松材线虫侵染后松林节肢动物群落组成和多样性结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际贸易往来和旅游业的发展,生物入侵在我国不断加剧,正在成为威胁我国生物多样性与生态环境的重要因素之一。作为我国毁灭性的林业外来入侵生物,松材线虫Bursaphelenchus xylophilus(Steiner et Buhrer)Nickle的入侵对我国松林资源,尤其是对我国南方松林和重要生态区域构成了严重威胁。明确松材线虫入侵后对森林生态系统中节肢动物群落组成与结构的影响,对于制定综合控制方法与技术及揭示松林生态系统对松材线虫入侵的抵御机制具有重大的理论与实践意义。
     本文以浙江省富阳市和舟山市不同受害程度的松林为研究对象,分析了松材线虫入侵后感病木不同处理方式对节肢动物群落结构的影响;同时对海岛和内陆两种不同的生境,特别是海岛中4种典型代表性林型中的节肢动物群落组成和结构特点进行了较为详细的研究,并进一步探讨了马尾松和黑松这两种主要感病树种冠层节肢动物群落的组成和结构,分析了感病松林林分因子与节肢动物群落的关系。主要研究结果如下:
     1.从物种、亚群落、营养阶层三个水平上分析了伐除干扰对马尾松林生态系统内节肢动物群落结构的影响。对感染松材线虫病的马尾松林进行皆伐处理后,在不同的松林更新方向上出现了不同结构的节肢动物群落。皆伐显著降低了林分的物种丰富度,其中,鳞翅目、鞘翅目、半翅目和蜘蛛目几个类群受影响最大。从亚群落的组成结构上来看,皆伐更新对害虫亚群落和天敌亚群落的组成的影响均极为显著。皆伐也改变了生态系统内节肢动物群落各营养阶层的比例组成,就供试标准地而言,皆伐更新形成的马尾松幼林的节肢动物能级结构较之白栎苦竹混交林更为合理。而对感病马尾松林中的马尾松择伐清理后,节肢动物群落的物种丰富度和多样性指数均显著增加,优化了各能级类群的比例组成,对于提高节肢动物群落的稳定性有一定的增效作用。
     2.对两种受松材线虫入侵的生境中(内陆和海岛)的节肢动物群落的组成和结构差异进行了比较,经聚类分析表明:两种生境节肢动物的科数之间没有显著差异,但在物种数量、个体数量及亚群落和能级类群的组成上有显著的差异。其中,鳞翅目和蜘蛛目差异最大。
     3.采用G-test、Sorensen Classic相似性指数和Jaccard Classic相似性指数比较了浙江省舟山市受松材线虫侵染后形成的湿地松杉木混交林、马尾松疏林、马尾松纯林和黑松马尾松混交林等4种代表性的松林类型中的节肢动物群落的组成,同时采用采用Chao 1指数和ACE指数对4种林型的总物种丰富度进行了估计。研究结果表明:4种松林类型中节肢动物群落的科数、物种数和个体数量都有显著差异(科数G3=9.303,P=0.026;物种数G3=57.362,P=0.000;个体数G3=2767.568,P=0.000)。马尾松疏林和马尾松纯林中节肢动物群落的相似性最高,湿地松杉木混交林和黑松马尾松混交林这两种针叶混交林内节肢动物群落相似性最低。估计全部节肢动物群落的物种丰富度为586.47(ACE指数)和634.8±31.5(Chao 1±SD)种。
     4.采用枝条套袋取样技术对浙江省舟山市松材线虫病疫区内马尾松Pinus massoniana幼龄林和老龄林冠层节肢动物群落的组成和时空结构进行了研究,结果表明:幼树上冠层节肢动物的物种数显著高于老龄树,但老龄树冠层的节肢动物个体数量显著高于幼树。马尾松幼树的主要种类有松墨天牛Monochamus alternatus Hope、松大蚜Cinara pinitabulaeformis Zhang et Zhang、微红梢斑螟Dioryctria rubella Hampson、纵坑切梢小蠹Tomicus piniperda L.、松沫蝉Aphrophora flavipes Uhler等。老龄树的主要种类有松墨天牛、松大蚜、浙江黑松叶蜂Nesodiprion zhejiangensis Zhou et Xiao、松叶小卷蛾Epinotia rubiginosana (Herrich-Sch?ffer)等。90株供调查的马尾松树上冠层节肢动物共有13目49科98种,共计4218个个体。其中,幼树12目40科66种,共计1584个个体;老龄树12目39科74种,共计2634个个体。比较节肢动物在不同林龄马尾松冠层的时空结构表明,幼树冠层结构更有利于节肢动物的栖居,因此应加强对老龄树的抚育管理。
     5.对浙江省舟山市松材线虫病疫区内黑松Pinus thunbergii冠层节肢动物群落的组成和结构进行了研究,结果表明:供调查的60株黑松冠层中,节肢动物共有12目45科95种,共计3077个个体。其中捕食性昆虫10科17种89个个体,食叶害虫11科16种1477个个体,枝梢害虫8科18种1186个个体,蜘蛛类11科33种287个个体,游走性类群5科13种38个个体。主要种类有浙江黑松叶蜂Nesodiprion zhejiangensis Zhou et Xiao、草履蚧Drosicha corpulenta (Kuwana)、松沫蝉Aphrophora flavipes Uhler、松墨天牛Monochamus alternatus Hope等。各功能集团主要分布在树冠的中下层,除捕食性昆虫外,总群落及其他各类群对方位的选择性较小,捕食性昆虫主要分布在向阳的东部、南部和西部。以食叶害虫和枝梢害虫为主的害虫类群在5月份的优势集中性最高,在7月物种丰富度最高,6 ~ 8月危害最为严重的时期。而蜘蛛类和捕食性昆虫等捕食性类群在调查的各个月份中的优势集中性均比较稳定,仅在8月有所降低。
     6.采用典型相关分析及双重筛选逐步回归分析的方法,分别分析了林分因子和植物群落的多样性与节肢动物总群落及各亚群落和能级类群之间的关系。发现枯枝落叶层厚度、郁闭度、林分密度和草本层盖度是影响节肢动物群落多样性四个最为重要的因子;枯枝落叶层厚度、草本层盖度和优势乔木冠幅是影响节肢动物群落能级结构的三个相对最为重要的因子。植物群落的多样性对节肢动物群落的多样性组成有显著的影响。影响因子涉及了植物群落各个层次的多样性结构,并且天敌亚群落和中性昆虫亚群落与植物群落的相关性最为显著。从影响因子的多样化也可以看出节肢动物群落多样化的组成不是一个或几个因素可以影响的,而是植物群落的整体效应。
Biological invasion has become one of the most important factors which threaten biodiversity and ecological environment of China with the development of global trade, transportation, international travel and ecological tourism. As a destructive forestry invasive alien species, the invasion of Bursaphelenchus xylophilus (Steiner et Buhrer) Nicklehas caused a great damage to the pine forest’s resource of China, especially to pine forest and ecological region in southern China. Definituding the invasion impact of B. xylophilus on the composition and structure of arthropod community will bring a great significance to establish methods and techniques of integrate pest management (IPM) and reveal the resistance mechanism of pine forest ecosystem to the invasion of B. xylophilus in both theory and practice aspects.
     In this paper, based on the research objectives of pine forests in different damage degree after the invasion of pine wood nematode in Fuyang and Zhoushan county, Zhejiang province, the responses of arthropod community affected by different managing ways on infested pines after PWN’s invasion were analyzed. Meanwhile, as for such two different habitats as island and inland, especially four typical forest types in islands, for which the composition and structure of arthropod community was studied with a detail. Furthermore, the composition and structure of canopy arthropods of Pinus massoniana and P. thunbergii and the relationship between stand factors and arthropod composition was also discussed and analyzed. The main results are as follows.
     1. The responses of arthropod community affected by the disturbance degree of removing trees were analyzed under three levels, such as species, sub-community and nutrient classes. The species richness decreased significantly after clear cutting, and some orders such as Lepidoptera, Coleoptera, Hemiptera and Araneae were the guilds that were influenced most heavily. The analysis of sub-community structure showed that both pests and natural enemies were great impacted. The proportion composition of energy classes were also changed after clear cutting. As for the studying sample plots,The community structure of arthropod in young Masson pine forests showed more rational than that in mixed forest of Quercus fabric and Pleioblastus amarus. While with the removal of infected trees, both the richness and species diversity of total arthropod community and sub-community were obviously increasd. The nutrition structure of arthropod community also was ameliorated, which played a positive role in promoting the succession of arthropod community.
     2. The composition and structure of arthropod community in island was compared with that in inland, the composition of different arthropods guilds Hierarchical Cluster Analysis(HCA) and One-way ANOVA was performed and the results showed that there was no significant difference for the composition of arthropod community in family level between inland and island. But those two habitats had significant difference in the species composition, individuals, sub-community and the energy classes level, in which, Lepidoptera and Diptera is most seriously.
