杉木—米老排混交林生态系统生产力及养分特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杉木(Cunninghamia lanceolata)是我国南方特有的速生用材林树种之一,具有生长快、材质好、产量高、栽培面积广等优点。然而随着杉木人工林连栽代数和面积逐渐增加,杉木纯林地力衰退十分明显,林分稳定性下降,产量逐代递减。如何保持南方林区杉木人工林生态系统的持续生产力和稳定性已成为当前林业生产中急需解决的重大课题,而营造杉阔混交林则被认为是维持杉木人工林长期生产力的较好途径之一。米老排干形通直,材质较好,是水土保持、土壤改良、混交造林以及生物防火的优良树种。本文通过对16年生杉木纯林与杉木-米老排混交林的对比研究,从生物量、生产力、养分循环等方面进行系统全面的分析研究,探寻其混交林生态系统生产力及养分循环的特征与规律,为评价以杉木为主的林分可持续经营提供理论依据和实践经验。主要研究结果如下:
     1.杉木-米老排混交林与杉木纯林生长差异较大。两种林分胸径生长量的差异表现为,混交林中坡杉木胸径生长有较大优势,而杉木纯林下坡表现出更大的生长优势;树高方面,混交林杉木上、中、下坡分别比杉木纯林提高了14.1%、19.0%、9.1%;材积分别比纯林提高了29.3%、26.1%、1.9%;蓄积量分别为132.87 m3/hm2、191.83 m3/hm2、267.48m3/hm2,其中上、中坡分别比纯林提高了21.3%、17.3%,混交林中上坡和中坡蓄积量较杉木纯林有明显的优势。在同一林分不同坡位,两种林分各生长指标均表现为下坡>中坡>上坡的变化规律。
     2.杉木-米老排混交林与杉木纯林生物量存在明显差异。同一坡位杉木-米老排混交林总生物量比杉木纯林高;不同坡位两种林分总生物量均表现为:下坡>中坡>上坡。杉木-米老排混交林上坡和中坡各器官生物量的分配是干>根>枝>皮>叶,而下坡表现为干>根>枝>叶>皮;不同坡位杉木纯林各器官生物量分配顺序表现为,干生物量最大,叶、枝、根、皮的生物量差异不是很明显。
     3.杉木-米老排混交林与杉木纯林N、P、K养分总积累的差异表现为:同一坡位生长条件下,混交林上、中、下坡的N积累量分别比纯林高104.4%、93.4%、12.7%,P积累量分别比纯林高53.1%、37.7%、59.6%,K养分的积累在上坡和中坡比纯林高42.01%、99.47%,而在下坡则为纯林大于混交林;不同坡度同一林分养分总积累量均表现为下坡>中坡>上坡,这一变化规律与两种林分乔木层养分积累量的差异规律相同。
     4.杉木-米老排混交林与杉木纯林养分利用效率存在明显差异。混交林上坡、中坡、下坡的乔木层养分利用效率分别比杉木纯林高11.5%、9.5%、57.0%。不同坡位条件下,混交林乔木层养分利用效率呈现上坡>下坡>中坡的变化规律,杉木纯林则表现为上坡>中坡>下坡;混交林上、中、下坡的林下植被养分利用效率均高于杉木纯林,可见混交林能提高林分林下植被的养分利用效率。
     5.杉木-米老排混交林与杉木纯林凋落物年产量差异较大。同一坡位不同林分年凋落量表现为混交林>杉木纯林;同一林分不同坡位年凋落量均表现为下坡>中坡>上坡。混交林的凋落物组成大小排序:上坡为枝>叶>果>花,中坡和下坡为叶>枝>果>花,而杉木纯林则表现为枝>叶>果>花。
     6.杉木-米老排混交林与杉木纯林养分存留量、年归还量、年吸收量及归还比的差异均表现为:混交林>杉木纯林。其中混交林的中坡的养分循环能力对于杉木纯林有明显的优势。同一林分同一坡位生长条件下,两种林分养分年存留量、年吸收量均表现为N>K>P;而年归还量、归还比则表现为N>P>K。从养分归还比看,杉木纯林表现为下坡>上坡>中坡,而混交林则表现为中坡>下坡>上坡,说明混交林中坡坡位的地力条件有利于养分的循环。
     总之,与杉木纯林相比,杉木与米老排混交有利于杉木的生长。杉木-米老排混交林中的杉木平均树高、平均胸径、材积和蓄积量均大于杉木纯林。且混交林的生物量、养分积累量、养分的利用效率、养分的归还比等均呈现混交林大于杉木纯林的变化规律。可见,营造混交林较杉木纯林而言,有更高的生产力且养分循环能力也较强。
Chinese fir is one of the rapid growing species in the south of china, with the advantages of fast growth, good material, high yield and widely cultivated area etc. However, with the increasing area of Chinese fir plantation, land capability and stability of stand of pure Chinese fir forestry significantly declined, so that the output diminished generationally in Chinese fir plantations. How to keep continued productivity and stability of the forestry production of Chinese fir plantation has become the major subject to resolve, while to build mixed forestry with Chinese fir forests is considered to be one of the methods to maintain long-term productivity of Chinese fir plantation. M. laosensis has straight form and good quality, which is a fine tree for soil and water conservation, soil improvement, afforestation and biological fireproof. This thesis compared the Chinese fir plantations and the mixed forest of Chinese fir and M. laosensis, it synthetically analyzed biomass, productivity and nutrient cycling to explore the features and regularity of the mixed forest ecosystem productivity and nutrient cycling. It provided the theory basis and practical experience for the evaluation of Chinese fir plantation to the sustainable management. The main results were as follows:
     1. There was great difference between the growth of the Chinese fir plantations and the mixed forest. The difference of DBH growth manifested as that of Chinese fir had obvious advantage in middle slope of the mixed forest, but it showed greater advantage in lower slope of the Chinese fir plantations. The growth of trees height in upper slope, middle slope and lower slope of the mixed forest was increased by 14.1%,19.0% and 9.1% respectively compared with that of the Chinese fir plantations. The volume was 132.87m3/hm2,191.83m3/hm2 and 267.48 m3/hm2 respectively, it improved 21.3% and 17.3% in upper slope and middle slope, which showed that there was great superiority in the upper slope and middle slope of the mixed forest. Compared with the same stand in the different slope positions, each index of the two stand were showed:lower slope>middle slope>upper slope.
     2. There was significant difference between the biomass of the Chinese fir plantations and the mixed forest. The total biomass of the mixed forest in the same slope position was higher than that in the Chinese fir plantations; The total biomass in the different slope positions of different stands showed that biomass of the lower slope was the highest, and the second was in the middle slope, while the third was in the upper slope. The distribution of the different organs' biomass in upper slope and middle slope of the mixed forest was:stem>root> branch> skin> leaves, but biomass in lower slope was that:stem>root>branch>leaves> skin. The distribution of the different organs' biomass in different slope positions of the Chinese fir plantations was that stem was the highest and the difference among the root, branch, skin and leaves was not obvious.
     3. The difference of N, P, K accumulated amount between Chinese fir plantations and the mixed forest showed that N accumulated amount in upper slope, middle slope and lower slope of the mixed forest was increased by 104.4%,93.4% and 12.7%, respectively, compared with that in the Chinese fir plantations under the growth condition of the same slope. P accumulated amount was increased by 53.1%,37.7% and 59.6%, respectively. K accumulated amount was 42.0% and 99.5%, respectively higher than that of the Chinese fir plantations. The total nutrient accumulation in the different slope positions of the same stand was that:lower slope>middle slope>upper slope, this variation was similar to the nutrient accumulation of tree layer in different stands.
     4. The difference of nutrient using efficiency between Chinese fir plantations and the mixed forest was evident. The nutrient use efficiency of tree layer in upper slope, middle slope and lower slope of the mixed forest was increased by 11.5%,9.5% and 57.0%,respectively, compared with that of the Chinese fir plantations and the nutrient use efficiency was increased by 40.8%,-13.0% and 33.0% respectively compared with that of Chinese fir plantations. Under the condition of different slope positions, the nutrient use efficiency of tree layer of mixed forestry was arranged in the order:upper slope>lower slope>middle slope, while nutrient use efficiency of pure Chinese fir was that:upper slope>middle slope>lower slope.
