难加工材料热等静压近净成形工艺基础及零件性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天领域中的一些关键零件常由钛合金、镍合金等难加工材料制造而成。采用传统方法加工或成形,存在工艺难度大、材料浪费多等难题。热等静压近净成形技术结合粉末冶金与现代模具技术,在低于材料熔点的温度下,一次性整体近净成形出性能优秀的复杂零件,不仅克服了材料加工难的问题,还大大提高了材料的利用率,降低了零件制造成本。但是,热等静压粉末致密化是一个复杂的热-力耦合、复杂非线性和大变形的过程,复杂零件的控形问题,在世界范围内一直没有得到很好的解决。国内对热等静压近净成形复杂零件的研究较少,热等静压用包套(或模具)的设计及制造技术尚不成熟,阻碍了该技术的工程应用。因此,本文重点研究热等静压近净成形包套优化设计方法和制造工艺。在此基础上,以钛合金和镍合金典型复杂零件近净成形为例,对粉末热等静压致密化机理、近净成形零件的性能进行系统研究。通过这些研究,为热等静压复杂零件的工程应用奠定基础。具体研究内容及成果归纳如下:
     (1)在热等静压近净成形包套设计与制造方面:提出了基于有限元模拟和最优化方法的包套设计方法。该方法以参数化的B样条曲线进行包套构形,以模拟得到的零件形状与零件理想形状差别最小作为最优化目标函数,通过对样条曲线控制点坐标的补偿调整实现包套的设计优化。对热等静压近净成形包套制造中的共性工艺问题进行了研究与完善,建立了机械加工和快速制造技术相结合的包套制造工艺。
     (2)在粉末致密化规律方面:以Ti6Al4V合金空间十字形零件热等静压为例,研究强制控形条件下粉末致密化规律。首先对Ti6Al4V合金热等静压工艺进行研究。通过差热分析,得出Ti6Al4V合金在950℃时(+β)/β相转变反应开始变强,可作为热等静压保温温度的上限。当用厚壁包套强制控形时,粉末的致密化主要是由包套的均匀塑性变形引起的,通过厚壁包套小的变形,即可实现粉末体大的均匀收缩,从而在包套设计时,在局部位置可只考虑粉末体的尺寸收缩,不考虑形状变化,达到简化包套设计目的。
     (3)在钛合金复杂零件热等静压近净成形及零件性能方面:通过包套优化设计,近净成形出了整体相对密度达99.8%,关键尺寸误差小于1%的Ti6Al4V合金机匣零件。研究表明,在等静压条件下,粉末颗粒在边界范围发生塑性变形,形成网篮状多边形大应变带,保温时发生再结晶,形成网篮状分布的+β等轴晶,同时颗粒边界消失。颗粒内部应变小,再结晶程度低,主要以条状+β相组织为主。因此,Ti6Al4V合金粉末体最主要的致密化机理是粉末颗粒塑性变形机理和再结晶机理。热等静压Ti6Al4V合金弹性模量E、屈服强度σ0.2、抗拉强度σb和断后延伸率等指标分别达到了120MPa、1043MPa、1119Mpa和18.0%,高于ASTM标准规定的相同材料锻件最低水平。
     (4)在镍基高温合金复杂零件热等静压近净成形与零件性能方面:近净成形出了整体相对密度接近理论全密度的Inconel625合金涡轮盘。涡轮盘流道形状无畸变,表面粗糙度为Ra6.4,与控形型芯相当。研究表明,当热等静压参数为1100℃/120MPa/3h时,可以获得全致密的组织。在热等静压过程中,粉末体长时间处于碳化物析出敏感温度区间,导致碳化物析出。碳化物有两种分布形式:一种为均匀分布于晶粒内的块状或点状碳化物,对合金起强化作用;另一种为分布于晶界的链状碳化物,对合金塑性产生不利影响。综合两种碳化物影响,热等静压Inconel625合金强度较高,塑性较低。其中屈服强度σ0.2和抗拉强度σb达到了499MPa和983MPa,分别比ASTM标准规定相同材料锻件最低水平高16%和7.5%。断后伸长率δ为26.3%,比ASTM标准规定相同材料锻件最低水平低12.4%。经1100℃/30min/水冷固溶处理,合金屈服强度σ0.2和抗拉强度σb有少量下降,但断后伸长率δ达到32.8%,超过ASTM标准规定相同材料锻件最低水平。
     以上研究为难加工材料复杂零件热等静压近净成形奠定了工艺基础,为控制热等静压零件性能提供了实验依据。
Many key components used in the aerospace field are made of difficult processingmaterials such as superalloys and titanium alloys. The traditional manufacturing methodsfor these materials mean high cost and material waste. Hot Isosastic Pressing (HIP)combines powder metallurgy technology and modern mold technology, is able to getcompletely densification of the powder materials and in the mean time, generally near netshape the complex parts which performance are up to the level of homogeneity forgingparts in one process. It can not only overcome the problem of difficult-manufacturing, butalso considerably improve the utilization of expensive materials, and accordingly reducethe manufacturing cost. Parts shape control problem,namely the optimization design ofcapsule, has not yet solved perfectly worldwide due to hot isostatic pressing process is acomplicated thermo-mechanical coupling, nonlinear and large deformation process. Thestudy on HIP-net-shape forming technology is much less in China,and capsulemanufacturing process is not yet mature, thus hindered the industrial promotion andapplication of the technology. Therefore, this article focuses on the optimization designmethod of HIP-net-shape capsule and manufacturing process, and solve the commonproblems in capsule design and manufacturing. On this basis, taking the net-shape formingprocess of titanium and nickel alloy typical parts as an example, research hot isostaticpressing densification mechanism of the two kinds of difficult to cut materials,organization and performance of the net-shape forming parts. Through these studies above,lay a good theoretical basis for the promotion and application of hot isostatic pressingnet-shape forming technology.The researches and results are as follow:
     (1) Based on the thermal elastic-plastic finite element and optimization method, thepaper present an optimization design method of net-shape forming capsule under HIP. Theoptimization design method above using parameterized B-splint curve for capsuleconfiguration. and regarding the minimum difference between simulated shape and theideal shape of the final HIP parts as the optimization objective function. Research andperfect the common process problems and formed a complete set of capsule process technology consisting of capsule parts manufacturing based on machining and RapidPrototyping Technology, gas shielded welding, airtight test with helium mass spectrometer,vibration loading techniques of the power high-temperature degassing, sealing braze.Taking316L stainless disk parts as an example, verify the above capsule design andmanufacturing process. The results show that the optimization method has a guidingsignificance for optimization design and manufacturing of the capsule, and reflectsexcellent practical value.
     (2) Taking Ti6Al4V alloy space-cross part as an example, research the densificationdiscipline and the forming process of complex parts under hot isostatic pressing, aiming atthe local structure of complex parts. Combined analysis of theoretical calculation anddifferential thermal analysis,the optimal heat preservation temperature of Ti6Al4V underhot isostatic pressing is950℃. When compulsory controling shape with thick capsule forhot isostatic pressing,the power densification is caused by equal plastic forming of thecapsule, and the elastic deformation of capsule can be neglected. Thick capsule may havean “amplified” effect on the densification of local part of the product, and, there is onlycontract in size but no difference in shape between the part before and after HIP.
     (3) Taking the net-shape of casing parts of Ti6Al4V under HIP as an example,research the densification discipline, microstructure and property of titanium alloy.Through the capsule optimization design, form casing parts with relative densification of99.8%and critical dimension error of1%. The reaserch shows that the main densificationmechanism is plastic deformation mechanism of Ti6Al4V under HIP. Because of powderparticles under static pressure,plastic deformation only occur in the local area of grainboundaries,forming a polygonal large strain zone of basketweave. Recrystallizationhappens during heat preservation and forms basket-distributed equiaxed grain and grainboundaries disappeare. The internal strain of the particles is relatively smaller, exists lessrecrystallization, where mainly exists strip shaped+β phase.The static strength andductility of Ti6Al4V under HIP are excellent due to fine microstructures and uniformcomposition, and its elastic modulus, yield strength, tensile strength and elongation afterfracture amount respectively to120MPa,1043MPa,1119MPa, and18%, which are allhigher than the minimum requirement of forgings of ASTM.