     3. Based on G-test, Classic Sorensen incidence-based sample similarity index and Classic Jaccard sample similarity index, the composition of arthropod community in 4 representative pine forests infested by B. xylophilus, which is mixed stands of P. elliottii and Cunninghamia lanceolata, sparse Masson pine stands, pure Masson pine stands and mixed stands of P. thunbergii and P. massoniana respectively, were compared in Zhoushan city, Zhejiang province. Meanwhile, the total species richness of the above four forest types was estimated using Chao 1 and ACE index. The results showed that there was a significant difference in families, species and individual number of arthropod community among four pine forest types, where, G3=9.303, P=0.026 for the families number, G3=57.362,P=0.000 for the species number, G3=2767.568,P=0.000 for the individual number. The arthropod community similarity between sparse Masson pine stands and pure Masson pine stands was highest, whereas, the lowest value happened between the two mixed forest stands.
     4. Composition and structure of canopy arthropods in young and old P. massoniana stands were studied in Zhoushan city, Zhejiang Province. The technique of branch bagging was used. The results show that the number of arthropod species was significantly higher in the canopy of young stands than in that of old ones, but the individual number of arthropods was much higher in the canopy of the old stands. The major species in the canopy of young stands included Monochamus alternatus Hope, Cinara pinitabulaeformis Zhang et Zhang, Dioryctria rubella Hampson, Tomicus piniperda L., Aphrophora flavipes Uhler and others. In the canopy of old stands, the predominant species were M. alternatus and C. pinitabulaeformis as well as Nesodiprion zhejiangensis Zhou et Xiao and Epinotia rubiginosana Herrich-Sch?ffer, which, to a lesser extent, also occurred in the canopy of young stands. A total of 4218 arthropods, representing 98 species which belong to 49 families and 13 orders, was found in 90 tree canopies, pooled from both the young and old stands. In which, a total of 1584 arthropods, representing 66 species belonging to 40 families and 12 orders, was found in the canopy of young stands and 2634 arthropods from 74 species belonging to 39 families and 12 orders were found in the old stands. The structure of the arthropod community in the canopy of both types of stands was also compared in spatial and temporal terms which showed that the structure of young trees was more suitable than that of old trees for harboring arthropods, which suggests that the tending of old trees should be strengthened.
     5. The composition and structure of canopy arthropods in P. thunbergii was studied in Zhoushan city, Zhejiang province. A total of 3077 individuals representing 95 species which belong to 45 families and 12 orders was found in 60 tree canopies in which a total of 89 individuals representing 17 species which belong to 10 families were predaceous insects, a total of 1477 individuals representing 16 species which belong to 11 families were leaf-feeder insects, a total of 1186 individuals representing 18 species which belong to 8 families were branch and top-feeder insects, a total of 287 individuals representing 33 species which belong to 11 families were spiders and a total of 38 individuals representing 13 species which belong to 5 families were‘tourists’. The main species including Nesodiprion zhejiangensis Zhou et Xiao,Drosicha corpulenta (Kuwana), Aphrophora flavipes Uhler, Monochamus alternatus Hope and so on. All functional groups mostly distributed in the mid and lower layers of the canopy. Except for predaceous insects, all the other groups had no selectivity to the orientations. They preferred staying in the sunny parts of the canopy such as east, south and west. The dominance of pests including leaf-feeder group and branch and top-feeder group was highest in May and the species richness was highest in July. The great damage occurred between June and August. Predaceous group including predaceous insects and spiders had a steady dominance in every month.
     6. The relationship between the diversity structure of arthropod community and stand factors and the influence of the plant community on the arthropod community were analyzed through canonical correlation analysis and double screening by stepwise regression analysis. It was found that litter layer thickness, canopy density, stand density and the herbaceous layer coverage were the main factors that impacted the arthropod community diversity, the litter layer thickness, herbaceous layer coverage and crown breadth of dominant tree were the main factors that impacted the structure of energy classes of arthropod community. The diversity of plant communities had a significant impact to the diversity of arthropod community. The factors referred to all levels of the plant community structure and the relationship between sub-community of natural enemies or neutral insect pests and plant community showed most notable. It could be seen from the diverse impact factors that one or several factors couldn’t affect the variety of arthropod community, but the overall effect of plant communities.
引文
1. 岸洋一. マヅ材线虫病一松くぃ虫一精说[M], 日本国东京: ト一マスカソバニ一有限会社. 1988.
    2. 毕守东, 甘德俊, 周夏芝,等. 桃园节肢动物群落的结构和组织学研究[J]. 安徽农业大学学报, 2003a, (1): 36-41
    3. 毕守东, 刘丽, 高彩球,等. 枣园节肢动物群落结构及其模糊聚类分析[J]. 应用生态学报, 2005, (10): 97-101
    4. 毕守东, 周夏芝, 李磊,等. 桃园节肢动物群落相对丰盛度的季节动态研究[J]. 生态学杂志, 2003b, (6): 117-120
    5. 蔡万伦, 石尚柏, 杨长举,等. 不同种植方式下转 Bt 基因水稻对稻田节肢动物群落的影响[J]. 昆虫学报, 2005a, (4): 67-73
    6. 蔡万伦, 石尚柏, 杨长举,等. Bt水稻田不同斑块设计对田间节肢动物群落稳定性的影响[J]. 生态学报, 2005b, (11): 176-183
    7. 柴希民, 蒋平, 崔鹏程,等. 松褐天牛成虫补充营养特性研究[J]. 浙江林业科技. 2001, 21(1): 9-12
    8. 柴希民, 蒋平. 松材线虫病的发生与防治[M]. 北京: 中国林业出版社, 2003.
    9. 陈超英. 节肢动物群落稳定性测度的灰色模型及其应用[J]. 生态学报, 2005(11): 320-324
    10. 陈顺立, 王玲萍. 松墨天牛幼虫在马尾松树上垂直分布的研究[J]. 福建林学院学报. 2001, 21(4): 297-300
    11. 陈文龙. 塑料大棚内茄子上节肢动物群落的能量研究[J]. 上海农学院学报, 1999, (3): 58-64
    12. 陈亦根, 熊锦君, 黄明度,等. 茶园节肢动物类群多样性和稳定性研究[J]. 应用生态学报, 2004, (5): 139-142
    13. 程瑚瑞, 林茂松, 黎伟强.南京黑松上发现萎蔫线虫病[J].森林病虫通讯, 1983, (4): 1-5
    14. 程瑚瑞. 松材线虫萎蔫病的发生和研究进展[J]. 植物检疫. 1988, 2(1): 11-16.
    15. 丛建国. 山东青州麦田常见节肢动物的冬季群落结构[J]. 生态学杂志, 1994, (5): 59-62
    16. 丛建国. 鲁中山地侧柏林区蜘蛛群落的研究[J]. 蛛形学报, 1997, 6(1): 26-30.
    17. 崔鹏程, 高大海, 童永久,等. 松褐天牛补充营养时在岱山黑松树上发生规律的调查[J]. 浙江林业科技. 2001, 21(3): 22-24.
    18. 丁伟, 赵志模, 王进军,等. 玉米地节肢动物群落优势功能集团的组成与演替. 生态学杂志, 2002, (1): 39-42
    19. 丁玉洲, 吕传海, 韩斌,等. 树木生长势与松墨天牛种群密度及松材线虫发病程度关系[J]. 应用生态学报, 2001, 12(3): 351-354
    20. 冯津, 李登科, 刘素琪,等. 不同生境枣园节肢动物群落的动态[J]. 山西农业大学学报(自然科学版), 2005, (2): 56-59+66
    21. 高宝嘉,张芳,侯东永,等. 转基因 741 杨林节肢动物群落结构的研究[J]. 北京林业大学学报,2003,(1): 63-65
    22. 高宝嘉, 张执中, 李镇宇. 封山育林对昆虫群落结构及多样性、稳定性影响的研究[J]. 生态学报, 1992, 12(1): 1-7.
    23. 高念昭, 熊兴仁, 李恒源,等. 贵阳地区烟地节肢动物群落组成及种群关系[J]. 西南农业大学学报, 2005, (1): 43-46+52
    24. 高素红, 毛富玲, 王江柱,等. 转双抗虫基因 741 杨节肢动物群落生态安全性评价——转基因741 杨对节肢动物群落空间结构的影响[J]. 河北农业大学学报, 2005, (3): 81-84
    25. 高玮, 相贵权, 尚金成,等. 山地次生林鸟类集团及集团关系研究[A]. 见: 数学生态学进展[C]. 成都: 成都科技大学出版社, 1994. 242-249.
