蜡梅属植物谱系地理学、系统发育及遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜡梅属(Chimonanthus Lindl.)隶属于蜡梅科(Calycanthaceae),是我国特有的多年生灌木,具有重要的观赏价值和药用价值。主要分布在秦岭以南、云贵高原以西、南岭以北的亚热带河谷山地区域。现今种群的分布区范围很小,易受扰动。蜡梅属在上新世初分化形成,是新近纪(晚第三纪)孑遗植物,现存物种进化历史上受第四纪冰川的影响较大。本文利用叶绿体DNA (cpDNA)的IGS区.trnL-F、trnS-G、trnH-psbA和核糖体DNA (nrDNA)的ITS区对蜡梅属植物25个种群的遗传结构、亲缘地理、系统发育关系进行了研究。进一步利用古地质、古气候资料及末次冰期植被重建资料,推测蜡梅属植物在第四纪冰期的避难所。同时,通过ISSR分子标记对其中的两种蜡梅进行了遗传结构和遗传多样性分析,结合叶绿体序列数据,提出了蜡梅属不同物种不同种群相对应的保护策略。主要研究结果表述如下:
     1)蜡梅属25个种群264个个体中,叶绿体cpDNA trnL-F、trnS-G、trnH-psbA联合数据分析结果共检测到56个变异位点,40种单倍型类型。cpDNA单倍型关系呈现明显的“双星状”分支关系,各种群的特有单倍型分别与内部的古老单倍型H1和H3相连。H1为柳叶蜡梅和浙江蜡梅种群所共有,主要分布于我国华东地区;H3为蜡梅种群所共有,主要分布于华中到西南地区。根据种群分子遗传变异分析,结合地质历史事件,推测现今蜡梅属各种群是在各自的避难所独立演化而来,形成了多个避难所,包括大巴山、巫山、武陵山、雪峰山、云贵高原、黄山、庐山和武夷山。蜡梅属植物在冰期后没有经历过明显的种群扩张事件。
     2)采用cpDNA trnL-F和ITS两个片段,分别运用最大似然法、邻接法和最大简约法对蜡梅属下6种1变种进行了系统发育树的构建。蜡梅属中,首先分化出来的种包括蜡梅和贵州蜡梅,并且有较高的支持率(BS>81%)。合并的分子数据显示,形态上作为原变种的西南蜡梅没有与变种贵州蜡梅聚在一起,而是与其他5个类群聚为一支,表明西南蜡梅与贵州蜡梅亲缘关系较远。蜡梅属中的第二大分支中主要包括浙江蜡梅L、柳叶蜡梅P、山蜡梅K、突托蜡梅O和西南蜡梅N,除西南蜡梅分布在云南,其他物种均分布在华东和华中地区,交叉分布而且范围均较小。支持将柳叶蜡梅和浙江蜡梅归并为一种,并且支持率较高(BS>87%)。
     3)叶绿体DNA3个片段的综合数据表明蜡梅属物种水平的单倍型多态性(h=0.90500士0.01200)和核酸多态性(π=0.00339士0.00013)相对较高。遗传变异主要存在于种群间,并且基因流较小(Fst=0.92736,Gst=0.66184,Nst=0.88072,Nm=0.13)。为了进一步分析两种古老单倍型所在种群的遗传多样性水平,本文还采用ISSR分子标记对蜡梅和柳叶蜡梅进行了研究。分析结果发现,两种蜡梅在种群水平上的遗传多样性不高(Ch.praecox:PPB=32.49%,h=0.0968,I=0.1488;Ch.salicifolius:PPB=34.25%,h=0.1192,I=0.1777),但物种水平上的遗传多样性相对较高(Ch.praecox:PPB=86.03%,h=0.1552,I=0.2635:Ch.salicifolius:PPB=81.25%,h=0.2401,I=0.3684)。遗传结构分析发现Ch.praecox:ΦST=0.4650,GST=0.3784,Nm=0.8213;Ch.salicifolius:ΦsT=0.5912,GsT=0.5036,Nm=0.4929。种子流的cpDNA和花粉流的ISSR对蜡梅属植物遗传多样性的丰富程度和遗传结构的分析检测结果较为一致。
     4)母系遗传的cpDNA和核基因的ISSR分子标记均表明,种群间存在明显遗传分化,为了保护众多避难所地区的遗传多样性,应该主要实施就地保护策略。重点应该包括蜡梅的湖南石门SMF、湖北保康BKH、湖南吉首JSJ、浙江临安LAI和湖南新宁XNS共5个种群;柳叶蜡梅的浙江松阳SYC和江西广丰GFD共2个种群;浙江蜡梅的的福建光泽GZG种群;山蜡梅的广西资源ZYM和广西阳朔YSK共两个种群;突托蜡梅的江西会昌HCO种群;西南蜡梅的云南禄劝LQN种群。如果要进行迁地保护,应该根据不同种群的特点来取样。重点涵盖江西修水的柳叶蜡梅、贵州安龙的山蜡梅和贵州兴义的贵州蜡梅种群并尽可能采集更多的个体。
Chimonanthus Lindl. is a perennial shrub endemic to China with important ornamental and medicinal values, belongs to the family Calycanthaceae. The main distribution of wild populations is limited in the subtropical hills and valleys of the south of Qinling Mountains, the west of Yunnan-Guizhou Plateau, and the north of the Nanling Mountains regions. The present distributions of it are vulnerable to disturbance. The molecular clock estimates suggest that relict Ch. of the Neogene (late Tertiary) diverged from Calycanthus in the early Pliocene. The current genetic structure and geographical distribution were influenced significantly by the climate of Quaternary glacial.