     5. The difference of litter's annual output between Chinese fir plantations and the mixed forest was evident. The litter's annual output in the same slope positions of different stands was:the mixed forest>the Chinese fir plantations. The litter's annual output in different slope positions of the same stand was showed that:lower slope>middle slope>upper slope. The composition of litter of the mixed forest was:branch> leaves>fruit>flower in upper slope, compared with that leaves>branch>fruit>flower in lower slope and middle slope, while it showed:branch>leaves>fruit>flower in Chinese fir plantations.
     6. The difference of the nutrient's remaining quantity, annually retained, annually uptake and return proportion between Chinese fir plantations and the mixed forest was all arranged in the order:the mixed forest>the Chinese fir plantations. The nutrient cycling ability in middle slope of the mixed forest had a distinct advantage over that of the Chinese fir plantations. The nutrient's remaining quantity and annually uptake of N was all highest in the same slope position of the same stand, and the lowest was P. The highest of annually retained and return proportion was N, and the minimum was K. The nutrient's return proportion of the Chinese fir plantations was arranged in the order:middle slope>lower slope>upper slope, it could be seen that the soil condition in the middle slope of mixed forest was in favor of the nutrient's circulation.
     In short, compared with the Chinese fir plantations, mixed Chinese fir forestry with M. laosensis was in favor of the growth of Chinese fir. The average tree height, average DBH, volume of timber and volume of the mixed forest were all higher than that of the Chinese fir plantations. And the biomass, nutrient accumulation, nutrient using efficiency and the nutrient's return proportion all showed the same rule. It showed that a mixed forest had higher productivity and nutrient cycling ability than that of Chinese fir plantations.
引文
[1]俞新妥.杉木栽培学[M].福州:福建科技出版社,1997.
    [2]俞新妥,我国近期杉木资源动态及营林意见.林业科技通讯[J].1996,(11):34-37.
    [3]程亚平,陈奕良,姚俊,等.杉木连栽地力衰退的原因及防治对策[J].现代农业科技,2009,(3):92-95.
    [4]杜国坚,洪利兴,陈福祥,等.杉木连栽地力衰退效应研究[J].林业科技开发,2001,(4):11-13.
    [5]张水生.杉木人工林持续经营问题探讨[J].林业勘察设计,2001,(1):21-25.
    [6]叶学华,罗嗣义.杉木人工林地力衰退研究概述[J].江西林业科技,2001,,(6),42-44.
    [7]揭建林,詹有生,吴克选.等.江西省杉木人工林合理轮伐期的研究[J].江西林业科技,2000,(6):4-8.
    [8]马均.杉木人工林地力衰退原因及对策综述[J].四川林勘设计,2004,(3):13-17.
    [9]苏宝川.杉木人工纯林与混交林下土壤肥力分析[J].安徽农学通报,2007,(1):138-139.
    [10]马祥庆,范少辉.不同栽植代数杉木人工林土壤肥力的比较研究[J].林业科学研究,2000,13(6):577-582.
    [11]李秀启,陈吉山.论混交林的优越性[J].林业勘查设计,2006,(2):31.
    [12]陈际伸.混交林营造及其机理的研究概况[J].江西林业科技,2001,(2):26-34.
    [13]娄胜德.谈混交林优点及营造原则[J].林业勘查设计,2009,(1):23-24.
    [14]苏付保.人工混交林营造技术浅析[J].林业实用技术,2010,(2):17-19.
    [15]景跃波,杨德军,马赛宇,等.热带速生树种米老排的育苗与造林[J].林业实用技术,2008,(1):21-23.
    [16]林金国,张兴正,翁闲.立地条件对米老排人工林生长和材质的影响[J].植物资源与环境学报,2004,13(3):50-54.
    [17]吴庆锥.米老排人工林生物量研究[J].福建林业科技,2005,32(3):125-129.
    [18]吕福如.防火生土带改建米老排防火林带的林木生长与地力维持效果[J].河北林果研究,2002,17(4):317-322.
    [19]梁善庆,罗建举.人工林米老排木材化学成分及其在树干高度上的变异[J].中南林学院学报,2004,24(5):28-31.