    26. 龚信文, 陈兵, 孟国玲. 四湖地区涝渍地综合改良对稻田节肢动物群落的生态效应[J]. 湖北农学院学报, 2001, (4): 2-5
    27. 郭玉杰, 王念英, 蒋金炜,等. 中性昆虫在稻田节肢动物群落中作为捕食者营养桥梁作用的研究[J]. 中国生物防治, 1995a, (1): 6-10
    28. 郭玉杰, 王念英, 赵军华,等. 4 种生态类型稻区节肢动物群落的基本组成与结构特征分析[J]. 生态学报, 1995b, (4): 433-441
    29. 郭玉人, 李森, 杨莹,等. 沈阳地区稻田节肢动物种类调查[J]. 沈阳农业大学学报, 1999, (2): 98-101
    30. 郭玉人. 沈阳地区稻田节肢动物群落结构及群落生态研究[J]. 生态学报, 2001, (11): 111-119
    31. 韩宝瑜, 崔林. 8 个茶树品种上节肢动物群落结构、多样性及差异[J]. 华东昆虫学报, 1999a, (1): 73-77
    32. 韩宝瑜, 崔林, 查光济. 不同防治措施对皖南春季马尾松林节肢动物和虫生真菌群落的影响[J]. 林业科学研究, 1999b, (1): 95-99
    33. 韩宝瑜, 崔林, 王成树. 茶园瓢虫群落结构、动态及优势种生态位[J]. 茶叶科学. 1996b, 16(1): 77-78
    34. 韩宝瑜, 李增智, 鲁绪祥,等. 淹没式交替施用白僵菌和农药的马尾松林动物和虫生真菌群落的结构及时空动态[J]. 生物数学学报, 1996a, 11(3): 82-93
    35. 韩宝瑜, 李增智, 王成树,等. 合理化防的马尾松林动物和虫生真菌群落的数量时空格局[J]. 应用生态学报, 1997, 8(1): 65-69
    36. 韩宝瑜. 马尾松林节肢动物群落的组成及多样性[J]. 生物多样性, 2001, (1): 64-69
    37. 韩宝瑜, 张钟宁. 马尾松林直翅目昆虫群落的时空格局及多样性和稳定性[J].昆虫学报, 2000, 43(增刊): 143-150
    38. 韩宝瑜. 茶园昆虫群落时空格局及多样性稳定性[J]. 茶叶科学, 1997, 17(1): 27-32.
    39. 郝树广, 张孝羲, 程遐年,等. 稻田节肢动物群落营养层及优势功能集团的组成与多样性动态[J]. 昆虫学报, 1998, (4): 343-353.
    40. 郝树广, 张孝羲, 程遐年. 稻田节肢动物群落优势功能集团的垂直分布、数量动态及天敌作用估计[J]. 应用生态学报, 2000, (1), 104-108
    41. 侯有明, 庞雄飞, 梁广文. 菜田土壤节肢动物类群结构与数量动态研究[J]. 华南农业大学学报, 2002, (1): 30-33
    42. 侯有明, 庞雄飞, 梁广文,等. 叶菜田节肢动物多样性系统调查与抽样技术研究[J]. 应用生态学报, 2000, (5): 114-117
    43. 胡阳, 唐启义, 唐健,等. 单季稻田节肢动物群落演替规律[J]. 中国水稻科学, 1998, 12(4): 229-232
    44. 姬华, 马祁, 姚举,等. 南疆棉田节肢动物群落时间结构研究[J]. 新疆农业科学, 2005(2): 30-34
    45. 贾彦霞, 杨玉英, 贺达汉. 宁夏人工甘草田节肢动物群落结构及多样性研究[J]. 农业科学研究, 2005, (4): 16-19
    46. 蒋金炜, 郭线茹, 安世恒,等. 豫西山区烟田节肢动物群落的季节特征(英文)[J], 河南农业大学学报, 2001, (4): 20-26
    47. 蒋金炜, 郭线茹, 罗梅浩,等. 不同类型烟草上节肢动物群落的季节特征[J]. 中国烟草学报, 2003, (1): 36-39+48
    48. 蒋金炜, 罗梅浩, 郭线茹,等. 郑州郊区茄子和菜辣椒田节肢动物群落的组成与季节特征[J]. 河南农业大学学报, 2004, (1): 55-59
    49. 蒋金炜, 马继盛, 陈俊炜,等. 不同杀虫剂对稻田节肢动物群落的影响[J]. 河南农业大学学报, 1997, (4): 43-47
    50. 蒋金炜, 马继盛, 陈俊炜,等. 引黄稻区节肢动物群落的季节特征[J]. 河南农业大学学报, 1994, (3): 344-349+360
    51. 蒋明星, 祝增荣, 程家安. 浙西北山区单季稻田节肢动物群落的多样性[J]. 浙江大学学报(农业与生命科学版), 2000, (3): 58-61
    52. 蒋平, 赵锦年, 柴希民,等. 松材线虫病综合防治技术研究[J]. 浙江林业科技. 2001, 21(4): 1-6.
    53. 焦国尧, 沈培垠, 徐培方,等. 口岸截获的日本松材线虫和中国南京松材线虫研究(摘要)[J]. 中国进出境动植检, 1997, (3). 32-33
    54. 金翠霞, 吴亚, 王冬兰. 稻田节肢动物群落多样性[J]. 昆虫学报, 1990, 33(3): 287-295
    55. 孔祥贵. 松褐天牛为害黑松的调查及防治试验[J]. 安徽林业科技. 2003, (3): 31-32.
    56. 来燕学, 张世渊, 黄华正,等. 松墨天牛在松树枯萎中的作用[J]. 浙江林学院学报, 1996, 13(1): 75-81.
    57. 李刚, 黎桥华, 魏小琴. 深圳市松材线虫病情调查[C]. 见: 杨宝君, 朱克恭, 周元生, ,等(主编). 中国松材线虫病的流行与治理. 北京: 中国林业出版社. 1995, 17-19.
    58. 李广武, 邵桂英, 俞伯能. 松墨天牛的初步观察[J]. 昆虫知识. 1986, 23(4): 169-170.
    59. 李国元, 邓青云, 华光安,等. 红栀子园节肢动物群落组成与结构动态[J]. 华中农业大学学报, 2005, (3): 35-39
    60. 李建丰, 田明义, 古德就,等. 葛藤节肢动物类群组分及主要种类数量动态[J]. 华南农业大学学报(自然科学版), 2004, (1): 60-62
    61. 李景文(主编). 森林生态学(第 2 版)[M]. 北京: 中国林业出版社. 1994
    62. 李磊, 邹运鼎, 毕守东,等. 安徽怀远石榴园节肢动物的群落结构[J]. 安徽农业大学学报, 2004(1): 44-47
    63. 李文香. 转 Bt 基因棉对节肢动物群落的影响. 河北农业大学硕士学位论文. 2004.
    64. 李志胜, 黄顶成, 徐敦明,等. 稻田周围杂草地生境节肢动物群落的物种丰富度、优势度及多样性[J]. 福建农林大学学报(自然科学版), 2003, (4): 18-22
    65. 梁子宁, 张永强. 龙眼园节肢动物群落结构及其时空格局[J]. 生态学报. 2007, 27(4): 1542-1549.
    66. 廖崇惠. 陈茂乾. 热带人工林土壤动物群落次生演替和发展过程的探讨[J]. 应用生态学报, 1990, 1(1): 56-61
    67. 林荣华, 张润志, 田长彦,等. 新疆棉田生态系统中捕食性节肢动物类天敌亚群落结构[J]. 中国生物防治, 2003, (1): 2-6
    68. 林业部野生动物和森林植物保护司, 林业部森林病虫害防治总站. 中国森林植物检疫对象[M]. 北京: 中国林业出版社, 1996.
    69. 刘长仲, 王万雄, 吴小刚,等. 苜蓿人工草地节肢动物群落的时间格局[J]. 应用生态学报, 2002(8): 77-79
    70. 刘德广, 梁伟光, 丁勇,等. 复合荔枝园节肢动物群落动态的研究[J]. 生态学报, 1999, (6): 121-125
    71. 刘德广, 熊锦君, 谭炳林,等. 荔枝-牧草复合系统节肢动物群落多样性与稳定性分析[J]. 生态学报, 2001, (10): 29-34
    72. 刘万学, 万方浩, 郭建英. 转 Bt 基因棉田节肢动物群落营养层及优势功能团的组成与变化[J]. 生态学报, 2002, (5): 111-117
    73. 刘细明, 袁凤辉, 饶军,等. 江西南丰蜜橘园生态系统节肢动物群落结构调查[J]. 湖北农业科学, 2005, (6): 43-46
    74. 刘向东, 张孝羲, 罗跃进,等. 稻田节肢动物群落的多样性及对褐飞虱的控制功能[J]. 昆虫学报, 2002. (3): 76-81
    75. 刘小侠, 汪飞, 徐静,等. 南疆棉区转 Bt 基因棉对棉铃虫抗性表达及对节肢动物的影响[J]. 中国农业大学学报, 2002, (5): 71-75
    76. 刘雨芳, 古德祥, 张古忍. 稻田生态系统中捕食性天敌节肢动物种类调查分析[J]. 昆虫天敌, 2002, (4): 3-11
    77. 刘雨芳, 古德祥, 张古忍. 广东双季稻区杂草地和稻田中捕食性节肢动物的群落动态[J]. 昆虫学报, 2003, (5): 48-54
    78. 刘雨芳,张古忍,古德祥. 农田生态系统中生境与植被多样性对节肢动物群落的影响及其作用机制探讨[J]. 湘潭师范学院学报(社会科学版),2000,21(6):74-78
    79. 刘玉珍, 韩宝瑜. 常年释放白僵菌的马尾松林虫生真菌和动物群落的结构及时空格局. 生物数学学报[J], 1995, 10(3): 205-216
    80. 罗都强, 刘芳政. 新疆苜蓿田节肢动物群落的时间格局研究[J]. 西北农业学报, 1996, (1), 47-52
    81. 马福丽. 不同树龄枣园节肢动物群落结构特征的研究. 山西农业大学硕士学位论文. 2003.