     Our present work investigated the genetic structure, phylogeography and phlogeny of Ch. including25populations from China. The analysis was carried out based on nuclear sequence data from the internal transcribed specer (ITS) region of the ribosomal DNA and chloroplast (cp) DNA data from trnL-F, trnS-G, and trnH-psbA intergenic spacer, located in the large single-copy region of the cp genome. Using of the ancient geological, paleoclimatic data and revegetation information of the last glacial period, the inference was made that the possible glacial refuge of Ch. plants in the Quaternary Ice Age. In additional, the genetic structure and genetic diversity were estimated based on inter-simple sequence repeat (ISSR) markers from Ch. praecox and Ch. salicifolius. Combined with results of the cpDNA sequence data, we proposed an appropriate protection strategy for different populations of different species. The main results were listed as follows:
     1)25populations (264individuals) were analyzed using cpDNA trnL-F、trnS-G、and trnH-psbA intergenic spacer, and56variable sites were detected, which produced40haplotypes. Analysis of cpDNA haplotypes from different populations suggested that two phylogeographical groups existed a double star-like relationship in this genus. Populations from Dabashan, Wushan, Wulingshan Mountains, mainly distributed in the Central China to southwest, had a unique ancestral haplotypes (H3). Areas around Lushan, Tianmushan, Wuyishan, Xuefengshan mountains, mainly distributed in the East China, had another unique ancestral haplotypes (H3).All other private haplotypes from different populations originated from the two ancestral haplotypes. Accoding to the analysis of the molecular genetic variation of different populations, combined with the geological history events, we speculated that the present populations are evolved independently in their respective refuge, i.e. their present distribution areas. Neutrality test and mismatch distribution neither support any significant postglacial population expansion.
     2) Chose trnL-F genes of chloroplast genome and ITS sequences of nuclear genome, we adopted maximum likelihood, maximum parsimony and neighbor joining method to resolve the systematic problems of6species and1variety of this genus. In the end, we combined both data of trnL-F and ITS to explain the relationships among these species. Ch. praecox and Ch. campanulatus var. guizhouensis diverged from this genus firstly grouped into one branch (BS>81%). And leftover of this genus grouped into another main branch including five species, such as Ch. salicifolius, Ch. grammatus, Ch. nitens, Ch. zhejiangensis, and Ch. campanulatus. Ch. campanulatus var guizhouensis determined previously as a variety of Ch. campanulatus by the flexible morphological and closed geographical characteristics. Inconsistent results with previous showed a far relationship in molecular evidence between them. Our results supported (BS>87%) that Ch. zhejiangensis was treated as a synonyms of Ch. salicifolius.