     (4) Taking the net-shape of turbine disk parts of Inconel625under HIP as example,research the densification discipline, microstructure and property of Ni-BaseSuperalloy.The relative density of integral formed turbine disk approachs to theoreticaldensity with runner shape undistorted and surface roughness comparable with capsule.The interrupted experiment shows the theoretical relative density is get with matrixorganization of austenitic organization and its size is equal with particle size, when theHIP parameters are1100℃,120MPa and3h, carbide precipitation happens during HIPprocess due to the powder compact is under critical temperature range of carbideprecipitation for a long time.Carbide distribute at the powder original grain boundaries inform of chain and inside grain in form of massive and in punctiform. Inconel625partsunder HIP have high strength, low plasticity due to the existence of much carbide. Theyield strength σ0.2and tensile strength σbrespectively amount to499.12MPa and983.38Mpa, respectively16%and7.5%higher than the requirement of ASTM, and theelongation after fracture is a little lower. After solution treatment, the alloy hardnessdecrease slightly and strength maintain equivalence and plastic has improved significantly.For the hipped Inconel625part with sectional dimensions of2mm×5mm, length90mm,the best solution process are1100℃30min/water cooled, compared to the formertreatment one, its hardness decreases by4.9%, no obviously difference in room temperatestrength and elongation increases by25.8%.
     Through the above research, provide an effective theoretical method and processroute for optimization design and manufacturing of HIP-net-shape capsule.Provides asuccessful example for HIP-net-shape forming of difficultly processing materials.Provides the experimental data for assessing and improving HIP parts of titanium andnickel alloy.
引文
[1]刘馨.航空航天材料概览.新材料产业,2012(3):1-5
    [2]钱九红.航空航天用新型钛合金的研究发展及应用.稀有金属,2000,24(3):218-223
    [3]冯朝辉,唐志今,郝树本.钛合金锻造工艺的现状与发展.金属成形工艺,1998,16(3):46-47
    [4]刘阳等.航空用镍基高温合金切削现状研究.航空制造技术,2011(14):48-51
    [5]张国庆,田世藩,汪武祥等.先进航空发动机涡轮盘制备工艺及其关键技术.新材料产业,2009(11):16-21
    [6] D F Paulom s,胡福元.高温合金锻造法.大型铸锻件,1987(2):23-23
    [7]王鸿钧. Ti-6Al-4V钛合金亚β锻造的探讨.湘潭大学自然科学学报,1980(1):83-87
    [8]王亮等.粉末冶金Ti-6Al-4V的组织及形成机理.宇航材料工艺,2012,42(1):46-49
    [9] Podob M T. Effect of heat treatment and slight chemistry variations on the physicalmetallurgy of hot isostatically pressed low carbon Astroloy powder. Moderndevelopments in powder metallurgy,1977,11:25-44
    [10] Hajmrle K, R Angers. Sintering of Inconel718. Int. J. Powder Metall. PowderTechnol,1980,16(3):255-257
    [11] D R Chang, D D Krueger and R A Spague, in Superalloys1984, Proceedings of the5th International Symposium on Superalloys, eds. M. Gell, C.S. Kortovich, R.D.Bricknell, W.B. Kent and J.F. Radavich (AIME,1984):245-250
    [12] Paton N, et al. Manufacturing with the spraycast process. Foundry Managementand Technology(USA),1997126(10):24-26
    [13] Bose A, et al. Powder injection molding of Inconel718alloy. Advances in PowderMetallurgy and Particulate Materials-1997,1997.3:18
    [14] Kruth J P, et al. Selective laser melting of iron-based powder. Journal of MaterialsProcessing Technology,2004.149(1):616-622
    [15] Bremen S, W Meiners, and A. Diatlov. Selective Laser Melting. Laser TechnikJournal,2012,9(2):33-38
    [16] Widmer, R. Hot Isostatic Pressing. Cast. Eng. Foundry World,1982,14(2):44-45
    [17] Richter D, G Haour and D Richon. Hot isostatic pressing (HIP). Materials&Design,1985,6(6):303-305
    [18] Loh N and K Sia. An overview of hot isostatic pressing. Journal of MaterialsProcessing Technology,1992,30(1):45-65
    [19] Baccino R, et al. High performance and high complexity net shape parts for gasturbines: the ISOPREC (R) powder metallurgy process. Materials&Design,2000,21(4):345-350
    [20]马福康.等静压技术.北京:冶金工业出版社,1992
    [21]黄培云.粉末冶金原理.北京:冶金工业出版社,1997
    [22] Ekbom R. Hot isostatic pressing/powder metallurgy in gas and steam turbines.Materials&Design,1990,11(1):37-42
    [23]陈进.粉末冶金成形新工艺和技术发展概况.粉末冶金工业,1994,4(3):93-95
    [24] Mashl S J, J C Hebeisen, and C G Hjorth. Producing large P M near-net shapesusing hot isostatic pressing. Jom-Journal of the Minerals Metals&MaterialsSociety,1999,51(7):29-31
    [25]张义文.热等静压技术新进展.粉末冶金工业,2009(4):32-40
    [26] Teraoku, T. Hot Isostatic Pressing Simulation for Titanium Alloys. InternationalJournal of Powder Metallurgy,2008,44(5):57-61
    [27]汪武祥,毛健.热等静压FGH95粉末涡轮盘.材料工程,1999(12):39-43
    [28] Boyer C. The Evolution and Future of HIP Systems. Battelle Memorial Institute,Columbus, Ohio,1982
    [29] Clark J P. High-pressure processing research continues. FOODTECHNOLOGY-CHAMPAIGN THEN CHICAGO,2006.60(2):63
    [30] Olevsky E, et al. Container influence on shrinkage under hot isostatic pressing-I.Shrinkage anisotropy of a cylindrical specimen. International Journal of Solids andStructures,199835(18):2283-2303
    [31]何禹坤.基于激光熔化成形同质包套的热等静压近净成形试验研究:[硕士学位论文].武汉:华中科技大学图书馆,2012.