    82. 马克平. 生物群落多样性的测度方法. 见: 生物多样性研究的原理与方法(叶国科学院生命多样性委员会编). 北京: 中国科学技术出版社, 1994.
    83. 马克平. 试谈生物多样性的概念[J]. 生物多样性, 1993, 1(1): 20-22.
    84. 门兴元, 戈峰, 尹新明,等. 转 Bt 基因棉田与常规棉田节肢动物群落多样性的比较研究[J]. 生态学杂志, 2003, (5): 26-29
    85. 孟国玲, 陈兵, 龚信文. 江汉平原四湖地区涝渍稻田节肢动物群落结构和动态[J]. 江西农业学报, 2002, (2): 2-7
    86. 孟庆繁. 森林节肢动物多样性的影响因素[J]. 延边大学农学学报, 2000, (1): 78-80
    87. 聂绍芳, 林仲桂, 彭珍宝. 南岳景区松墨天牛的发生规律[J]. 中南林学院学报, 2000, 20(4): 96-98.
    88. 庞雄飞, 尤民生, 昆虫群落生态学[M]. 北京: 中国农业出版社. 1996.
    89. 邱良妙, 占志雄, 郑琼华, 等. 枇杷园生态系统节肢动物群落特征研究[J]. 江西农业大学学报(自然科学版),2004,26(3):458-460
    90. 邱明生, 张孝羲, 王进军,等. 玉米田节肢动物群落特征的时序动态[J]. 西南农业学报, 2001(1): 73-76
    91. 任立宗, 王淑芬. 马尾松林昆虫群落及其时空结构的研究[J]. 林业科学研究, 1988, 1(4), 397-404.
    92. 任爽, 邓新平. 板栗树冠节肢动物群落的时间生态位研究[J]. 中国森林病虫, 2005, (6): 11-15
    93. 师光禄, 常宝山. 枣园害虫群落结构特征的研究[J]. 山西农业大学学报(自然科学版), 2006, (3): 213-216
    94. 师光禄, 曹挥, 戈峰,等. 不同类型枣园节肢动物群落营养层及优势功能集团的组成与多样性时序动态[J]. 林业科学, 2002, (6), 79-86
    95. 师光禄, 席银宝, 王海香,等. 枣园节肢动物群落的数量与生物量多样性特征分析[J]. 林业科学, 2004, (2): 107-112
    96. 石娟, 骆有庆, 曾凡勇,等. 松材线虫入侵对马尾松林主要种群生态位的影响[J], 北京林业大学学报, 2005, 27(6): 80-86.
    97. 宋世涵, 崔锡明, 刘德禄,等. 松墨天牛发生规律的调查[J]. 广东林业科技. 1993, (2): 40-45
    98. 宋淑云, 康岭生, 晋齐鸣,等. 保丰玉米对玉米田间植物和节肢动物的影响初报[J]. 吉林农业科学, 2001, (4): 33-36
    99. 宋玉双. 浅谈我国松材线虫病地综合治理[C]. 293-295. 见: 杨宝君, 朱克恭, 周元生, ,等(主编). 中国松材线虫病的流行与治理. 北京: 中国林业出版社. 1995
    100. 孙永春.南京中山陵发现松材线虫[J].江苏林业科技. 1982, (4): 27, 47
    101. 谭炳林, 丁勇, 黄明度,等. 松林节肢动物群落结构相似性分析[J]. 应用生态学报, 1997, (4): 387-390
    102. 唐启义.实用统计分析及其 DPS 系统[M].北京:科学出版社,2002.
    103. 陶方玲, 梁广文, 庞雄飞. 不同生境区稻田节肢动物群落动态分析[J]. 华南农业大学学报, 1996, (1): 25-30
    104. 万方浩, 陈常铭. 综防区和化防区稻田害虫一天敌群落组成及多样性的研究[J]. 生态学报, 1986, 6(2): 159-170
    105. 王春义, 夏敬源, 崔金杰,等. 北疆不同类型棉田节肢动物群落结构与多样性[J]. 棉花学报, 2004, (2): 48-52
    106. 王春义, 夏敬源, 文绍贵,等. 施药对麦套春棉田间节肢动物群落的影响[J]. 中国棉花, 1997, (4), 18-20
    107. 王丽艳, 郭雪红, 辛惠普,等. 黑龙江省东部豆类作物田节肢动物种类构成调查[J]. 黑龙江八一农垦大学学报, 2005b, (2): 4-7
    108. 王丽艳, 辛惠普, 钟湘植,等. 寒地水稻田节肢动物群落多样性调查分析[J]. 中国农学通报, 2005a, (10): 290-294
    109. 王顺建, 朱克响. 王向阳,等. 淮北棉田节肢动物的群落结构[J]. 昆虫知识, 2000, (5): 15-21
    110. 王向阳, 王顺建, 宋爱颖,等. 棉田施用除草剂对节肢动物群落种群数量的影响[J]. 安徽农业大学学报, 2002, (4): 32-36
    111. 王晓芸, 蒋丽雅, 王庆前,等. 马鞍山市林场松材线虫病初报[C]. 见: 杨宝君, 朱克恭, 周元生, ,等(主编). 中国松材线虫病的流行与治理. 北京: 中国林业出版社. 1995, 11-13.
    112. 王孝威. 春麦田节肢动物群落的结构和动态研究. 山西农业大学硕士学位论文. 2003
    113. 王元仲, 刘峰, 吴鸿斌,等. 转 BT 基因棉对棉田植物、节肢动物影响的调查[J]. 农业环境与发展, 1999, (1): 43-46
    114. 魏国树, 崔龙, 张小梅,等. 转 Bt 基因棉田节肢动物群落结构特征研究[J]. 应用生态学报, 2001, (4): 97-101
    115. 巫厚长, 程遐年, 魏重生,等. 吡虫啉对烟田节肢动物群落的影响研究[J]. 应用生态学报, 2004, (1): 96-99
    116. 巫厚长, 魏重生, 蒯文兴,等. 除草剂精克草能对烟田节肢动物群落的影响[J]. 安徽农业大学学报(自然科学版), 2001, (4): 34-37
    117. 巫厚长, 邹运鼎, 程遐年. 不同烟草品种烟田捕食性节肢动物群落的结构和动态研究[J]. 应用生态学报, 2005, (4): 51-54
    118. 吴进才, 胡国文, 唐健,等. 稻田中性昆虫对群落食物网的调控作用[J]. 生态学报, 1994, (4): 381-386.
    119. 吴进才, 陆自强. 稻田节肢动物群落营养物种的初步研究[J]. 农业科学集刊. 1993, (1): 234-238.
    120. 夏敬源, 王春义, 马艳,等. 不同类型棉田节肢动物群落结构研究[J]. 棉花学报, 1998, (1): 27-33
    121. 谢丙炎, 吕全. 松材线虫的防治[J]. 大自然. 2004, (2): 52-53.
    122. 徐福元, 席客, 徐刚,等.不同龄级马尾松对松材线虫病抗性的探讨[J].南京林业大学学报, 1994, 9(3): 27-33
    123. 徐洪富, 牟吉元, 牟少敏,等. 棉区夏玉米田节肢动物群落的研究[J]. 华东昆虫学报, 1999, (1): 79-83
    124. 徐汝梅, 叶万辉主编.生物入侵——理论与实践[M].北京: 科学出版社, 2003:
    125. 杨宝君, 朱克恭, 周元生, ,等(主编)中国松材线虫病的流行与治理[M]. 北京: 中国林业出版社. 1995
    126. 杨宝君, 潘宏阳, 汤坚,等编著.松材线虫病[M].北京: 中国林业出版社, 2003
    127. 杨国庆, 吴进才, 张士新,等. 三种类型稻田节肢动物群落结构、亚群落内禀增长率与链节数的关系[J]. 生态学报, 2004, (4): 30-36
    128. 杨平, 陈亦根, 熊锦君,等. 鼎湖山季风常绿阔叶林及针阔叶混交林节肢动物群落多样性调查[J]. 生态学报, 2004, (2): 113-119
    129. 杨效东, 佘宇平, 陶滔,等. 思茅茶园土壤节肢动物群落与生境关系[J]. 云南地理环境研究, 1998, (1): 26-33
    130. 袁建立, 王刚. 生物多样性与生态系统功能: 内涵与外延[J]. 兰州大学学报(自然科学版), 2003, 39(2): 85-89.
    131. 曾凡勇, 骆有庆, 吕全,等. 松材线虫入侵的黑松内栖真菌区系初步研究[J]. 林业科学研究. 2006, 19(4): 537-540
    132. 翟建中, 陆玲仙, 陈炎莲. 象山县松材线虫病分布特征与防治设想[C]. 见: 杨宝君, 朱克恭, 周元生, ,等(主编). 中国松材线虫病的流行与治理. 北京: 中国林业出版社. 1995, 14-16.
