泰,曹晓明.等离子喷涂及梯度功能材料研究进展.天津冶金,2004,(2):29~31
    [77]Sharama. Microwave processing of sprayed alumina composite for enhanced performance. The European Ceramic Society,2002,22(16):2849-2860
    [78]J. Wen, Y. Leng, J. Y. Chen. Chemical gradient in plasma-sprayed HA coatings. Biomaterials,2000,21(13):1339-1343
    [79]R. W. Smith, R. Knight. Thermal Spraying Ⅰ:Powder Consolidation-From Coating to Forming. JOM.1995,47(8):32-39
    [80]R. W. Smith and R. Knight. Thermal Spraying Ⅱ:Recent Advances in Thermal Spray Forming. JOM,1996,48(4):16-19
    [81]S. Sampath, R. Gansert, H. Herman. Plasma-Spray Forming Ceramics and Layered Composites. JOM,1995,47(10):30-33
    [82]M. Smagorinski, P. Tsantrizos, S. Grenier, M. Entezarian, F. Ajersch. The Thermal Plasma Near-Net-Shape Spray Forming of Al Composites. JOM, 1996,48(6):56-59
    [83]P. R. Taylor, M. Manrique. Investigating the Thermal-Plasma Processing of Advanced Materials. JOM,1996,48(6):43-45
    [84]E. H. Lutz. Plasma ceramics. PMI,1993,25(3):131-137
    [85]Treslon. Realization of thin shells by thermal spraying. Proceedings of ITSC'95, Kobe,1995
    [86]R. Henne, G. Schiller, V. Borck. Proceedings of ITSC'98, Nice, France
    [87]E. Rouseel, J. P. Fromentin, A. Freslon.Proceedings of ITSC'98, Nice, France
    [88]H. C. Fiedler. The spray forming of super alloys, Journal of Metallurgy,1987, 48(1):28-33
    [89]K. M. Chang, H. C. Fiedler. Spray formed high strength super alloys.in: S.Reichman et al.(Eds.),Superalloys, Metallurgical Society, Warrendale, PA,1988, pp.485~493
    [90]R. Goswami, H. Herman, S. Sampath, X. Jiang, Y. Tian, G. Halada. Plasma sprayed Mo-Mo oxide nanocomposites:synthesis and characterization. Surface and Coatings Technology.2001,141(2-3):220~226
    [91]M. V. Gopalakrishnan, M. Kenneth, R. Dany, R. Krishnamurthy. Structural characterisation and strength evaluation of spray formed ceramic composite near-net shapes. Journal of Materials Processing Technology,2003,135(2-3): 228-234
    [92]S. J. Hong, V. Viswanathan, K. Rea, S. Patil, S. Deshpande, P. Georgieva, T. McKechnie, S. Seal. Plasma spray formed near-net-shape MoSi2-Si3N4 bulk nanocomposites-structure property evaluation. Materials Science and Engineering A,2005,404(1-2):165~172
    [93]S. Sampath, R. Gansert, H. Herman. Plasma-spray forming ceramics and layered composites. JOM,1995,47(10):30-33
    [94]T. Laha, A. Agaiwal, T. McKechnie. Synthesis and Characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Materials Science and Engineering A,2004, A381(1-2):249~258
    [95]Devasenapathi, H. W. Ng, S. C. M. Yu, A. B. Indra. Forming near net shape free-standing components by plasma spraying. Materials Letters,2002, 57(4):882~886
    [96]W. Cal, H. Liu, A. Sicklnger, E. Muehlberger, D. Balley, E. J. Lavernla. Low-Pressure Plasma Deposition of Tungsten. Journal of Thermal Spray Technology,1994,3(2):135~141
    [97]K. E. Rea, V. Viswanathan, A. Kruize, J. Th. M. De Hosson, S. O'Dell, T. McKechnie, S. Rajagopalan, R. Vaidyanathan and S. Seal. Structure and property evaluation of a vacuum plasma sprayed nanostructured tungsten-hafnium carbide bulk composite. Materials Science and Engineering A,2008,477(1-2):350~357
    [98]Z. Z. Mutasim, R. W. Smith. Low Pressure Plasma Spray Deposition of W-Ni-Fe Alloy.120th TMS Annual Meeting on Recent Advances in Tungsten and Tungsten Alloys,1991:69~73
    [99]H. O. Zhang, T. Nakagawa. Injection molding tool produced by powder spray of stainless steel. Proceedings of ICRPM'98, Beijing,388~394.