    [32] Li W, H A Haggblad. Constitutive laws for hot isostatic pressing of powdercompact. Powder Metallurgy,1997,40(4):279-281
    [33] Swinkels F, et al. Mechanisms of hot-isostatic pressing. Acta Metallurgica,1983,31(11):1829-1840
    [34] Arzt E, M F Ashby, and K Easterling. Practical applications of hotisostatic Pressingdiagrams: Four case studies. Metallurgical and Materials Transactions A,1983,14(1):211-221
    [35] Helle A, K E Easterling, and M Ashby. Hot-isostatic pressing diagrams: newdevelopments. Acta Metallurgica,1985,33(12):2163-2174
    [36] Gilman P and G Gessinger. A Method for the Experimental Determination of theEffective Stress in Hot Pressing. Powder Metall. Int.,1980,12(1):38-40
    [37] Davies G and D Jones. Creep of metal-type organic compounds-IV. Application tohot isostatic pressing. Acta Materialia,1997,45(2):775-789
    [38] Khazami-Zadeh M and F Petzoldt. Hot isostatic pressing of near net shape partsthrough finite element simulation. Advances in Powder Metallurgy&ParticulateMaterials-1995.,1995,2:5
    [39] Kuhn H and C Downey. Deformation characteristics and plasticity theory ofsintered powder materials. International Journal of Powder Metallurgy,1971,7:15-25
    [40] Green R. A plasticity theory for porous solids. International Journal of MechanicalSciences,1972,14(4):215-224
    [41] Shima S and M Oyane. Plasticity theory for porous metals. International Journal ofMechanical Sciences,1976,18(6):285-291
    [42] Doraivelu S, et al. A new yield function for compressible PM materials.International Journal of Mechanical Sciences,1984,26(9):527-535
    [43] Davies G C, and D R H Jones. Creep of metal-type organic compounds.4.Application to hot isostatic pressing. Acta Materialia,1997,45(2):775-789
    [44] Lee D, H S KIM, Plastic yield behaviour of porous metals. Powder Metallurgy,1992,35(4):275-279
    [45] Park J J. Constitutive relations to predict plastic deformations of porous metals incompaction. International Journal of Mechanical Sciences,1995,37(7):709-719
    [46] Alves L M M, P A F Martins, and J M C Rodrigues. A new yield function forporous materials. Journal of Materials Processing Technology,2006,179(1-3):36-43
    [47] Abouaf M, et al. Finite element simulation of hot isostatic pressing of metalpowders. International Journal for Numerical Methods in Engineering,1988,25(1):191-212
    [48] Svoboda A, H A Haggblad, and L Karlsson. Simulation of Hot Isostatic Pressingof a powder metal component with an internal core. Computer Methods in AppliedMechanics and Engineering,1997,148(3-4):299-314
    [49] Svoboda A, H A Haggblad, and M Nasstrom. Simulation of hot isostatic pressing ofmetal powder components to near net shape. Engineering Computations: Int J forComputer-Aided Engineering,1996,13(5):13-37
    [50] Svoboda A, L E Lindgren, and A S Oddy. The effective stress function algorithmfor pressure-dependent plasticity applied to hot isostatic pressing. InternationalJournal for Numerical Methods in Engineering,1998,43(4):587-606
    [51] Kim H S. Densification mechanisms during hot isostatic pressing of stainless steelpowder compacts. Journal of Materials Processing Technology,2002,123(2):319-322
    [52] Kim H S and D N Lee. Power-law creep model for densification of powdercompacts. Materials Science and Engineering: A,1999,271(1):424-429
    [53] Kim K T, Y S Kwon, and H G Kim. Near-net-shape forming of alumina powderunder hot pressing and hot isostatic pressing. International Journal of MechanicalSciences,1997,39(9):1011-1022
    [54] Kim K T, and H C Yang. Densification behaviour of titanium alloy powder underhot isostatic pressing. Powder Metallurgy,2001,44(1):41-47
    [55] Kim K T, H C Yang, and S T Hong. Densification behaviour of titanium alloypowder compacts at high temperature. Powder Metallurgy,2001,44(1):34-40.