     3)According to cpDNA data, haplotype diversity (h=0.90500±0.01200) and nucleotide diversity (π=0.00339±0.00013) of the genus is relatively high. In order to estimate the genetic diversity of populations from two ancestral haplotypes, two species from17populations were chose based on ISSR. For both species, the genetic diversity was low at the species level(Ch.praecox:PPB=32.49%, h=0.0968,I=0.1488; Ch. salicifolius:PPB=34.25%, h=0.1192,I=0.1777), but relatively higher at the species level (Ch. praecox:PPB=86.03%, h=0.1552,I=0.0.2635; Ch. salicifolius:PPB=81.25%, h=0.2401,I=0.3684). The hierarchical AMOVA revealed high levels of among-population genetic differentiation in both species, in line with the gene differentiation coefficient and the limited among-population gene flow (Ch. praecox:ΦST=0.4650, GST=0.3784, Nm=0.8213; Ch. salicifolius:ΦST=0.5912, GST=0.5036, Nm=0.4929). Both neighbor-joining (NJ) cluster analysis and Principal Coordinate Analysis (PCoA) clustered all17populations into two major groups, which corresponded to the two separate species. An isolation-by-distance pattern was revealed in Ch. salicifolius (r=0.703, P=0.048,999permutations), but not in Ch. praecox (r=0.168, P=0.185,999permutations). For the respect of description of the richness of the species genetic diversity, results from cpDNA and ISSR data are consistent.
     4) Maternal inheritance of cpDNA and nuclear gene ISSR markers showed a significant differentiation among these populations. In order to protect the genetic diversity of these plants distributed in these refuge areas, we should use in situ conservation strategies. Highlights include the following populations:SMF, BKH, JSJ, LAI, XNS of Ch. praecx; SYC and GFD of Ch. salicifolius; GZG of Ch. zhejiangensis; ZYM and YSK of Ch. nitens; HCO of Ch. grammatus; LQN of Ch. campanulatus. If need an ex situ conservation strategy in emergency, sampling method should be in the light of the characteristics of above-metioned populations, also should include XSZ of Jiangxi Province, ALU and XYT of Guizhou Province, especially.
引文
APG, Group AP (1998) An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden,85,531-553.
    APG, Group AP (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅱ. Botanical Jouranl of the Linnean Society,141,399-436.
    APG, Group AP (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅲ. Botanical Jouranl of the Linnean Society,161,105-121.
    Avise JC (1998) The histroy and purview of phylogeography:a person reflection. Molecular Ecology,7,371-379.
    Avise JC (2000) Phylogeography:the history and formation of species. Mass, Cambridge: Harvard University Press.
    Avise JC, Arnold J, Ball RM, et al. (1987) Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics,18,489-522.
    Bandelt H-J, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution,16,37-48.
    Cheng YP, Hwang SY, Lin TP (2005) Potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata (Fagaceae). Molecular Ecology,14,2075-2085.
    Chiang YC, Hung KH, Schaal BA, et al. (2006) Contrasting phylogeographical patterns between mainland and island taxa of the Pinus luchuensis complex. Molecular Ecology,15,765-779.
    Clegg MT, Gaut BS, Learn GH, et al. (1994) Rates and patterns of chloroplast DNA evolution. The Proceedings of the National Academy of Sciences,91,6795-6801.
    Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics,134, 959-969.
    Crane PR, Friis EM, Pedersen KR (1994) Palaeobotanical evidence on the early radiation of magnoliid angiosperms. Plant Systematics and Evolution Supplement,8,51-72.
    Crepet WL, Nixon KC, Gandolfo MA (2005) An extinct calycanthoid taxon, Jerseyanthus calycanthoides, from the Late Cretaceous of New Jersey. American Journal of Botany, 92,1475-1485.
    Crowford DJ (2000) Plant macromolecular systematics in the past 50 years:one view. Taxon, 49,479-501.
    Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nature Reviews Genetics,6,361-375.
    Demesure B, Comps B, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology,4,129-131.
    Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics,24, 217-242.
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Molecular Ecology,14,2611-2620.