    [20]李良昌,廖翠兰,黄德林,朱光汉.米老排在乐昌林场的引种及生长表现[J].广东林业科技,2003,19(4):66-68.
    [21]陈存及.阔叶树种栽培.中国林业出版社,2000.
    [22]郭文福,蔡道雄,贾宏炎,等.米老排人工林生长规律的研究[J].林业科学研究,2006,19(5):585-589.
    [23]张浩,庄雪影.华南种乡土阔叶树种枯落叶分解能力.生态学报[J],2008,28(5):2395-2403.
    [24]罗辑,杨忠,杨清伟.贡嘎山森林生物量和生产力的研究[J].植物生态学报,2000,24(2):191-196.
    [25]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    [26]Brown S L, Schroeder P, Kern J S.Spatial distribution of biomass in forests of the eastern USA [J]. Forest Ecology and Management,1999 (123):81-90.
    [27]Ebermayer E. Die Qesamte Lehreder Woldstreumit Ruck sichtaufdie Chemische Staticdes Woldbaues. [M]. Berlin:Julius Spriuger,1876.1-6.
    [28]Lodhiyal N, Lodhiyal L S. Biomass and net primary productivity of Bhabar Shisham forests in central Himalaya, India[J].Forest Ecology and Management,2003,176:217-235.
    [29]Peichl M, Arain A A. Above and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests[J]. Agricultural and Forest Meteorology,2006,140:51-63.
    [30]Thomas J B, Matthew D, Parresol B R. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume[J]. Forest Ecology and Management,2006,233(1):133-142.
    [31]Peichl M, Altaf M A. Allometry and partitioning of above and belowground tree biomass in an age-sequence of white pine forests[J]. Forest Ecology and Management,2007,253:68-80.
    [32]Hu H F, Wang G G. Changes in forest biomass carbon storage in the South Carolina Piedmont between 1936 and 2005[J]. Forest Ecology and Management,2008,255:1400-1408.
    [33]Heinz Gallaun, Zanchia G, Nabuursb G J, et al. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements[J]. Forest Ecology and Management,2010, 260(3):252-261.
    [34]潘维俦,李利村,高正衡.两个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979(4):1-14.
    [35]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.9.
    [36]杨旭静,应金花.收获与迹地清理对二代杉木幼林生长影响初报[J].福建林学院学报,1999,19(2)174-177.
    [37]肖文发,聂道,张家诚.我国杉木林生物量与能量利用率的研究[J].林业科学研究,1999,12(3):237-243.
    [38]刘芳,涂传进,吴良栋,等.老龄杉木生物量及营养元素分布[J].中南林学院学报,2001,21(3):41-45.
    [39]唐坤银,唐代生.杉木生物量优化模型研究[J].林业调查规划,2010,(1):47-52.
    [40]杨明,汪思龙,张伟东,等.杉木人工林生物量与养分积累动态[J].应用生态学报,2010,(07).1674-1680.
    [41]王淼,代力民,姬兰柱,等.长白山阔叶红松林主要树种对干旱胁迫的生态反应及生物量分配的初步研究[J].应用生态学报,2001,12(4):196-500.
    [42]丁贵杰.马尾松人工林生物量和生产力研究-Ⅰ.不同造林密度生物量及密度效应[J].福建林学院学报,2003,23(1):34-38.
    [43]莫江明,彭少麟,Brown S,等.鼎湖山马尾松林群落生物量生产对人为干扰的响应[J].生态学报,2004,24(2):193-200.
    [44]罗水发.尾叶桉人工林生物量的研究[J].福建林学院学报,1999,19(3):279-281.
    [45]杨忠,张建平,王道杰,等.元谋干热河谷桉树人工林生物量初步研究[J].山地学报,2001,19(2):503-510.
    [46]林德喜,罗水发,高小坤.引种的尾叶桉林生物量的动态特征研究[J].福建林学院学报,2003,23(3):261-265.
    [47]郑征,冯志立,曹敏,等.西双版纳原始热带湿性季节雨林生物量及净初级生产[J].植物生态学报,2000,24(2):197-203.
