溶藻细菌对球形棕囊藻溶藻机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来赤潮灾害频繁发生,严重危害沿海地区渔业生产和经济发展,开展对有害赤潮的防治研究越来越得到各国的重视。在利用物理、化学等方法治理赤潮不甚理想的情况下,溶藻细菌作为赤潮防治的新方法和可能微生物,开始引起国内外研究人员特别关注,并逐渐成为海洋环境科学研究领域的热点。本文从珠海赤潮发生海域筛选、分离到三株溶藻细菌G、Y和W,实验表明其对球形棕囊藻均有显著的溶藻效果。分别对三株溶藻细菌的溶藻作用过程、溶藻前后的藻菌形态变化、溶藻效果与环境因子的影响、溶藻过程中荧光变化、溶藻机理、归趋及其藻际的微生态效应进行了研究,实验结果旨在为近海养殖区有害赤潮藻的微生物防治提供科学依据。主要的研究结果如下:
     1.从珠海赤潮发生海域中采集水样,分离出11株细菌,分别与指数生长期的棕囊藻共培养,根据溶藻效果,从中筛选出三株具有显著溶藻作用的细菌G、Y和W。实验结果表明,三株细菌均显示为革兰氏阳性,属于杆菌,形态上明显不同,G细菌多处于分裂状态,Y细菌常为族集状聚合态,W细菌以多个细胞相连的方式存在。三株细菌都对球形棕囊藻有显著的溶藻效果。
     2.利用原子力显微镜研究了不同藻菌作用时期的形态变化。结果表明,溶藻细菌对球形棕囊藻藻细胞有破坏和杀灭作用,可导致藻细胞破裂和胞内物质溶出而死亡;在溶藻后期,藻细胞被完全破坏为游离的碎片,藻菌共同培养液中溶藻细菌密度明显增加,并发现溶藻细菌的周围有丝状的粘质分泌物,这些分泌物可能对藻细胞产生溶蚀作用。
     3.实验研究表明,盐度、光照和藻密度等因素对细菌的溶藻效果影响较大。G和Y细菌均在30‰盐度时溶藻效果最好,15‰时最差,W细菌在20‰时溶藻效果最好,35‰时最差;在不同光暗比的光照条件下,细菌G、Y和W都具有溶藻能力;比较三株细菌对处于生长初期和对处于指数生长期不同藻密度的棕囊藻细胞的抑制效果,发现G、Y和W对前者溶藻效果较好,其中三株中又以细菌G抑制效果最好。
     4.对细菌作用前后的藻菌体进行AO染色,利用流式细胞仪进行荧光分析,结果表明,在细菌作用下,藻细胞密度明显下降的同时,伴随着藻色素的明显锐减,且在溶藻后期共同培养液里AO荧光异常增强,对照研究结果显示在体系里出现了大量增殖的溶藻细菌;利用流式细胞仪通过PI染色并结合藻的叶绿素自发荧光分析了溶藻过程藻的生理学特征,发现三株细菌的溶藻作用趋势是先破坏棕囊藻细胞膜,使其膜完整性受损,进而破坏叶绿素,造成藻体的非自然死亡,最后在细菌的持续作用下,藻菌共同培养液中约90%左右藻体细胞的核酸物质受到严重破坏,形成了最终的细胞碎片。
     5.利用共聚焦激光显微镜结合PI染色和PI/AO双染色,观测到在溶藻细菌作用下藻菌共培养液中棕囊藻细胞有着不同程度的膜破损和膜缺失现象,且共培养液里有大量凋亡小体和核小体的产生,以及广泛的DNA断裂、DNA片断形成和细胞空腔等现象出现。所有这些细胞的非正常凋亡都是在加入溶藻细菌后发生的,而对照组的藻细胞则为良好生长的荧光阴性表征,可见藻细胞的这种非正常凋亡跟溶藻细菌密切有关,推断正常生理生长的棕囊藻细胞是被溶藻细菌诱导凋亡,因此提出了溶藻细菌诱导藻细胞快速凋亡模型。
     6.通过测定β-葡萄糖苷酶来检测胞外酶活性变化,结果表明其在藻菌作用过程的活性变化和Doucette的水华种群动力学模式非常契合,从而验证并补充了溶藻细菌的动力学作用模式,表明了溶藻细菌是可以在良性循环的模式上进行赤潮治理的,其可以分离自赤潮海域,并作用于海洋水体中赤潮藻藻细胞,最后随赤潮消退而逐渐消失于海洋环境中,是天然的,且是对海域生物安全的海洋本土物种,符合目前国际上对赤潮防治剂“高效、低毒、价廉、易得”的赤潮防治要求。
Red tide has frequently occurred in recent years. The blooms have seriously endangered fishery production and economic development of coastlands. Research on the mitigation of harmful algal bloom has been attracting increasing international attention. Under the circumstances that physical and chemical control methods to red tide are not effective, the use of algae-lysis bacteria as a new method of red tide control and potential microorganisms, has attracted extensive attention of national and international researchers, and gradually become an intensive area of scientific research in the field of marine environment. In this paper, three algae-lysis bacteria labeled G, Y and W, were isolated from Pearl Sea where red tide often outbreaks. The bacteria had significantly algae-lysing effect on marine alge Phaeocystis globosa Scherffel. For the purpose of exploring a new method to solve the long time problem of P. globosa outbreaks and providing a scientific basis for the control of harmful alga microorganisms in coastal zones, we studied the lysing-process of the three algae-lysis bacteria, morphological changes of the bacteria and P. globosa before and after, the relation between the effect of algae and environmental factors, the relations cycle of fluorescence changes between algae and bacteria, the molecular biology mechanisms of algae-lysing, finally, the fate of bacteria and micro-ecological effects in phycosphere. The main results were as follows:
     1. Eleven bacterial strains were isolated from red tide-prone areas of Pearl Sea by traditional culture, from which 3 strains with algae-lysing effects, labled G, Y, and W, were selected and confirmed as Gram-positive bacteria, bacillus, in distinctly different morphology patterns. G bacteria were more divided, Y bacteria often in cluster states, W bacteria tended to link to a number of cells. All three displayed a remarkable algae-lysing effect on P. globosa.
     2. Morphological studies in the pattern of algae by using atomic force microscopy showed that algae-lysis bacteria can damage and kill P. globosa cells, and cause algal cells to rupture and intracellular materials to dissolve and finally the cells die. In the late period of algae-lysing, the algal cells were seriously damaged into free debris, and a large number of algae-lysis bacteria emerged in the co-culture. Some of these bacteria were apparently surrounded by viscous materials which may be the substances secreted by algae-lysis bacteria, which chemically dissolved algal cells.
     3. The different effects of algae-lysing varied in different environmental conditions. G and Y bacteria at 30‰salinity were at best algae-lysing, and worst at the 15‰, W bacteria showed the best algae-lysing at salinity 20‰, and worst at 35‰. All three algae-lysis bacteria have good algae-lysing under the conditions of total dark, light cycles and full illumination. The algae-lysing ability to P. globosa in the early growth phase was better than that in the exponential growth phase. Bacteria G had the best inhibition on effects P. globosa.
     4. In the late stage of algae-lysing by FCM fluorescence analysis with AO staining, it was found that P. globosa cells and algal pigment were also sharply reduced, and the co-culture system contained a large number of the corresponding algae-lysis bacteria. Physiological characteristics of the algae in the algae-lysing cycle of by FCM analysis showed that the algae-lysing trends were in steps. First P. globosa cell membrane integrity was destroyed, then chlorophyll was damaged, resulted in a non-natural death of algae at last step. In the continued action of bacteria, DNA materials of algae cells were also seriously damaged and over 90% P. globosa finally formed cell debris.
     5. By CLSM with PI staining or PI / AO double staining analysis in the stages of algae-lysing found that after algae-lysing the membrane of P. globosa have varying degrees of damage and deficiency in co-culture system. Also a large number of apoptosis bodies, a wide range of DNA fragmentation, DNA fragment fracture formation, and cell cavity, could be found. All these phenomena in abnormal apoptosis were formed after adding the bacteria while the control group algal cells were in good growth conditions with fluorescence negative characterization. It can be concluded that algal cells with abnormal apoptosis were closely related to the additions of bacteria. Normal physiological growth of P. globosa was induced to apoptosis by algae-lysis bacteria. Therefore the model of P. globosa's rapid apoptosis induced by algae-lysis bacteria was established.