    Excoffier L, Laval G, Schneider S (2005) ARLEQUIN (version 3.0):an integrated software package for population genetics data analysis. Evolutionary Bioinformatics,1,47-50.
    Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation:towards a unified concept for defining convservation:towards a unified concept for defining conservation units. Molecular Ecology,10,2741-2752.
    Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics,133,693-709.
    Ge XJ, Yu Y, Zhao NY et al. (2003) Genetic variation in the endangered Inner Mongolia endemic shrub Tetraena mongolica Maxim. (Zygophyllaceae). Biological Conservation,111,427-434.
    Gielly L, Tablerlet P (1996) A phylogeny of European gentians inferred from chloroplast trnL(UAA) intron sequences. Botanical Journal of the Linnean Society,120,57-75.
    Goldstein DB (2001) Islands of linkage disequilibrium. Nature Genetics,29,109-211.
    Gong W, Chen C, Dobes C, et al. (2008) Phylogeography of a living fossil:Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Molecular Phylogenetics and Evolution,48, 1094-1105.
    Griffiths RC, Tavare S (1994) Simulationg probability distribution in the coalescent. Theoretical Population Biology,46,131-159.
    Grivet D, Petit RJ (2002) Chloroplast DNA phylogeography of the hornbeam in Europe: Evidence for a bottleneck at the outset of postglacial colonization. Conservation Genetics,4,47-53.
    Hall TA (1999) BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series,41,95-98.
    Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology,8,513-525.
    Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In:Plant population genetics, breeding and genetic resources (eds. Brown AHD, Clegg MT, Kahler AL, Weir BS), pp.43-63. MA, USA:Sinauer, Sunderland.
    Hamrick JL, Godt MJW (1996) Effects of life history trait on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London series B-Biological Sciences,351,1291-1298.
    Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forests,6,95-124.
    Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society,58,247-276.
    Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature,405,907-913.
    Hickerson MJ, Carstens BC, Cavender-Bares J, et al. (2010) Phylogeography's past, present, and future:10 years after Avise,2000. Molecular Phylogenetics and Evolution,54, 291-301.
    Hodges SA, Arnold ML (1994) Columbines:a geographically widespread species flock. Proceedings of the national Academy of Sciences, USA,91,5129-5132.
    Hogbin PM, Peakall R (1999) A critical evaluation of the contribution of genetic research to the management of the endangered plant, Zieria prostrate. Conservation Genetics,13, 514-522.
    Hudson RR (1987) Estimation the recombination parameter of a finite population model without selection. Genetics and Reservation,50,245-250.
    Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution,56,1556-1557.
    Ikeda H, Setoguchi H (2007) Phylogeography and refugia of Japanese endemic alpine plant, Phyllodoce nipponica M. (Ericaceae). Journal of Biogeography,34,169-176.
    Johnson LA, Soltis DE (1998) Assessing congruence:empirical examples from molecular data. In:Molecular systematics of plants Ⅱ:DNA sequencing (eds. Soltis DE, Soltis PS, Doyle JJ), pp.297-348. Massachusetts, USA:Kluwer, Norwell.
    Lopez-Pujol J, Zhang F-M, Sun H-Q, et al. (2011) Centres of plant endemism in China:places for survival or for speciation? Journal of Biogeography,38,1267-1280.
    Li A, Luo Y, Xiong ZT, et al. (2002) A preliminary study on conservation genetics of three endangered orchid species. Acta Botanica Sinica,44,250-252.
    Li BT, Bruce B (2008) Calycanthaceae. In:Flora of China (eds. Wu ZY, Hong DY), pp.92-94. Beijing:Science Press.
    Librado P, Rozas J (2009) DnaSP v5:A software for comprehensive analysis of DNA polymorphism data. Bioinformatics,25,1451-1452.
    Magurran AE (1988) Ecological diversity and its measurement. Princeton, New Jersey: Princeton University Press.
    Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research,27,209-220.
    Mattioni C, Casasoli M, Gonzalez M, et al. (2002) Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species. Theoretical and Applied Genetics, 104,1064-1070.
    Mau B, Newton M (1997) Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. Journal of Computational and Graphical Statistics,6, 122-131.