    [100]邓琦林.等离子喷涂快速成形技术研究.航空精密制造技术,1999,35:11~15
    [101]徐文骥.等离子熔射成形法制造零件技术的基础研究:[博士学位论文].大连:大连理工大学,2000
    [102]方建成,徐文骥.金属陶瓷零件的近净成形技术.中国机械工程,2002,13(22):1915-1918
    [103]曾凡文,张绪虎,胡欣华,关盛勇,冯莉丽.B/A1复合材料无纬布及板材的研制,第十届全国复合材料会议,1998
    [104]张明洋.热喷涂技术及其应用.冶金设备,1994,(2):49~55
    [105]李亚男.热喷涂(焊)技术在汽车修理中的应用.人民交通出版社,北京,1992
    [106]C. C. Bemdt, R. McPherson. Adhesion measurement of films and coatings. Proceedings of the 9th International Thermal Spray Conference,1980:310~ 316
    [107]R. McPherson, B. V. Shafer. Interlamellar contact within plasma-sprayed coatings. Thin Solid Films,1982,97(3):201~204
    [108]Y. Yahiro, M. Mitsuhara, K. Tokunakga, N. Yoshida, T. Hirai, K. Ezato, S. Suzuki, M. Akiba, H. Nakashima. Characterization of thick plasma spray tungsten coating on ferritic/martensitic steel F82H for high heat flux armor. Journal of Nuclear Materials,2009,386~388:784~788
    [109]R. McPherson. A model for the thermal conductivity of plasma-sprayed ceramic coatings. Thin Solid Films,1984,112(1):89~95
    [110]J. Li, Y. Zhang, J. Huang, C. Ding. Mechanical and tribological properties of plasma-sprayed Cr3C2-NiCr, WC-Co and Cr2O3 coatings. Journal of Thermal Spray Technology,1998,7(2):242~246
    [111]Ohmori, C. J. Li, Y. Arata. Influence of plasma spray conditions on the structure of Al2O3 coatings. Transcations Japanese Weld Research Institute, 1990,19:259~270
    [112]H. Greuner, H. Bolt, B. Boswirth. Vacuum plasma-sprayed tungsten on EUROFER and 316L:results of characterisation and thermal loading tests. Fusion Engineering and Design,2005,75~79(suppl):333~338
    [113]季珩,黄利平,胡德扬,牛亚然,郑学斌,丁传贤.大气和真空等离子喷涂钨涂层比较研究.有色金属(冶炼部分),2008,(z1):57-60
    [114]李德元,宋丹,赵玲彦,关升.可控气氛热喷涂沉积层的成分及组织分析.沈阳工业大学学报,2009,31(1):40-44
    [115]李德元,宋丹,张广伟,张忠礼,赵慧美.可控气氛喷涂钛涂层及涂层电化学性能.沈阳工业大学学报,2010,32(1):36~40
    [116]R. Mcpherson. A review of microstructure and properties of plasma sprayed ceramic coatings. Surface and Coatings Technology,1989,39~40(1-3):173~ 181
    [117]H. Kuribayashi, K. Suganuma, Y. Miyamoto, M. Koizumi. Effects of HIP treatment on plasma-sprayed ceramic coating onto strainless steel. American Ceramic Soceity Bulletin,1986,65(9):1306~1310
    [118]K. A. Khor, Y. Murakoshi, M. Takahashi, T. Sano. Microstructure change in plasma sprayed TiAl coatings after hot isostatic pressing. Journal of Materials Science Lettters,1986,15:1801~1804
    [119]杨晖,王良.等离子喷涂工艺参数对粒子速度和温度的影响.热加工工艺,2007,36(11):44-47
    [120]K. Fischer Seemann, E. Lugscheider. Investigation of atomspheric plasma spray process by inflight-particle pyrometry and thermal ography. ITSC,2002
    [121]E. Lugscheider, N. Papenfu β-Janzen. Simulation of the influence of spray parameters on particle properties in APS. ITSC,2002
    [122]王赫莹,李德元,吴卫枫.等离子喷涂送粉参量对粉末粒子运动行为的影响分析.表面技术,2005,34(5):40-42