    [56]李少波等.热等静压致密化的计算机模拟及在TZP陶瓷中的应用.无机材料学报,2000,15(2):324-330
    [57]杜艳迎.粉末激光快速成形与等静压复合过程工艺与数值模拟研究:[博士学位论文].武汉:华中科技大学图书馆,2011.
    [58] Liu G, et al. Thermal elasto-viscoplastic analysis based on Perzyna model for hotisostatic pressing of stainless steel powder. Materials Research Innovations,2011,15(Supplement1): s299-s302
    [59] Jinka A G K and R W Lewis. Finite element simulation of hot isostatic pressing ofmetal powders. Computer Methods in Applied Mechanics and Engineering,1994,114(3-4):249-272
    [60] Jeon Y C, K T Kim. Near-net-shape forming of316L stainless steel powder underhot isostatic pressing. International Journal of Mechanical Sciences,1999,41(7):815-830
    [61] Olevsky E, A Maximenko. Container influence on shrinkage under hot isostaticpressing-II. Shape distortion of cylindrical specimens. International Journal ofSolids and Structures,1998,35(18):2305-2314
    [62] Chung S H, et al. An optimal container design for metal powder under hot isostaticpressing. Journal of Engineering Materials and Technology-Transactions of theAsme,2001,123(2):234-239
    [63]汪大年.金属塑性成形原理.北京:机械工业出版社,1982
    [64]胡淼.基于数值仿真的背索锚碇系统研究:[硕士学位论文].天津:河北工业大学,2008.
    [65]吴小瑜.四边圆弧形横截面空心零件旋压成形数值模拟及试验研究:[硕士学位论文].广州:华南理工大学,2010.
    [66]刘国承.金属粉末热等静压致密化模拟与试验研究:[博士学位论文]:华中科技大学图书馆,2011.
    [67] Park J, N Rebelo, S Kobayashi. A new approach to preform design in metalforming with the finite element method. International Journal of Machine ToolDesign and Research,1983,23(1):71-79
    [68] Hwang S, S Kobayashi. Preform design in plane-strain rolling by the finite-elementmethod. International Journal of Machine Tool Design and Research,1984,24(4):253-266
    [69]赵国群,王广春.材料塑性成形过程最优化设计-Ⅰ有限元灵敏度分析方法.塑性工程学报,1999,6(2):1-7
    [70] Grandhi R V, et al. State‐space representation and optimal control of non‐linearmaterial deformation using the finite element method. International Journal forNumerical Methods in Engineering,1993,36(12):1967-1986
    [71] Kusiak J, E G Thompson. Optimization techniques for extrusion die shape design.EG Thompson et al.(editeurs), Numiform,1989,89:569-574
    [72] Badrinarayanan S, N Zabaras. Preform design in metal forming. Dawson (editeurs),Numiform95,1995:533-538
    [73] Fourment L, T.Balan, and J Chenot. OPTIMAL DESIGN FORNON-STEADY-STATE METAL FORMING PROCESSES-11. APPLICATION OFSHAPE OPTIMIZATION IN FORGING. International Journal for NumericalMethods in Engineering,1996,39:51-65
    [74]梁清香,张根全.有限元与MARC实现.北京:机械工业出版社,2003
    [75]陈火红,于军泉,席源山. MSC. Marc/Mentat2003基础与应用实例.北京:科学出版社,2004
    [76]陈火红.新编Marc有限元实例教程.北京:机械工业出版社,2007
    [77]宋晓华,周明安,巫少龙.基于UG参数化的产品优化设计. CAD/CAM与制造业信息化,2004(5):64-66
    [78]李素萍等.基于UG参数化快速设计方法的研究及应用.锻压技术,2006,31(2):85-88
    [79] Marino F, A Rebuffo, and F Sorrentino. Effects of low-cycle fatigue on bendingproperties and fracture toughness of un-HIP’ed Ti–47Al–2Cr–2Nb–1Bintermetallic. International journal of fatigue,2005,27(2):143-153
    [80] Liu K, et al. Single step centrifugal casting TiAl automotive valves. Intermetallics,2005,13(9):925-928
    [81] Yan X, P Gu. A review of rapid prototyping technologies and systems.Computer-Aided Design,1996,28(4):307-318
    [82] Kumar S. Selective laser sintering: A qualitative and objective approach.Jom-Journal of the Minerals Metals&Materials Society,2003,55(10):43-47
    [83] Rombouts M, et al. Fundamentals of selective laser melting of alloyed steelpowders. Cirp annals-manufacturing technology,2006.55(1):187-192
    [84]芮树祥,忻鼎乾.焊接工艺学.哈尔滨:哈尔滨工程大学出版社,1998
    [85]章文献.选择性激光熔化快速成形关键技术研究:[博士学位论文].武汉:华中科技大学图书馆,2008.