    Mau B, Newton M, Larget B (1999) Bayesian phylogenetic inference via Markov chain Monte carlo methods. Biometrics,55,1-12.
    Meng L-H, Yang RC, Abbott RJ, et al. (2007) Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom.(Pinaceae) in the Qinghai-Tibetan Plateau and adjacent highlands. Molecular Ecology,16,4128-4137.
    Milne RI, Abbott RJ (2002) The origin and evolution of tertiary relict floras. Advances in Botanical Research.,38,281-314.
    Moritz C (1994) Defining "evolutionary significant units" for conservation. Trends in Ecology and Evolution,9,373-375.
    Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America,70,3321-3323.
    Nei M (1987) Molecular Evolutionary Genetics. New York:Columbia University Press.
    Newton AC, Allnutt TR, Gillies ACM, et al. (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends in Ecology and Evolution,14, 140-145.
    Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology,13,1143-1155.
    Nylander JAA, Ronquist F, Huelsenbeck J, P., et al. (2004) Bayesian phylogenetic analysis of combined data. Systematic Biology,53,47-67.
    Patterson N, Richter DJ, Gnerre S, et al. (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature,441,1103-1108.
    Peakall R, Smouse PE (2006) Genalex 6:genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology,6,288-295.
    Petit RJ, Duminil J, Fineschi S, et al. (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant population. Molecular Ecology,14, 689-701
    Philippe H, Delsuc F, Brinkmann H, et al. (2005) Phylogenomics. Annual Review of Ecology, Evolution, and Systematics.,36,541-562.
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics,15,945-959.
    Qiu YX, Guan BC, Fu CX, et al. (2009) Did glacial and/or interglacial promote allopatric incipient speciation in East Asian temperate plants? Phylogeographic and coalescent analyses on refugial isolation and divergence in Dysosma versipellis. Molecular Phylogenetics and Evolution,51,281-293.
    Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature,342, 163-166.
    Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees:a new method of phylogenetic inference. Journal of Molecular Evolution,43,304-311.
    Richardson JE, Pennington RT, Pennington TD, et al. (2001) Rapid diversification of a species-rich genus of neotropical rain forest trees. Science,293,2242-2245.
    Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution,9,55-569.
    Rohlf FJ, Sokal RR (1965) Coefficients of correlation and distance in numerical taxonomy. University of Kansas Science Bulletin,45,3-27.
    Rokas A, Kruger D, Carroll SB (2005) Animal evolution and the molecular signature of radiations compressed in time. Science,310,1933-1938.
    Ronquist F, Huelsenbeck J, P.. (2003) MrBayes 3:Bayesian phylogenetic inference under mixed models. Bioinformatics,19,1572-1574.
    Ryder OA (1986) Species conservation and systematics:the dilemma of subspecies. Trends in Ecology and Evolution,1,9-10.
    Schaal BA, Hayworth DA, Olsen KM, et al. (1998) Phylogeographic studies in plants: problems and prospects. Molecular Ecology,7,465-474.
    Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution,47,264-279.
    Soltis DE, Soltis PS (1998) Choosing approach and all appropriate gene for phylogenetic analysis. In:Molecular Systematics of Plants.Ⅱ. DNA Sequencing, (eds. Soltis DE, Soltis PS, Doyle JJ). Boron:Kluwer Academic Publication.
    Stebbins GL (1980) Polyploidy in plants:unsolved problems and prospects. In:Polyploidy: biological relevance (ed. Lewis WH), pp.495-520. New York:Plenum Press.
    Sun W, Zhou Z-Z, Liu M-Z, et al. (2008) Reappraisal of the generic status of Pteroxygonum (Polygonaceae) on the basis of morphology, anatomy and nrDNA ITS sequence analysis. Journal of Systematics and Evolution,46,73-79.
    Swofford DL (2002) paup*:Phylogenetic Analyses Using Parsimony (* and Other Methods), Version 4. Sunderland, MA:Sinauer & Associates.
    Taberlet P, Gielly L, Pautou G, et al. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology,17,1105-1109.
    Tajimas F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics,123,585-595.