    [123]J. Wilden, H. Frank, J. P. Bergmann. Process and microstructure simulation in thermal spraying. Surface and coatings technology,2006,201(5):1962~1968
    [124]王娜,王全胜,王富耻.等离子喷涂ZrO2热障涂层工艺参数优化设计.中国表面工程,2004,17(3):13-16
    [125]冯拉俊,曹凯博,雷阿利.等离子喷涂陶瓷粒子加热加速行为的数值模拟.热加工工艺,2006,35(11):46~48
    [126]L. Pawlowsky. The science and engineering of thermal spray coatings. Wiley, New York,1995
    [127]蒋驰,肖云峰,税毅,王术刚.等离子喷涂工艺对钽/钨复合涂层组织结构的影响.材料保护,2000,38(8):45-48
    [128]C. Jiang, J. L. Zhou, Y F. Xiao, Y. Shui, S. G. Wang, C. R. Liu. Effects of plasma spray parameters on structure of Ta/W/Sn multilayer coatings. Rare Metgal Materials and Engineering,2003,32(7):554~557
    [129]M. Scholl, P. Clayton. Abrasive and erosive wear of some hypervelcity air plasma sprayed coatings. Prceedings of the Fourth National Thermal Spray Conference. Pittsburg, PA, USA,1991:39~52
    [130]G. Barbezat, A. R. Nicoll, A. Sickinger. Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coating for different applications. Wear,1993,162~164:529~537
    [131]李剑锋.等离子喷涂Cr3C2-NiCr涂层的性能研究.中国科学院上海硅酸盐研究所出版社,上海,1999
    [132]张纯清.陶瓷材料的力学性能.科学出版社,北京,1987
    [133]周伟,邱长军,何彬,樊湘芳,杜艳玲.高强度涂层结合性能的试验研究.南华大学学报,2005,19(2):23~25
    [134]周伟,邱长军,杜艳玲,何彬,樊湘芳.热喷涂烧结层结合性能评价界面应力有限元分析.新技术新工艺,2005,5:69-71
    [135]M. Vardelle, A. Vardelle, A. C. Leger. Influence of particle parameters at impact on splat formation and solidification in plasma spraying process. Journal of Thermal Spray Technology,1994,4(1):50~58
    [136]J. M. Houben, G. G. Liempd. Metallurgical interactions of Mo and steel during plasma spraying. DVS Berichte,1983,80:66~71
    [137]伍超群,周克崧,邓畅光.浅谈热喷涂涂层残余应力的测试技术.表面技术,2005,34(5):82~83
    [138]S. Kuroda, T. W. Clyne. The queching stress in thermally sprayed coatings. Think Solid Films,1991,200(1):49~66
    [139]刘红兵.316L不锈钢基材防氚渗透A1203涂层残余应力测试与数值模拟:[硕士学位论文].南京:南京航空航天大学,2007
    [140]郑扣松.HA生物活性梯度涂层的制备和性能研究:[硕士学位论文].武汉:华中科技大学,2006
    [141]Y. C. Tsui, T. W. Clyne. An analytical model for predicting residual stresses in progressively deposited coatings, Part 1:Planar geometry. Thin Solid Films, 1997,306(1):23-33
    [142]黄晨光,段祝平,吴承康.热喷涂构件中残余应力的理论分析.工程力学,2002,19(4):135~140
    [143]王志平,董祖珏,李丽,韩松.热喷涂涂层残余应力的测试与分析.焊接学报,1999,20(4):278~285
    [144]姜祎,徐滨士,王海斗.热喷涂层残余应力的产生及其失效形式.第六界全国表面工程学术会议,兰州,2006:50~54
    [145]H. D. Hanes, D. A. Seifert, C. R. Watts. Hot Isostatic Prcessing. Report: MCIC-77-34, Battelle Columbus Laboratories Ohio Metals and Ceramics Information Center,1977
    [146]R. R. Wills, M. C. Brckway, L. G. McCoy. Hot Isostatic Pressing of Ceramic Materials. Materials Science Research,1984,17:559~570
    [147]F. X. Zimmerman. Development of HIP systems used with various gases. Powder Metallurgy International,1984,16(1):27~33
    [148]X. Liu, S. Tamura, K. Tokunaga, N. Yoshida, N. Noda, L. Yang, Z. Xu. High heat flux properties of pure tungsten and plasma sprayed tungsten coatings. Journal of Nuclear Materials,2004,329-333:687~691