    133. 占志雄, 邱良妙, 傅建炜,等. 不同牧草覆盖枇杷园节肢动物群落的结构和动态[J]. 福建农林大学学报(自然科学版), 2005b, (2): 27-32
    134. 占志雄, 邱良妙, 林仁魁,等. 套种羽叶决明的龙眼园节肢动物群落结构与稳定性研究[J]. 福建农业学报, 2005a, (3): 19-23
    135. 张芳. 转双抗虫基因741杨对节肢动物群落及种群动态的影响[J]. 河北农业大学硕士学位论文. 2004
    136. 张飞萍, 陈清林, 吴庆锥,等. 毛竹林节肢动物群落的组成与结构[J]. 生态学报, 2005, (9): 144-155
    137. 张华峰, 陈顺立, 朱建华,等. 松墨天牛为害对马尾松针叶化学成分的影响[J]. 福建林学院学报. 2004, 24(1): 28-31
    138. 张久刚, 薛建兵, 师光禄,等. 复合生态枣园节肢动物群落结构与动态的研究[J]. 山西农业大学学报(自然科学版), 2004, (2): 84-90
    139. 张文庆, 古德祥, 张古忍. 论短期农作物生境中节肢动物群落的重建Ⅱ. 群落重建的分析和调控[J]. 生态学报, 2001a, (6): 156-160.
    140. 张文庆, 古德祥, 张古忍. 论短期农作物生境中节肢动物群落的重建 I. 群落重建的概念及特性[J]. 生态学报, 2000, (6): 206-211.
    141. 张文庆, 张古忍, 古德祥. 论短期农作物生境中节肢动物群落的重建Ⅲ. 群落重建与天敌保护利用[J]. 生态学报, 2001b, (11): 184-188.
    142. 张新才, 李桂亭, 孟志伟,等. 油菜田节肢动物群落结构研究[J]. 安徽农业科学, 2005, (4): 40-41
    143. 张永强, Ahmed Diriye Aden, 韦绥概,等. 香蕉园害虫和捕食性节肢动物群落结构及动态研究[J]. 生态学报, 2001, (4): 127-133
    144. 张永强, 阿登(Ahmed Diriye Aden), 韦绥概,等. 香蕉园主要节肢动物群落多样性研究[J]. 广西农业生物科学, 2000, (4): 47-52
    145. 张永强. 农田蜘蛛群落结构及多样性研究[J]. 生态学报, 1989, 9(2): 157-162.
    146. 张真, 吴东亮, 王淑芬. 马尾松林昆虫群落动态及稳定性研究[J]. 林业科学, 1998, 34(1): 67-74
    147. 赵良平. 中国林业检疫性有害生物及检疫技术操作办法[M]. 北京: 中国林业出版社, 2005.
    148. 赵士熙, 王良威, 尤民生,等. 再生稻田节肢动物群落的研究[J]. 福建农业大学学报, 1995, (3): 295-299
    149. 赵志模, 郭依泉. 群落生态学原理与方法[M]. 重庆: 科学技术文献出版社重庆分社, 1990.
    150. 郑汉业, 夏乃斌. 森林昆虫生态学[M]. 北京: 中国林业出版社. 1995
    151. 郑华, 方国飞, 田方鑫,等. 栗园节肢动物群落结构与组织学研究[J]. 安徽农业大学学报, 2005, (3): 80-84
    152. 钟平生, 田明义, 曾玲. 小菜蛾生态控制措施对十字科蔬菜节肢动物群落的影响[J]. 武夷科学, 2002, (0): 100-104
    153. 周爱农, 潘月华, 陈道法. 上海郊区甘蓝田节肢动物群落结构及其动态[J]. 上海农学院学报, 1994, (3): 167-171
    154. 周红章. 物种与物种多样性[J]. 生物多样性, 2000, 8(2): 215-226
    155. 周洪旭, 董立忠, 乔晓明,等. 桃园节肢动物群落不同功能团和营养层的组成及变化动态[J]. 莱阳农学院学报, 2005, (1): 9-12
    156. 周洪旭, 乔晓明, 赵春生,等. 化学杀虫剂对春甘蓝田节肢动物群落结构的影响[J]. 莱阳农学院学报, 2003, (3): 27-30
    157. 周强, 张古忍, 张文庆,等. 不同抗性品系稻田捕食性节肢动物群落的结构和动态[J]. 生态学报, 1999, (5): 140-143
    158. 周昭旭, 陈明, 刘长仲,等. 间作苜蓿棉田节肢动物群落结构及时间格局[J]. 甘肃农业大学学报, 2005, (4): 108-113
    159. 朱克恭, 姚仕义, 张井义,等. 关于松材线虫病侵染源的研究[J]. 山东林业科技, 1992, (4): 45-48
    160. 朱克恭. 松材线虫病研究综述[J]. 世界林业研究. 1995, (3): 28-33.
    161. 邹运鼎, 丁程成, 毕守东,等. 李园节肢动物群落与各亚群落之间在均匀度、优势度、优势集中性上的关系[J]. 安徽农业大学学报, 2005a, (4): 79-81
    162. 邹运鼎, 丁程成, 毕守东,等. 李园节肢动物群落时间动态的聚类分析[J]. 应用生态学报, 2005b, (4): 45-50
    163. 邹运鼎, 李磊, 毕守东,等. 石榴园节肢动物群落多样性与其它指标间关系的通径分析[J]. 安徽农业大学学报, 2004, (2): 3-6
    164. 邹运鼎, 孟庆雷, 任杰,等. 年度间同期木槿上节肢动物群落动态及棉蚜分布格局比较[J]. 安徽农业大学学报, 2003, (4): 3-6
    165. Adela G. L., Jos? M. G.. Consequences of removing a keystone herbivore for the abundance and diversity of arthropods associated with a cruciferous shrub[J]. Ecological Entomology, 2003, 28, 299-308
    166. Alland, W., Nigele, Barry B.. The diversity and abundance of ants in relation to forest disturbance and plantation establishment in southern Cameroon[J]. Journal of Applied Ecology. 2002, 39, 18-30.
    167. Amy E. M. Waltz,W. Wallace Covington. Ecological Restoration Treatments Increase Butterfly Richness and Abundance: Mechanisms of Response[J]. Restoration Ecology, 2004, 12 , 1, : 85-96.
    168. Andersen,A.N., Hoffmann,B.D., Muller,W.J. etal.. Using ants as bioindicators in land management: simplifying assessment of ant community responses[J]. J. Appl. Ecol. 2002, 39: 8-17.
    169. Andersen, A. N., Sparling G. P.. Ants as indicators of restoration success: relationship with soil microbial biomass in the Australian seasonal tropics[J]. Restoration Ecology, 1997, 5: 109-114.
    170. Asquith, A., Lattin J. D. Moldenke A. R.. Arthropods, the invisible diversity[J]. Northwest Environmental Journal, 1990, 6: 404-405
    171. Axmacher, J. C., Tünte, H., Schrumpf, M., et al.. Diverging diversity patterns of vascular plants and geometrid moths during forest regeneration on Mt. Kilimanjaro, Tanzania[J]. Journal of Biogeography, 2004, 31: 895-904.
    172. Baguette, M., Hance, T.. Carabid beetles and agricultural practices: influence of soil ploughing. Entomological Research in Organic Agriculture (eds B. Kromp , P. Meindl). Biological Agriculture and Horticulture, 1997, 15: 185-190.
    173. Bangert R. K., Turek R. J., Rehill B., et al.. A genetic similarity rule determines arthropod community structure[J]. Molecular Ecology, 2006, 15: 1379-1391
    174. Bankowska, R.. Diversification of Syrphidae (Diptera) fauna in the canopy of Polish pine forests in relation to forest stand age and forest health zones[J]. Fragmenta Faunistica, 1994, 36: 469-483.
    175. Basset Y., Charles E., Hammond D. S., et al.. Short-term effects of canopy openness on insect herbivores in a rain forest in Guyana[J]. Journal of Applied Ecology, 2001, 38, 1045-1058
    176. Basset, Y., Novotny, V., Miller, S. E., et al.. Assessing the impact of forest disturbance on tropical invertebrates: some comments[J]. Journal of Applied Ecology, 1998, 35: 461-466.
    177. Basset, Y., P. M. Hammond, H. Barrios, et al.. Vertical stratification of arthropod assemblages. In Y. Basset, V. Novotny, S. E. Miller, and R. L. Kitching (Eds. ). Arthropods of tropical forests: Spatio-temporal dynamics and resource use in the canopy, pp. 17-27. Cambridge University Press, Cambridge, UK. 2003.
    178. Basset, Y.. Aspects de la répartition des peuplements ?arthropodes dans les couronnes de Pinus mugo Turra. Mitteilungen der Schweizerischen Entomol[J]. Gesellschaft, 1985, 58: 263-274.
    179. Basset, Y.. Communities of insect herbivores foraging on sapling versus mature trees of Pourouma bicolor (Cecropiaceae) in Panama[J]. Oecologia, 2001a, 129: 253-260.
    180. Basset, Y.. Invertebrates in the canopy of tropical rain forests -how much do we really know?[J].Plant Ecol, 2001b, 153: 87~107.
    181. Basu, P.. Seasonal and spatial patterns in ground foraging ants in a rain forest in the Western Ghats, India[J]. Biotropica, 1997, 29, 489-500.
    182. Belshaw, R., Bolton, B.. The effect of forest disturbance on the leaf-litter ant fauna in Ghana[J]. Biodiversity and Conservation, 1993, 2: 656-666.