    Tamura K, Peterson D, Peterson N, et al. (2011) MEGA5:Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution,28,2731-2739.
    Wallander E, Victor AA (2000) Phylogeny and classification of Oleaceae base RPS16 and trnL-F sequence data. American Journal of Botany,87,1827-1841.
    Wang HW, Ge S (2006) Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Molecular Ecology,15,4106-4122.
    Wen J (1999) Evolution of eastern Asian and eastern North American disjunct pattern in flowering plants. Annual Review of Ecology and Systematics.,30,421-455.
    White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:PCR protocols:A guide to methods and applications, (eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ), pp.315-322. Academic Press, San Diego.
    Williams JG, Kubelik SV, Livak KJ, et al. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,18,6531-6535.
    Wolf DE, Takebayashi N, Riesegerg LH (2001) Predicting the risk of extinction through hybridization. Conservation Biology,15,83-109.
    Yang FS, Li YF, Ding X, et al. (2008) Extensive population expansion of Pedicular is longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with Quaternary climate change. Molecular Ecology,17,5135-5145.
    Yeh FC, Yang RC, Boyle TBJ, et al. (1997) POPGENE, the user-friendly shareware for population genetic analysis. University of Alberta, Canada:Molecular Biology and Biotechnology Centre.
    Zhang Q, Chiang TY, George M, et al. (2005a) Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Molecular Ecology,14,3513-3524.
    Zhang RZ (2004) Relict distribution of land vertebrate and Quaternary glaciations in China. Acta Zoologica Sinica.,50,841-851.
    Zhang XP, Li XH, Qiu YX (2006) Genetic diversity of the endangered species Kirengeshoma palmata (Saxifragaceae) in China. Biochemical Systematics and Ecology,34,38-47.
    Zhang ZY, Chen YY, Li DZ (2005b) Detection of low genetic variation in a critically endangered Chinese pine, Pinus squamata, using RAPD and ISSR markers. Biochemical Genetics,43,239-249.
    Zhao KG, Zhou MQ, Chen LQ, et al. (2007) Genetic diversity and discrimination of Chimonanthus praecox (L.) Link germplasm using ISSR and RAPD marker. Hortscience,42,1144-1148.
    Zhou M-Q, Zhao K-G, Chen L-Q (2007) Genetic diversity of Calycanthaceae accessions estimated using AFLP markers. Scientia Horticulturae,112,331-338.
    Zhou SL, Renner SS, Wen J (2006) Molecular phylogeny and intra-and intercontinental biogeography of Calycanthaceae. Molecular Phylogenetics and Evolution,39,1-15.
    Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)- anchored polymerase chain reaction amplification. Genomics,20, 176-183.
    曾宪锋,邱贺媛(2010)广东省野生植物一新记录科——蜡梅科.西北植物学报,30,205-207.
    陈灵芝,马克平(2001)生物多样性科学:原理与实践.上海:上海科学技术出版社.
    陈龙清(1998)蜡梅属的物种生物学研究,北京:北京林业大学.
    陈龙清,陈俊愉(1999)蜡梅属植物的形态、分布、分类及其应用.中国园林,15,76-77.
    陈龙清,陈俊愉,郑用琏等.(1999)利用RAPD分析蜡梅自然居群的遗传变异.北京林业大学学报,21,87-90.
    陈生云,陈世龙,夏涛等.(2005)用nrDNAITS序列探讨狭蕊龙胆属及其近缘属(龙胆科)的系统发育.植物分类学报,43,491-502.
    陈生云,吴桂莉,张得钧等(2008)高山植物条纹狭蕊龙胆的分子亲缘地理学研究.植物分类学报,46,573-585.
    陈小勇,陆慧萍,沈浪等(2002)重要物种优先保护种群的确定.生物多样性,10,332-338.
    陈志秀,丁宝章,赵天榜等(1987)河南蜡梅属植物的研究.河南农业大学学报,21,413-426.
    逢洪波(2006)蜡梅科植物的分子系统学研究,大连:辽宁师范大学.
    葛颂,洪德元(1994)生物多样性研究原理与方法.In:生物多样性研究的原理与方法(ed.中国科学院生物多样性委员会).北京:科学出版社.