    [48]蚁伟民,张祝平,丁明懋,等.鼎湖山格木群落的生物量和光能利用效率[J].生态学报,2000,20(2):397-403.
    [49]郑蓉,吴新才,翁金珊,等.黄甜竹林生长量和鲜笋营养成分的研究[J].福建林学院学报,1999,19(1):65-68.
    [50]董文渊,黄宝龙,谢泽轩,等.筇竹无性系种群生物量结构与动态研究[J].林业科学研究,2002,15(4):416-420.
    [51]陈礼光,郑郁善,姚庆端,等.沿海沙地新造绿竹林生物量结构[J].福建林学院学报,2002,22(3):249-252.
    [52]McDonald M A, Healey J R. Nutrient cycling in secondary forests in the Blue Mountains of Jamaica[J]. Forest Ecology and Management,2000,139:257-278.
    [53]Shanmughavel P, Francis K. Bioproductivity and nutrient cycling in bamboo and acacia plantation forests[J]. Bioresource Technology,2001,80(1):45-48.
    [54]Verburg P S J, Johnson D W, Harrison R. Long-term nutrient cycling patterns in Douglas-fir and red alder stands:a simulation study [J].Forest Ecology and Management,2001,145(3):203-217.
    [55]Frangi J L, Barrera M D, Richter L L, et al. Nutrient cycling in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina[J]. Forest Ecology and Management,2005,17(1):80-94.
    [56]Guo L B, Sims R E H, Home D J. Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand:Ⅱ. Litter fall and nutrient return[J]. Biomass and Bioenergy,2006,30 (5): 393-404.
    [57]Turner J, Lambert M J. Nutrient cycling in age sequences of two Eucalyptus plantation species[J]. Forest Ecology and Management,2008,255:1701-1712.
    [58]项文化,田大伦.不同年龄阶段马尾松人工林养分循环的研究[J].植物生态学报,2002,26(1):89-95.
    [59]田大伦,项文化,闫文德.马尾松与湿地松人工林生物量动态及养分循环特征[J].生态学 报,2004,24(10):2207-2210.
    [60]漆良华,庞统,陈晓萍,等.湖南省马尾松飞播林的养分循环研究[J].中南林学院学报,2003.23(2):26-32.
    [61]樊后保,刘文飞,苏兵强.马尾松林下栽植闽粤栲对生态系统养分循环的影响[J].应用与环境生物学报2008,14(5):610-615.
    [62]李燕燕,樊后保,卢小兰.马尾松-火力楠混交林营养元素与养分循环研究[J].南昌工程学院学报,2007,26(4):5-8.
    [63]李燕燕,樊后保.马尾松-火力楠混交林生物量及养分结构特征[J].江西农业大学学报,2005,27(5):700-704.
    [64]杨玉盛,陈光水,谢锦升等.杉木-观光木混交林群落N、P养分循环的研究[J].植物生态学报,2002,26(4):473-480.
    [65]闫文德,田大伦,康文星,等.速生阶段第二代杉木林养分循环的动态模拟[J].浙江师范大学学报(自然科学版),2003,26(2):167-172.
    [66]刘增文,李雅素.刺槐人工林养分利用效率[J].生态学报,2003,23(3):444-449.
    [67]刘爱琴,范少辉,林开敏,等.不同栽植代数杉木林养分循环的比较研究[J].植物营养与肥料学报,2005,11(2):273-278.
    [68]秦武明.马占相思近熟林养分循环研究[J].广西农业生物科学,2008,27(3):270-275.
    [69]王光玉.杉木混交林水源涵养和土壤性质研究[J].林业科学,2003,39(S 1):15-20.
    [70]李夷荔,林文莲.杉木米老排混交林水源涵养功能的研究[J].福建水土保持,2001,13(4):43-46.
    [71]郭友林.米老排杉木混交林的水源涵养功能研究[J].林业科技开发,2002,16(5):30-31.
    [72]国家标准局.森林土壤分析法[M].北京:科学出版社.1986.
    [73]杨玉盛,叶德生,俞新妥,等.不同栽杉代数林分生物量的研究[J].东北林业大学学报,1999,27(4):9-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700