    [149]G. K. Watson, T. J. Moore, M. L. Millard. Effect of hot isostatic pressing on the properties of sintered alpha silicon carbide. American Ceramic Society Bulletin, 1985,64(9):1253~1256
    [150]E. S. Hodge. Elevated-Temperature Compaction of Metals and Ceramics by Gas Pressure. Powder Metallurgy,1964,7(14):168~201
    [151]H. Fischmeister. Isostatic hot compaction-a review. Powder Metallurgy International,1978,10(3):119~123
    [152]Q. Wei, L. J. Kecskes. Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten. Materials Science and Engineering A,2008, 491(1-2):62~69
    [153]V. Plotter, B. Zeep, P. Norajitra, R. Ruprecht, A. Weth, J. Hausselt. Development of a powder metallurgy prrocess for tungsten components. Fusion Engineering and Design,2008,83(10-12):1517~1520
    [154]D. S. Wilkinson, M. F. Ashby. Mechanism mapping of sintering under an applied pressure. Science of Sintering,1978,10(2):67~76
    [155]E. Arzt, M. F. Ashby, K. E. Easterling. Practical Applications of Hot-isostatic Pressing Diagrams-Four Case Studies. Metallurgical Transactions A,1983, 14A(2):211~221
    [156]F. B. Swinkels, D. S. Wilkinson, E. Arzt, M. F. Ashby. Mechanisms of hot-isostatic pressing. Acta Metallurgica,1983,31(11):1829~1840
    [157]S. Helle, K. E. Easterling, M. F. Ashby. Hot-isostatic pressing diagrams:new developments. Acta Metallurgical,1985,33(12):2163~2174
    [158]黄培云.粉末冶金原理(第二版).冶金工业出版社,北京,2004
    [159]马福康.等静压技术.冶金工业出版社,北京,1992
    [160]K. A. Khor, C. S. Yip, P. Cheang. Post-spray hot isostatic pressing of plasma sprayed Ti-6Al-4V/hydroxyapatite composite coatings. Journal of Materials Processing Technology,1997,71(2):280-287
    [161]F. Akhtar. An investigation on the solid state sintering of mechanically alloyed nano-structured 90W-Ni-Fe tungsten heavy alloy. International Journal of Refractory Metals and Hard Materials,2008,26(3):145-151
    [162]胡德昌,雷泽英.面向21世纪的难熔金属.宇航材料工艺,1995,(1):1~5
    [163]杨凯,曹彪,余文捷.汽车车灯的精密电阻点焊.电焊机,2010,40(2):139~141
    [164]崔忠圻,刘北兴.金属学与热处理原理.哈尔滨工业大学出版社,哈尔滨,1998
    [165]Z. K. Liu, Y. Austin Chang. Evaluation of the thermodynamic properties of the Re-Ta and Re-W systems. Journal of Alloys and Compounds,2000, 299(1-2):153-162
    [166]胡庚华,蔡殉,戎咏华.材料科学基础(第二版).上海交通大学出版社,上海,2006
    [167]J. L. Fan, X. Gong, B. Y. Huang, M. Song, J. M. Tian. Densification behavior of nanocrystalline W-Ni-Fe composite powders prepared by sol-spray drying and hydrogen reduction process. Journal of Alloys and Compounds,2010, 489(1):188-194
    [168]胡德昌,胡滨.航天航空用新材料—难熔金属及其合金.航天工艺,1996,3:34-40
    [169]王发展,诸葛飞,张晖丁,秉钧.旋锻法制备高掺杂Th02纳米颗粒的W热阴极材料的结构与性能.稀有金属材料与工程,2004,33(5):465~472
    [170]周国安,张守全,黄继华.旋锻对钴、锰微合金化93W合金性能和组织的影响.粉末冶金技术,1997,15(3):178~181