    龚桂芝,洪棋斌,彭祝春等(2008)枳属种质遗传多样性及其与近缘属植物亲缘关系的SSR和cpSSR分析.园艺学报,35,1742-1750.
    郝朝运,刘鹏,郭卫东等(2006)忍冬科部分植物DNA提取方法的研究.浙江师范大学学报(自然科学版),29,92-98.
    郝日明(1997)试论中国种子植物特有属的分布区类型.植物分类学报,35,500-510.
    何培民,张荣铣(2000)藻类叶绿体DNA和基因图谱.上海水产大学学报,9,51-58.
    侯鑫,刘俊娥,赵一之(2008)中国锦鸡儿属的分子系统发育.植物分类学报,46,600-607.
    黄坚钦,张若蕙(1995)蜡梅科9种叶的比较解剖.浙江林学院学报,12,237-241.
    蒋达河(1990)叶绿体基因组的结构研究进展.生物化学与生物物理进展,17,10-14.
    蒋志刚,马克平,韩兴国(1997)保护生物学.杭州,浙江:浙江科学技术出版社.
    康明,叶其刚,黄宏文(2005)植物迁地保护中的遗传风险.遗传,27,160-166.
    孔昭宸,杜乃秋(1980)中国晚冰期时的植物群.冰川冻土,29-32.
    李秉滔(1979)蜡梅科.In:中国植物志(eds.蒋英,李秉滔,李延辉),pp.1-10.北京:科学出版社.
    李恩香(2006)黄精叶钩吻属的亲缘地理学及其近缘类群的系统进化研究,杭州,浙江: 浙江大学.
    李根有,金水虎,楼炉焕等(2003)浙江省野生蜡梅数量及群落学研究.北京林业大学学报,25,30-33.
    李海生(2004)ISSR分子标记技术及其在植物遗传多样性分析中的应用.生物学通报,39,19-21.
    李林初(1986)夏腊梅核型的研究.广西植物,6,221-224.
    李林初(1990)夏腊梅属花粉形态的研究.植物研究,10,93-98.
    李艳,江玉梅,鲁顺保等(2008)突托蜡梅ISSR引物反应条件的优化与筛选.武汉植物学研究,26,245-250.
    李烨,李秉滔(2000a)蜡梅科植物的分支分析.热带亚热带植物学报,8,275-281.
    李烨,李秉滔(2000b)蜡梅科植物的起源演化及其分布.广西植物,20,295-300.
    李云霞,兰芙蓉,常朝阳等(2011)基于ITS和trnL-F序列的青藏高原棘豆属植物分子系统学研究.西北农林科技大学学报(自然科学版),39,187-193.
    李志明,李捷,李锡文(2006)樟科黄肉楠属是一个复系类群——基于nrDNA ITS和ETS序列分析(英文).植物分类学报,44,272-285.
    刘茂春(1984)蜡梅属的研究.南京林学院学报,8,78-82.
    刘茂春(1991)中国传统名花蜡梅属的整理.浙江林学院学报,8,153-158.
    刘艳玲,徐立铭,倪学明等(2005)基于ITS序列探讨睡莲属植物的系统发育.武汉大学学报(理学版),51,258-262.
    陆慧萍(2004)七子花遗传结构及优先保护种群的确定,上海:华东师范大学.
    马骥,邓虹珠,晁志等(2004)中国种子植物特有属药用植物资源.中国中药杂志,29,123-129.
    马克平(1993)试论生物多样性的概念.生物多样性,1,20-22.
    沈浪,陈小勇,李媛媛(2002)生物冰期避难所与冰期后的重新扩散.生态学报,22,1983-1990.
    施立明,贾旭,胡志昂(1993)遗传多样性.In:中国生物多样性-现状及其保护对策(ed.陈灵芝).北京:科学出版社.
    施苏华,杜雅青,龚洵等(2003)用cpDNA matK基因和(?)DNA ITS区序列确定我国特有植物四棱草属的系统位置.科学通报,48,1176-1180.
    孙海芹(2005)濒危植物独花兰的形态变异及其适应意义.生物多样性,13,376-386.