    [86]曲兵兵.不锈钢粉末热等静压成形模拟与包套制造工艺研究:[硕士学位论文].武汉:华中科技大学图书馆,2009.
    [87] Aryanpour G. Constitutive modeling for hot isostatic pressing of metal powders.Journal of Porous Media,2006,9(1):15-34
    [88]刘国承等.316L粉末热等静压致密化过程数值模拟.华中科技大学学报(自然科学版),2011,39(010):23-27
    [89] Peckner D, Bernstein I M.不锈钢手册.顾守仁译.北京:机械工业出版社,1987
    [90]史玉升等.选择性激光熔化快速成形技术与装备.中国表面工程,2006,19(5):150-153
    [91] McBagonluri F, et al. An investigation of the effects of microstructure on dwellfatigue crack growth in Ti-6242. Materials Science and Engineering: A,2005,405(1):111-134
    [92] Zeng W, Y Zhou. Influence Of Cooling Rate On Microstructure And MechanicalProperties Of Bata Processed TC11Alloy. ACTA METALLURGICASINICA-CHINESE EDITION,2002,38(12):1273-1276
    [93]董长升,李渭清,蔡建明.精锻及热处理工艺对TC11钛合金棒材显微组织的影响.稀有金属,2004,28(1):286-288
    [94]李玉涛等. TC11钛合金相变点的测定与分析.稀有金属,2006,30(2):231-235
    [95]王志辉等. Ti62421s钛合金T-((+β)/β)相变温度的测定与分析.稀有金属,2010(5):663-667
    [96]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社,2005
    [97]李富长,宋祖铭,杨典军.钛合金加工工艺技术研究.新技术新工艺,2010(5):66-69
    [98] Zhang K, et al. Effect of Hot-Isostatic-Pressing Parameters on the Microstructureand Properties of Powder Ti-6Al-4V Hot-Isostatically-Pressed Samples.Metallurgical and Materials Transactions A,2010,41(4):1033-1045
    [99]师昌绪,仲增墉.中国高温合金五十年.北京:冶金工业出版社,2006
    [100]黄乾尧,李汉康.高温合金.北京:冶金工业出版社,2000
    [101] Gessinger G H, M Bomford. Powder metallurgy of superalloys. InternationalMetallurgical Reviews,1974,19(1):51-76
    [102]王淑云等.等温锻造技术研究动态.锻造与冲压,2012(1):46-46
    [103]冶军.美国镍基高温合金.北京:科学出版社,1978
    [104] Shankar V, K Bhanu Sankara Rao, S Mannan. Microstructure and mechanicalproperties of Inconel625superalloy. Journal of Nuclear Materials,2001,288(2):222-232
    [105] Cao W, R Kennedy. Superalloys718,625,706and various derivatives, ed. EALoria, TMS,2001:455-464
    [106]赵军普等.粉末冶金高温合金中的原始颗粒边界(PPB)问题.粉末冶金工业,2010(4):43-49
    [107] Rao G A, et al. Characterisation of hot isostatically pressed nickel base superalloyInconel718. Materials Science and Technology,2003,19(3):313-321
    [108] Rao G A, et al. Effect of standard heat treatment on the microstructure andmechanical properties of hot isostatically pressed superalloy inconel718. MaterialsScience and Engineering: A,2003,355(1):114-125
    [109]张义文等.一种消除粉末高温合金中PPB的方法.钢铁研究学报,2003,15(7):513-518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700