    [171]李志,杨蕴林.高比重钨合金的旋锻形变强化.兵器材料科学与工程,1998,21(2):56~59
    [172]李英雷,胡时胜,魏志刚.大变形锻造钨合金动态力学性能研究.兵工学报,2003,24(3):378~380
    [173]史洪刚,齐志望,郭志俊.锻造变形量对钨合金材料性能的影响.兵器材料科学与工程,1998,21(4):3-6
    [174]S. N. Mathaudhu, A. J. deRosset, K. T. Hartwig, L. J. Kecskes. Microstructures and recrystallization behavior of severely hot-deformed tungsten. Materials Science and Engineering A,2009,503(1~2):28~31
    [175]Y. L. Xu, B. Long, Y. C. Xu, H. Q. Li. Investigation of the compatibility of tungsten and high temperature sodium. Journal of Nuclear Materials,2005, 343(1~3):360~365
    [176]M. C. Hogwood, A. R. Bentley. The development of high strength and fibrous microstructure in tungsten-nickel-iron alloys for kineticenergy penetrator applications. Proceedings of Tungsten Refractory Metal,1994:37~45
    [177]稀有金属材料编写组.稀有金属材料加工手册.冶金工业出版社,北京,1984
    [178]张建德.细晶粒钼棒材的制备和力学性能研究:[硕士学位论文].长沙:中南大学,2004
    [179]韦福水.热喷涂技术.机械工业出版社,北京,1986
    [180]宋玉芬,姚树人.涂层与基体金属附着力的研究发展.材料保护,1999,32(9):21~22
    [181]吴尉,杨启法,郑建平.Mo-3Nb单晶与钨涂层界面互扩散层显微分析.原子能科学技术,2003,37(suppl):135-139
    [182]余宗森,田中卓.金属物理.冶金工业出版社,北京,1982
    [183]吴维治.我国钨钼行业现状及对策.中国钨业,2000,15(1):35~38
    [184]曹琦,张二召,吴维治.钼及钼合金热加工工艺对制品性能与能耗影响初探.有色金属加工,2007,36(2):40-42
    [185]罗明,范景莲,成会朝,田家敏,卢明园.旋锻对Mo-Ti-Zr合金性能及显微组织的影响.中南大学学报,2010,20(5):866~871
    [186]崔振山,任广升,徐秉业.圆柱体内部空洞的热锻闭合条件.清华大学学报,2003,43(2):227~229
    [187]邝用庚,牟科强.改善钨渗铜喉衬的高温尺寸稳定性研究.稀有金属材料与工程,1997,26(5):30-34
    [188]张栋,柴志刚.发动机喉衬失效分析.失效分析与预防,2007,2(4):26~30
    [189]K. Upadhya, J. Yang, W. Hoffman. Advanced Materials for Ultrahigh Temperature Structural Applications Above 2000℃. AFRL-PR-ED-TP-1998-007,1997, p.23
    [190]T. A. Jackson, D. R. Eklund, A. J. Fink. High speed propulsion:performance advantage of advanced materials. Journal of Materials Science,2004, 39(19):5905-5913
    [191]G. M. Song, Y. J. Wang, Y. Zhou. Elevated temperature ablation resistance and thermophysical properties of tungsten mantrix composites reinforced with ZrC particles. Journal of Materials Science,2001,36(19):4625-4631
    [192]G. M. Song, Y. J. Wang, Y. Zhou. The mechanical and thermophysical properties of ZrC/W composites at elevated temperature. Materials Science and Engineering A,2002,334(1-2):223-232
    [193]黄海明,杜善义,吴林志,王建新.C/C复合材料烧蚀性能分析.复合材料学报,2001,18(3):76~80
    [194]王玉金,周玉,宋桂明,雷廷权.ZrCp/W复合材料在发动机试车条件下的热震烧蚀性能.固体火箭技术,2003,26(3):62-65
    [195]宋桂明,王玉金,周玉,郭英奎,温广武.ZrCp/W复合材料的烧蚀性能.稀有金属材料与工程,2001,30(6):101~104
    [196]C. J. Li, A. Ohmori, Y. Haradacoatings. Effect of powder structure on the structure of thermally sprayed WC-Co coatings. Journal of Materials Science,1996,31(3):785-794
    [197]D. A. Stewart, P. H. Shipway, D. G. McCartney. Micro structural evolution in thermally sprayed WC-Co coatings:comparison between nanocomposite and conventional starting powders. Acta Materialia,2000,48(7):1593-1604