    183. Bergdahl D R, Halik S, Inoculated Pinus sylvestris serve as long-term hosts for Bursaphelenchus xylophilus[A]. The Proceedings of Sustainability of Pine Forests in Relation to Pine Wilt and Decline[C]. Tokyo,1998. 73-78
    184. Bernays, E. A.. When host choice is a problem for a generalist herbivore: experiments with the whitefly, Bemisia tabaci[J]. Ecological Entomology, 1999, 24, 260-267.
    185. Brehm, G., Süssenbach, D. and Fiedler, K.. Unique elevation diversity patterns of geometrid moths in an Andean montane rainforest[J]. Ecography, 2003, 26: 456-466.
    186. Burgess N. D.,Ponder K. L.,Goddard J.. Surface and leaf-litter arthropods in the coastal forests of Tanzania[J]. Afr. J. Ecol., 1999, 37: 355-365.
    187. Cagnolo, L., Molina, S. I. and Valladares, G. R.. Diversity and guild structure of insect assemblages under grazing and exclusion regimes in a montane grassland from central Argentina[J]. Biodiv. Conserv, 2002, 11: 407-420.
    188. Cederbaum S. B., Carroll J. P., Cooper R. J.. Effects of Alternative Cotton Agriculture on Avian and Arthropod Populations[J]. Conservation Biology, 2004, 18(5, : 1272-1282
    189. Cerruti R. R. Hooks, Raju R. Pandey, Marshal L. W.. Johnson. Impact of avian and arthropod predation on lepidopteran caterpillar densities and plant productivity in an ephemeral agroecosystem[J]. Ecological Entomology , 2003, 28: 522-532
    190. Cesar Rodriguez-Saona,Jennifer S. T.. Herbivore-induced responses and patch heterogeneity affect abundance of arthropods on plants[J]. Ecological Entomology, 2005, 30: 156-163
    191. Chao, A. Non-parametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11, 265~270.
    192. Charles, E. L. The impact of natural gap size on the communities of insect herbivores within a rain forest of Guyana. MSc Thesis. University of Guyana, Georgetown, Guyana. 1998.
    193. Chazdon, R. L., Colwell R. K., Denslow J. S., et al. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. Pp.
    285-309 in F. Dallmeier and J. A. Comiskey, eds. Forest biodiversity research, monitoring and modeling: Conceptual background and Old World case studies[M]. Parthenon Publishing, Paris. 1998.
    194. Chen J, Franklin JF, Spies TA. Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests[J]. Ecol Appl, 1995,5: 74~86
    195. Christine Vance. Canopy and understorey insect communities of sugar maple and white pine forests of the south-centra great lake-St. Lawrence regine(D). Forestry university of TORONTO. 2003
    196. Claudio Gratton, Robert F. Denno. Restoration of Arthropod Assemblages in a Spartina Salt Marsh following Removal of the Invasive Plant Phragmites australis[J]. Restoration Ecology, 2005, 13, 2, : 358-372 .
    197. Coddington J. A., Young L. H., Coyle F. A.. Estimating spider species richness in a southern Appalachian cove hardwood forest[J]. Journal of Arachnology, 1996, 24: 111-128.
    198. Colwell, R. K. EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.0. User's Guide and application published at: http: //purl.oclc.org/estimates.2005.
    199. Colwell, R. K., Coddington J. A.. Estimating terrestrial biodiversity through extrapolation[J]. Philosophical Transactions of the Royal Society (Series B), 1994, 345, 101-118.
    200. Corbet. S. A. Insects, plants and succession: advantages of lona-term set aside[J]. Agrie. F. eosyst. Environ. 1995, 53: 201-217.
    201. Crawford H. S., Jennings D. T.. Predation by birds on spruce budworm Choristoneura fumiferana: functional, numerical and total responses[J]. Ecology, 1989, 70: 152-63.
    202. Davies, J. G., Stork, N. E., Brendell, M. J. D., Hine, S. J.. Beetle species diversity and faunal similarity in Venezuelan rainforest tree canopies. Canopy Arthropods (ed. by N. E. Stork, J. Adis andR. K. Didham), pp. 85-103. Chapman , Hall, London. 1997.
    203. Davis, A. J., Holloway, J. D., Huijbregts, H., Krikken, J., Kirk-Spriggs, A. H., Sutton, S. L.. Dung beetles as indicators of change in the forests of northern Borneo[J]. Journal of Applied Ecology, 2001, 38: 593-616.
    204. Degomez Tom,Wagner Michael R.. Arthropod diversity of exotic vs. native Robinia species in northern Arizona[J]. Agricultural and Forest Entomology, 2001, 3: 19-27
    205. Dicke, M., Vet L. E. M.. Plant-carnivore interactions: evolutionary and ecological consequences. Herbivores: Between Plants and Predators (ed. By H. Olff, V. K. Brown and R. H. Drent), pp. 483-520. Cambridge University Press, Cambridge. 1999.
    206. Didham, R.K., Ghazoul J., Stork N . E., et al. Insects in fragmented forests: a functional approach[J]. Trends in ecology and evolution, 1996, 11: 255-260.
    207. Eggleton, P., Bignell, D. E., Sands, et al.. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1996, 351, 51-68.
    208. Estrada, C., Fernandez, F.. Diversity of ants (Hymenoptera: Formicidae) in a successional gradient of a cloud forest (Narino, Colombia) [J]. Revista de Biologia Tropical, 1999, 47, 189-201.
    209. Evelegh N. C. P., Majer J. D., Recher H. F.. The effects of reducing bird predation on canopy arthropods of marri (Eucalyptus calophylla) saplings on the Swan Coastal Plain, Western Australia[J]. J. Roy. Soc. W. A., 2001, 84: 13-21.
    210. Everett, R. A.. Patterns and pathways of biological invasions[J]. TREE, 2000, 15: 177-178.
    211. Fabricius C., Burger M.,Hockey P. A. R.. Comparing biodiversity between protected areas and adjacent rangeland in xeric succulent thicket, South Africa: arthropods and reptiles[J]. Journal of Applied Ecology, 2003, 39: 392-403
    212. Feener, D. H., Schupp, E. W.. Effect of treefall gaps on the patchiness and species richness of Neotropical ant assemblages[J]. Oecologia, 1998, 116: 191-201.
    213. Floren, A., Linsenmair, K. E.. The influence of anthropogenic disturbances on the structure of arboreal arthropod communities[J]. Plant Ecology, 2001, 153: 153-167.
    214. Frampton G. K., Brink P. J. V.,Gould Philip J. L.. Effects of spring drought and irrigation on farmland arthropods in southern Britain[J]. Journal of Applied Ecology, 2000, 37: 865-883.
    215. Gascon, C. et al.. Matrix habitat and species richness in tropical forest remnants[J]. Biol. Conserv., 1999, 91: 223-229.
    216. Gering, J. C., Crist, T. O.. Patterns of beetle (Coleoptera) diversity in crowns of representative tree species in an oldgrowth temperate deciduous forest[J]. Selbyana, 2000, 21: 38-47.
    217. Gerstmeier, R., Lang, C.. Beitrag zu Auswirkungen der Mahd auf Arthropoden[J]. Zeitschrift für ?kologie und Naturschutz, 1996, 5: 1-14.
    218. Gómez, González-Megías. Asymmetrical interactions between ungulates and phytophagous insects: size difference matters[J]. Ecology, 2002, 83: 203-211 .
    219. Goβner M., Gruppe A.,Simon U.. Aphidophagous insect communities in tree crowns of the neophyte Douglas-fir [Pseudotsuga menziesii (Mirb. ) Franco] and Norway spruce (Picea abies L. ) [J]. Blackwell Verlag, Berlin, 2005, 129, 2:81-88.
    220. Groombridge, B.. Global Diversity. Status of the Earth’s Living Resources. World Conservation Monitoring Centre, London, UK. 1992.
    221. Gustavo H. Kattan, Darío Correa, Federico Escobar, et al.. Leaf-Litter Arthropods in Restored Forests in the Colombian Andes: A Comparison Between Secondary Forest and Tree Plantations[J]. Restoration Ecology, 2006, 14, 1, : 95-102.
    222. Haddad, N. M., Haarstad, J., Tilman, D.. The effects of long-term nitrogen loading on grassland insect communities[J]. Oecologia., 2000, 124: 73-84.
    223. Halaj, J., Ross, D. W., Moldenke, A. R.. Importance of habitat structure to the arthropod food-web in Douglas-fir canopies[J]. Oikos, 2000, 90: 139-152.
    224. Halik S, Bergdahl D R. Long-term survival of Bursaphelenchus xylophilus in living Pinus sylvestris in an established plantation[A]. The Proceedings of International Symposium of Pine Wilt Disease Caused by Pine Wood Nematode[C]. Beijing,1995.95-102
    225. Hanski, I., Krikken, J.. Dung beetles in tropical forests in south-east Asia. Dung Beetle Ecology (eds I. Hanski , Y. Cambefort), pp. 179-197. Princeton University Press, Princeton, NJ. 1991.
    226. Hare J. D.. Plant genetic variation in tritrophic interactions. In: Tscharntke T, Hawkins BA, editors. Multitrophic Level Interactions, pp. 8-43. Cambridge University Press. 2002.