    孙华钦(2006)中药穿龙薯蓣、黄山药和盾叶薯蓣的分子鉴别研究,成都:中国科学研研究生院.
    陶君荣(1992)中国第三纪植被和植物区系历史及分区.植物分类学报,30,25-43.
    陶晓瑜(2008)东亚特有濒危植物蛛网萼的遗传多样性与亲缘地理学研究,杭州:浙江大学.
    田欣,李德铢(2002)DNA序列在植物系统学研究中的应用.云南植物研究,24,170-184.
    王荷生(1989)中国种子植物特有属起源的探讨.云南植物研究,11,1-16.
    王荷生,张镱锂(1994)中国种子植物特有属的生物多样性和特征.云南植物研究,16,209-220.
    王静,李明,魏辅文等(2001)分子系统地理学及其应用.动物分类学报,26,431-439.
    吴征镒(1979)论中国植物区系的分区问题.云南植物研究,1,1-24.
    吴征镒,孙航,周浙昆等(2011)中国种子植物区系地理.北京:科学出版社.
    吴征镒,孙航,周浙昆等(2005)中国植物区系中的特有性及其起源和分化.云南植物研究,27,577-604.
    吴征镒,周浙昆,孙航等(2006)种子植物分布区类型及其起源和分化昆明:云南科技出版社.
    肖炳坤,刘耀明(2003)蜡梅属植物分类、化学成分和药理作用研究进展.现代中药研究与实践,17,59-61.
    熊义权,肖纯,龙秀娟(2008)蜡梅属植物叶、花化学成分及药理性质研究进展.中国野生植物资源,27,8-10.
    应俊生(1996)中国种子植物特有属的分布区学研究.植物分类学报,34,479-485.
    应俊生(2001)中国种子植物物种多样性及其分布格局.生物多样性,9,393-398.
    应俊生,张玉龙(1994)中国被子植物特有属.北京:科学出版社.
    张宏意,廖文波,陈月琴等(2008)大血藤的rDNA ITS序列分析.广西植物,28,737-740.
    张若蕙,刘洪谔,沈湘林等(1998)世界蜡梅.北京:中国科学技术出版社.
    张若蕙,沈湘林(1999)蜡梅科的分类及地理分布与演化.北京林业大学学报,21,7-11.
    张颖娟,王玉山(2008)濒危灌木长叶红砂遗传多样性的RAPD分析.生态学杂志,27,157-161.
    赵冰,张启翔(2007a)利用AFLP分子标记探讨蜡梅种质资源的遗传多样性.生态学报, 27-4452-4459.
    赵冰,张启翔(2007b)中国蜡梅属种质资源的分布及其特点.广西植物,27,730-735.
    赵冰,张启翔(2008)蜡梅种质资源遗传多样性的ISSR分析.植物研究,28,315-320.
    赵海光,周建建,曹珊珊等(2009)基于ITS和trnL-F序列碱基差异的繁缕及其近缘种的亲缘关系分析.植物资源与环境学报,18,1-5.
    赵天榜,陈志秀,李振卿等(1989)中国蜡梅属一新种.植物研究,9,47-49.
    郑万钧,章绍尧(1964)蜡梅科的新属--夏蜡梅属.植物分类学报,9,135-136.
    周莉花,郝日明,吴建忠(2006)蜡梅传粉生物学研究.园艺学报,33,323-327.
    周莉花,郝日明,吴建忠等(2003)亮叶蜡梅的传粉生物学初步研究.园艺学报,30,690-694.
    周天华(2010)中国特有属植物--马蹄香(Saruma henryi Oliv.)的分子谱系地理学与遗传多样性研究,西安:西北大学.
    周浙昆,Momohara A (2005)一些东亚特有种子植物的化石历史及其植物地理学意义.云南植物研究,27,449-470.
    宗敏(2008)东亚特有濒危植物黄山梅的遗传多样性与地理分化,杭州:浙江大学.
    邹新慧,葛颂(2008)基因树冲突与系统发育基因组学研究.植物分类学报,46,795-807.
    邹喻苹,葛颂,王晓东(2001)系统与进化植物学中的分子标记.北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700