    [198]吴朝军,杨杰.粉末特性对HVOF喷涂碳化钨涂层性能的影响.2002全国热喷涂技术研讨会论文集.南宁:全国热喷涂协作组,2002,140-147
    [199]T. Sudaprasert, P. H. Shipway, D. G. McCartney. Sliding wear behaviour of HVOF Sprayed WC-Co coatings deposited with both gas-fuelled and liquid-fuelled systems. Wear,2003,255(2):943~949
    [200]张敬国,蒋显亮.烧结破碎法制备超细晶粒WC-17%Co热喷涂粉末.中国粉体技术,2005,(4):24~27
    [201]M. F. Besser, D. J. Sordelet. Spheroidization of WC-W2C powders by plasma spray processing. Journal of Materials Synthesis and Processing,1995, 3(4):223-230
    [202]T. Kameyama, T. Tsunoda, A. Motoe. Preparation of ultrafine WC1-x powder in a R.F. thermal plasma and its properties. Journal of Japan Society of Powder and Powder Metallurgy,1991,38(2):109-113
    [203]M. I. Boulos, X. L. Jiang. Effect of process parameters on induction plasma reactive deposition of tngsten carbide from tungsten metal powder. Transactions of the Nonferrous Metals Soceity of China,2001, 11 (5):639-643
    [204]G. Y. Zhao, V. V. S. Revankar, V. Hlavacek. Preparation of tungsten and tungsten carbide submicron powders in a chlorine-hydrogen flame by the chemical vapor phase reaction. Journal of the Less-Common Metals,1990, 163(2):269-280
    [205]石建华.球形WC-Co喷涂粉末的制备.硬质合金,2005,22(4):202~207
    [206]B. H. Kear, G. Skandan, R. K. Sadangi. Factors Controlling Decarburization in HVOF Sprayed Nano-WC/Co Hardcoatings. Scripta Materialia,2001,44(8-9): 1703-1707
    [207]石建华,关鑫.硬质合金喷涂粉末的制备.2003国际热喷涂技术研讨会暨第十六届全国热喷涂技术经验交流会论文集.大连:全国热喷涂协作组,2003:134~138
    [208]J. S. Benjamin. Dispersion strengthened superalioys by mechanical alloying. Metall Transaction,1970,1(10):2943-2951
    [209]范景莲.钨合金极其制备新技术.冶金工业出版社,北京,2006
    [210]颜建辉.镍基高温合金二硅化钼涂层的制备与性能研究:[博士学位论文].长沙:中南大学,2009
    [211]X. Q. Cao, R. Vassen, S. Schwartz. Spray-drying of ceramics for plasma spray coating. Journal of the Europen Ceramic Society,2000,20(6):2433-2439
    [212]刘淑艳.热障涂层用氧化锆空心球形粉末:[硕士学位论文].重庆:西南大学,2008
    [213]张建新.等离子喷涂纳米结构Al2O3-13wt.%TiO2涂层组织及性能研究:[博士学位论文].石家庄:河北工业大学
    [214]李振铎,于月光,曾克里,任先京,贾贤赏.球形烧结态Cr3C2-25%NiCr复合粉末制备研究.中国表面工程,2009,19(5):182-185
    [215]F. A. Shunk. Constitution of Binary Alloys. Second Supplement, McGraw-Hill, New York, NY,1969,334,354,561
    [216]R. P.Elliott. Constitution of Binary Alloys. First Supplement, McGraw-Hill, New York, NY,1965:422-423,441-442
    [217]C. C. Koch. Intermetallic matrix composites prepared by mechanical alloying-a review. Materials Science and Engineering A,1998,244(1):39-48
    [218]张中武,陈国良,陈光,周敬恩.机械合金化制备W-Ni-Fe纳米-非晶材料.稀有金属材料与工程,2005,34(7):1139-1143
    [219]B. Riccardi, R. Montanari, M. Casadei, G. Costanza,G. Filacchioni, A. Moriani. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates. Journal of Nuclear Materials,2006,352(1-3):29-35
    [220]K. Toshihito, R. M. German. Processing Effects on the Mechanical Properties of Tungsten Heavy Alloys. International Journal of Refractory Metals and Hard Materials,1990,3:40-45