    227. Hart, J. D., Milsom T. P., Fisher G., Wilkins V., Moreby S. J., Murray A. W. A.,Robertson P. A. The relationship between yellowhammer breeding performance, arthropod abundance and insecticide applications on arable farmland[J]. Journal of Applied Ecology, 2006, 43: 81-91
    228. Heather G., Dennis J. O’Dowd,P. S. Lake. Willow (Salix×rubens) invasion of the riparian zone in south-eastern Australia: reduced abundance and altered composition of terrestrial arthropods[J]. Diversity and Distributions, 2004, 10: 485-492
    229. Hill, J. K., Hamer, K. C., Lace, et al.. Effects of selective logging on tropical forest butterflies on Buru, Indonesia. Journal of Applied Ecology, 1995, 32: 754-760.
    230. Holl, K. D.. Nectar resources and their influence on butterfly communities on reclaimed coal surface mines[J]. Restoration Ecology, 1995, 3: 76-85.
    231. Hooper, R. G.. Arthropod biomass in winter and the age of longleaf pines[J]. For. Ecol. Manage. 1996, 82: 115-131.
    232. Hutchinson G E. The concept of pattern in ecology. Proceedings of the National Academy of Sciences (USA), 1953, 105: 1-12.
    233. Hutton, S. A., Giller, P. S.. The effects of the intensification of agriculture on northern temperate dung beetle communities[J]. Journal of Applied Ecology, 2003, 40, 994-1007.
    234. Intachat, J., Holloway, J. D., Speight, M. R.. The impact of logging on geometroid moth populations and their diversity in lowland forests of Peninsular Malaysia. Journal of Tropical Forest Science, 1999, 11: 61-78.
    235. Karban, R., Baldwin, I. T.. Induced Responses to Herbivory. University of Chicago Press, Chicago, Illinois. 1997.
    236. Karsten M., Linsenmair K. E.. Plant-attracted ants affect arthropod community structure but not necessarily herbivory[J]. Ecological Entomology , 2004, 29: 217-225
    237. Kelt D. A.. On the relative importance of history and ecology in structuring communities of desertsmall animals[J]. Ecography, 1999, 22: 123-137.
    238. King, J. R., Andersen, A. N. and Cutter, A. D.. Ants as bioindicators of habitat disturbance: validation of the functional group model for Australia’s humid tropic[J]s. Biodiv. Conserv., 1998, 7: 1627-1638.
    239. Knapp A. K., Smith M. D., Collins S. L. et al. Generality in ecology: testing North American grassland rules in South African savannas[J]. Frontiers in Ecology and the Environment, 2004, 2, 483-491.
    240. Koricheva, J. et al.. Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands[J]. Oecologia, 2000, 125: 271-282.
    241. Kremen, C.. Biological inventory using target taxa: a case study of the butterflies of Madagascar[J]. Ecological Applications, 1994, 4: 407-422.
    242. Krooss, S., Schaefer, M.. The effect of different farming systems on epigeic arthropods: a five-year study on the rove beetle fauna (Coleoptera: Staphylinidae) of winter wheat[J]. Agriculture, Ecosystems and Environment, 1998, 69: 121-133.
    243. Kyto, M., Niemela, P. and Larsson, S.. Insects on trees: population and individual response to fertilization[J]. Oikos, 1996, 75: 148-159.
    244. Lassau, S. A., Hochuli, D. F. Effects of habitat complexity on ant assemblages[J]. Ecography. 2004,27: 157-164.
    245. Lawrence, J. F., Hastings, A. M., Dallwitz, M. J., et al.. Beetles of the World: a Key and Information System for Families and Subfamilies, Version 1. 0 for MS Windows. CSIRO Publishing, Melbourne. 2000.
    246. Lawton, J. H., Bignell, D. E., Bolton, B., Bloemers, G. F., Eggleton, P., Hammond, P. M., Hodda, M., Holt, R. D., Larsen, T. B., Mawdsley, N. A., Stork, N. E., Shrivastava, D. S., Watt, A. D.. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical rain forest. Nature, 1998, 391: 72-76.
    247. Lep?, J., Novotny, V., Basset, Y.. Habitat and successional status of plants in relation to the communities of their leafchewing herbivores in Papua New Guinea[J]. Journal of Ecology, 2001, 89: 186-199.
    248. Letourneau D. K., Goldstein B.. Pest damage and arthropod community structure in organic vs. conventional tomato production in California[J]. Journal of Applied Ecology, 2001, 38: 557-570
    249. Lewis, T. The effect of deforestation on ground surface temperatures[J]. Global and Planetary Change, 1998, 18: 1~13.
    250. Lloyd W. Morrison. Arthropod diversity and allochthonous based food webs on tiny oceanic islands[J]. Diversity and Distributions, 2005, 11: 517-524
    251. Louise Meades, Louise Rodgerson, Alan York, et al. Assessment of the diversity and abundance of terrestrial mangrove arthropods in southern New South Wales[J], Australia. Austral Ecology, 2002, 27, 451-458
    252. Madden, K. E., Fox, B. J.. Arthropods as indicators of the effects of fluoride pollution on the succession following sand mining[J]. J. Appl. Ecol. 1997, 34: 1239-1256.
    253. Majer, J. D.. Invertebrates assist the restoration process: an Australian perspective. Pages 212-237 in K. M. Urbanska, N. R. Webb, and P. J. Edwards, editors. Restoration ecology and sustainable development. Cambridge University Press, United Kingdom. 1997
    254. Manuela D. G., Peter J. E.,Erhard M.. Enhancing insect diversity in agricultural grasslands: the roles of management and landscape structure[J]. Journal of Applied Ecology, 2001, 38: 310-319
    255. Marco Moretti, Martin K. Obrist, Peter Duelli. Arthropod biodiversity after forest fires: winnersand losers in the winter fire regime of the southern Alps[J]. Ecography, 2004, 27: 173-186,
    256. Martikainen, P. et al.. Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland[J]. Biol. Conserv., 2000, 94: 199~209.
    257. Mathieu J., Rossi J. P., Mora P., et al. Recovery of Soil Macrofauna Communities after Forest Clearance in Eastern Amazonia, Brazil. Conservation Biology, 2005, 19(5): 1598-1605.
    258. Meyer, C. L., Sisk T. D.. Butterfly response to microclimatic conditions following ponderosa pine restoration[J]. Restoration Ecology, 2001, 9: 453-461.
    259. Molino, J., Sabatier, D.. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis[J]. Science, 2001, 294: 1702-1704.
    260. Morrison, L. W.. Plant species persistence and turnover on small Bahamian cays[J]. Oecologia, 2003, 136, 51-62.
    261. Nadine Hilt,Konrad Fiedler. Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes[J]. Diversity and Distributions, 2005, 11: 387-398
    262. Nakamura, M., Kagata, H., Ohgushi, T.. Trunk cutting initiates bottom-up cascades in a tri-trophic system: sprouting increases biodiversity of herbivorous and predaceous arthropods on willows[J]. Oikos, 2006, 113: 259-268.
    263. Neuvonen, S., Niemel?, P.. Species richness of macrolepidoptera on Finnish deciduous trees and shrubs[J]. Oecologia, 1981, 51: 364-370.
    264. Nigel R. Andrew, Lesley Hughes. Species diversity and structure of phytophagous beetle assemblages along a latitudinal gradient: predicting the potential impacts of climate change[J]. Ecological Entomology, 2004, 29: 527-542
    265. Nummelin M.. Log-normal distribution of species abundances is not a universal indicator of rain forest disturbance[J]. Journal of Applied Ecology, 1998, 35: 454-457.
    266. Nyffeler, M., Dean, D. A., Sterling, W. L.. Evaluation of the importance of the striped lynx spider, Oxyopes salticus (Araneae: Oxyopidae), as a predator in Texas cotton[J]. Environmental Entomologist, 1987, 16: 1114-1123.
    267. Odegaard, F.. The relative importance of trees versus lianas as hosts for phytophagous beetles (Coleoptera) in tropical forests[J]. Journal of Biogeography, 2000, 27: 283~296.
    268. Odum E P. Basic Ecology[M].New York: Saunders College Pub,1983.
    269. Ohgushi, T.. Indirect interaction webs; herbivore-induced effects through trait change in plants[J]. Annu. Rev. Ecol. Evol. Syst., 2005, 36: 81-105.
    270. Oliver I., Beattie A. J. Invertebrate morphopsecies as surrogates for species: A case study[J]. Cons. Biol. 1996, 10, 99-109.
    271. Painter, D.. Macroinvertebrate distributions and the conservation value of aquatic Coleoptera, Mollusca and Odonata in the ditches of traditionally managed and grazing fen at Wicken Fen, UK[J]. Journal of Applied Ecology, 1999, 36: 33-48.
    272. Paulo A. V. Borges, Jorge M. Lobo, Eduardo B. de Azevedo1, et al.. Invasibility and species richness of island endemic arthropods: a general model of endemic vs. exotic species[J]. Journal of Biogeography, 2006, 33: 169-187.
    273. Perner J., Voigt W., B?hrmann R., et al.. Responses of arthropods to plant diversity: changes after pollution cessation[J]. Ecography, 2003, 26: 788-800.
    274. Perner J., Wytrykush C., Kahmen A., et al.. Effects of plant diversity, plant productivity and habitat parameters on arthropod abundance in montane European grasslands[J]. Ecography, 2005, 28: 429-442.
    275. Pettersson, R. B., Ball, J. P., Renhorn, K. E. et al.. Invertebrates communities in boreal forestcanopies as influenced by forestry and lichens with implications for passerine birds[J]. Biol. Conserv., 1995, 74: 57-63.
    276. Polis, G. A., Power, M. E., Huxel, G. R., eds. Food webs at the landscape level. University of Chicago Press, Chicago. 2004.
    277. Pollard E., D. O. Elias, M. J. Skelton, et al.. A method of assessing the abundance of butterflies in Monks Wood National Nature Reserve[J]. Entomologist’s Gazette, 1975, 26: 79-88.
    278. Porter S. D., Savignano D. A.. Invasion of polygyne ants decimates native ants and disrupts arthropod community[J]. Ecology, 1990, 71: 95-106.
    279. Price P.W. Insect Ecology. New York: John Wiley & Sons.1984. 23-26, 469-484.
    280. Rahbeck, C.. The elevational gradient of species richness: a uniform pattern? [J]. Ecography, 1995, 18: 200-205.
    281. Recher H. F.,Majer J. D.. Effects of bird predation on canopy arthropods in wandoo Eucalyptus wandoo woodland[J]. Austral Ecology , 2006, 31: 349-360
    282. Richardson B. J., Azarbayjani F. F., Shelley B. et al.. Arboreal arthropod biodiversity in woodlands: Effect of collection procedures and geographic distance on estimates of diversity found on two species of Melaleuca[J]. Australian Journ al of Ecology , 1999, 24: 544-554
    283. Root, R. B.. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea ). Ecol. Monogr., 1973, 43: 95-124.
    284. Root R. B.. The niche exploitation patern of the Blue-gray Gnetcather[J]. Ecological Monographs,1967,37: 317~350
    285. Schmidt M. H., Roschewitz I., Carsten T., et al.. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders[J]. Journal of Applied Ecology, 2005b, 42: 281-287
    286. Schmidt, M. H., Tscharntke, T.. The role of perennial habitats for central European farmland spiders. Agriculture[J]. Ecosystems and Environment , 2005a, 105, 235-242.
    287. Schoener T. W., Clobert J., Legendre S., et al.. Life-history models of extinction: a test with the island spiders[J]. American Naturalist, 2003, 162: 558-573.
    288. Schoener T. W., Spiller D. A., Losos J. B.. Variable ecological effects of hurricanes: The importance of seasonal timing for survival of lizards on Bahamian islands[J]. Proceedings of the National Academy of Sciences, USA, 2004, 101: 177-181.
    289. Schowalter T. D., Zhang Y. Canopy arthropod assemblages in four overstory and three understory plant. species in a mixed-conifer old-growth forest in California[J]. For Sci ,2005, 51: 233-242.
    290. Schowalter T. D.. Canopy arthropod communities in relation to forest age and alternative harvest practices in western Oregon[J]. For. Ecol. Manage., 1995, 78: 115-125.
    291. Schowalter T., Crossley D. J., Hargrove W.. Herbivory in forest ecosystems[J]. Annual Review of Entomology, 1986, 31: 177-196.
    292. Schulze C. H., Waltert M., Kessler P. J. A., et al.. Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects[J]. Ecological Applications, 2004, 14: 1321-1333.
    293. Schweiger O., Maelfait J. P., Wingerden W. VAN, et al.. Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales[J]. Journal of Applied Ecology, 2005, 42: 1129-1139.
    294. Scott A. Lassau, Dieter F. Hochuli, Gerasimos Cassis,et al.. Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? [J]. Diversity and Distributions, 2005a, 11: 73-82
    295. Scott A. Lassau, Dieter F. Hochuli. Wasp community responses to habitat complexity in Sydneysandstone forests[J]. Austral Ecology , 2005b, 30: 179-187
    296. Siemann, E.. Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity[J]. Ecology, 1998, 79: 2057-2070.
    297. Siemaun E., Haarstad J., Tilman D. 1999. Dynamics of plant and arthropod diversity during old field succession[J]. Ecography 22: 406-414.
    298. Simandl, J.. Canopy arthropods on Scots pine: influence of season and stand age on community structure and the position of sawflies (Diprionidae) in the community[J]. For. Ecol. Manage.. 1993. 62: 85-98.
    299. Sippola, A. L., Siitonen, J., Punttila, P.. Beetle diversity in timberline forests: a comparison between oldgrowth and regeneration areas in Finnish Lapland. Ann. Zool. Fenn., 2002, 39: 69-86.
    300. Sparks, T. H., Greatorex-Davies J. N., Mountford J. O., et al.. The effects of shade on the plant communities of rides in plantation woodland and implications for butterfly conservation[J]. Forest Ecology and Management , 1996, 80: 197-207.
    301. Speight M., Wainhouse D.. Ecology and Management of Forest Insects. Oxford University Press, New York. 1989.
    302. Spiller, D. A., Losos, J. B., Schoener, T. W.. Impact of a catastrophic hurricane on island populations[J]. Science, 1998, 281: 695-697.
    303. Stadler, B., Solinger, S. and Michalzik, B. Insect herbivores and the nutrient flow from the canopy to the soil in coniferous and deciduous forests[J]. Oecologia, 2001, 126: 104-113.
    304. Sterzynska, M. , Slepowronski, A.. Spiders (Araneí) of tree canopies in Polish pine forests[J]. Fragmenta Faunistica, 1994, 36: 485~499.
    305. Stork N. E., Hammond P. M., Russell B. L., et al.. The spatial distribution of beetles within the canopies of oak trees in Richmond Park, U. K. [J]. Ecological Entomology , 2001, 26: 302-311
    306. Summerville, K. S., Crist, T. O.. Determinants of lepidopteran species diversity and composition in eastern deciduous forests: roles of season, region, and patch size[J]. Oikos, 2003, 100: 134-148.
    307. Summerville, K. S., Crist, T. O.. Effects of timber harvest on Lepidoptera: community, guild, and species responses[J]. Ecological Applications, 2002, 12: 820-835.
    308. Thiago J. I.,Heraldo L. Vasconcelos. Ants and plant size shape the structure of the arthropod community of Hirtella myrmecophila, an Amazonian ant-plant[J]. Ecological Entomology , 2005, 30: 650-656
    309. Thorbek P., Bilde T.. Reduced numbers of generalist arthropod predators after crop management[J]. Journal of Applied Ecology, 2004, 41: 526-538
    310. Thornton, I. W. B.. Krakatau — the destruction and reassembly of an island ecosystem. Harvard University Press, Cambridge, MA. 1996.
    311. Thunes, K. H., Skarveit, J. and Gjerde, I.. The canopy arthropods of old and mature pine Pinus sylvestris in Norway[J]. Ecography, 2003, 26: 490-502.
    312. Topping, C. J., Sunderland, K. D.. Population dynamics and dispersal of Lepthyphantes tenuis in an ephemeral habitat[J]. Entomologia Experimentalis et Applicata, 1998, 87: 29-41.
    313. Van der Hout, P.. Testing the applicability of reduced impact logging in greenheart forest in Guyana[J]. International Forestry Review, 2000, 2: 24-32.
    314. Van der Meijden, E., Klinkhamer, P. G. L.. Conflicting interests of plants and the natural enemies of herbivores[J]. Oikos, 2000, 89: 202-208.
    315. Vanderwoude C., Lobry De Bruyn L. A.,HOUSE A. P. N.. Response of an open-forest ant community to invasion by the introduced ant, Pheidole megacephala[J]. Austral Ecology , 2000, 25: 253-259
    316. Vasconcelos, H. L., Vilhena, J. M. S., Caliri, G. J. A.. Responses of ants to selective logging of a central Amazonian forest[J]. Journal of Applied Ecology, 2000, 37: 508-514.
    317. Whitehouse, M. E. A., Shochat, E., Shachak, M., et al.. The influence of scale and patchiness on spider diversity in a semi-arid environment[J]. Ecography, 2002, 25: 395-404.
    318. Whitham T. G., Young W. P., Martinsen G. D., et al.. Community and ecosystem genetics: a consequence of the extended phenotype[J]. Ecology. 2003, 84: 559-573.
    319. Wickramasinghe, L. P., Harris, S., Jones, G., et al.. Bat activity and species richness on organic and conventional farms: impact of agricultural intensification[J]. Journal of Applied Ecology, 2003, 40: 984-993.
    320. Wiens, J. A., Milne, B. T.. Scaling of ‘landscapes’ in landscape ecology, or, landscape ecology from a beetle’s perspective[J]. Landscape Ecology, 1989, 3: 87-96.
    321. Willott, S. J.. The effects of selective logging on the distribution of moths in a Bornean rainforest. Philosophical Transactions of the Royal Society[J], Biological Sciences, 1999, 354: 1783-1790.
    322. Wright, M. G., Giliomee, J. H. Insect herbivory and putative defense-mechanisms of Protea magnifica and P. laurifolia (Proteaceae) [J]. Afr. J. Ecol. 1992, 30: 157-168.
    323. Zar J. H.. Biostatistical Analysis[M]. Prentice Hall, Upper Saddle River, New Jersey, U.S.A. 1999.
    324. Zedler, J. B., Callaway J. C.. Evaluating the progress of engineered tidal wetlands[J]. Ecological Engineering, 2000, 15: 211-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700