    [221]Vardelle, M. Vardelle, H. Zhang, N. J. Themelis, K. Gross. Volatilization of metal powders in plasma sprays. Journal of Thermal Spray Technology,2002,11(2):244-252
    [222]Bose, R. M. German. Sintering Atmosphere Effects on Tensile Properties of Heavy Alloys. Metallurgical Transactions A,1988,19A(10):2467-2476
    [223]C. Chausse, F. Nardou. Solid phase diffusion of W in liquid phase sintering. PM94,1545-1548
    [224]刘祖岩,于洋,王尔德.钨铜粉末材料烧结-挤压致密化研究.稀有金属,2006,30(S1):72~75
    [225]F. Akhtar. An investigation on the solid state sintering of mechanically alloyed nano-structured 90W-Ni-Fe tungsten heavy alloy. International Journal of Refractory Metals and Hard Materials,2008,26(3):145-151
    [226]R. G. O'Donnell, S. J. Alkernade, R. L. Woodward. Effects of Ceramic Type on Fragmentation Behaviour during Ballistic Impact. Journal of materials Science, 1992,27:6490-6494
    [227]C. J. Li, R. M. German. Enhanced Sintering of Tungsten-phase-equilibria Effects on Properties. The International Journal of Powder Metallurgy and Powder Technology,1984,20(2):149-162
    [228]R. Montanari, B. Riccardi, R. Volterri, L. Bertamini. Characterisation of plasma sprayed W coatings on a CuCrZr alloy for nuclear fusion reactor applications. Materials Letters,2002,52(1-2):100-105
    [229]S. Farooq, A. Bose, R. M. German. Theory of Liquid Phase Sintering:Model Experiments on W-Ni-Fe Heavy Alloy System. Progress of Powder Metallurgy, 1987,43:65-77
    [230]R. M. German. The effect of the binder phase melting temperature on enhanced sintering. Metallurgical Transaction A,1986,17A(5):903-906
    [231]R. M. German. Liquid Phase Sintering, MPIF, Princeton,1985
    [232]W. D. Kingery. Densification during Sintering in the Presence of a Liquid Phase. I. Theory. Journal of Applied Physics,1959,30(3):301~306
    [233]W. D. Kingery. Densification during Sintering in the Presence of a Liquid Phase. II. Experimental. Journal of Applied Physics,1959,30(3):307-310
    [234]W. J. Huppmann, H. Riegger. Modelling of rearrangement processes in liquid phase sintering. Acta Metallurgica,1975,23(8):965~971
    [235]Park Jong-Ku, Kang Suk-Joong L., Eun Kwang Yong, Yoon Duk N. Microstructural change during liquid phase sintering of W-Ni-Fe alloy. Metallurgical Transaction A,1989,20A(5):837~845
    [236]R. M. German. Limitations in Net Shaping by Liquid Phase Sintering. Advances in Powder Metallurgy,1991,4:183~194
    [237]范景莲,黄佰云,曲选辉,李益民.液相烧结高比重合金早期固相烧结阶段的致密化机理.中国有色金属学报,1998,8(A01):36-40
    [238]H. Danninger. The influence of the W starting powder size on sintering of tungsten heavy alloys, in:H. Bildstein, R. Eck.13th International Plansee Seminar,1993,1:405~419

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700