     6. Experimental determination by 6-glucosidase activity could detect changes in extracellular enzyme activities. The activity changes of extracellular enzyme in the process of algae-lysisng research corroborated with the Doucette Population Dynamics Model in the water, thus it verified and complemented the dynamic of algae-lysis bacteria. The mode of action of bacteria on red tide is part of a virtuous circle. Algae-lysis bacteria, which are "drawn" from the sea, and "impact" on sea and "lose" in the sea, is natural and safe for marine native species, and also in line with treatment requirements of current international control for red tide prevention of "efficiency, low toxicity, cheap and easy".
引文
1. Ahn, C.Y., Joung, S.H., Jeon, J.W., Kim, H.S., Yoon, B.D., Oh, H.M.. Selective control of cyanobacteria by surfactin-containing culture broth of Bacillus subtilis C1[J]. Biotechnology Letters, 2003, 25 (14): 1137-1142.
    2. Aiola M. G, Pellegrini S.. Lysis of Microcystis aeruginosa by Bdellovibrio-like bacteria[J]. J.Pbyvcol., 1984, 20 (1): 471-475.
    3. Amaro, A.M.,Fuentes,M.S.,Ogalde,S.R.,Venegas,J.A.,Suarez-Isla, B.A.. Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella[J]. J Eukaryot Microbiol, 2005,52( 3): 191-200.
    4. Anderson DM. Turning back the harmful tide [J]. Nature, 1997, 338: 513-514.
    5. Banin, E., Khare. K., Naider, E, Rosenberg, E. Proline-Rich Peptide from the Coral Pathogen Vibrio shiloi That Inhibits Photosynthesis of Zooxanthellae. Appl. Environ. Microbiol., 2001, 67: 1536-1541.
    6. Bates T. S., Cline J. D., Gammor, R. H.. Regional and seasonal variation in the flux of oceanic dimethylsulfide to the atmosphere[J]. J Geophys Res, 92: 2930-2938.
    7. Boyd P W, Watson A J, Law C S. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 2000, 407: 695-702.
    8. Brahim J, SouiresL., Mitwali, H.. 1982. Chlorine as an algicide in a conventional water treatment plant[J]. Intern J. Environmental Studies, 20: 41-46.
    9. Brankenhoff G J., Vandervoot H. T, Spronsen E. A, et al. Three-dimensional chromation distribution inneuroblastoma nuclei shown by confocal scaning laser microscopy[J]. Nature, 1985, 317: 748-749.
    10. Bratbak G., Egge J K, Heldal M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms[J]. Mar. Ecol. Prog. Ser. 1993, 93 (1): 39-48.
    11. Brito R, Chima M, Rosas C. Effect of salinity in survival, growth, and osmotic capacity of early juveniles of Farfantepenaeus brasiliensis (decapoda: penaeidae) [J]. Journal of Experimental Marine Biology and Ecology, 2000, 244: 253-263.
    12. Cadee G.C. Long-term changes in phytoplankton in marine coastal waters. J. Phycol, 1991, 27 (1): 12.
    13. Caiola M G., Pellegrini S. Lysis of Microcystis aeruginosa by Bdellovibrio-like bacterial[J].J Phycol, 1984, 20 (1): 471-475.
    
    14. Charlson R.J, Lovelock J.E. M.O. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature, 1987, 326: 651-655.
    
    15. Chen, Y.Q., Wang, N., Zhang, P., Zhou, H., Qu, L.H. Molecular evidence identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal waters of southeast China as Phaeocystis globosa. Biochem. System. Ecol, 2002, 30, 15-22.
    16. Christopher G P., Tom LD. Infection, growth, and community-level consequences of a diatom pathogen in sonoran desert stream[J]. J. Phycol, 1993, 29(4): 442-452.
    17. CottrellM T, Suttle C A. Dynamics of a lytic virus infecting the photosynthetic marine picoflagellate Micromonas pusilla [J]. Limnol. Ocean ogr, 1995, 40(4): 730-739.
    18. Dakhama A, Noue J D, Lavoie M C. Methods for the Examination of organism Diversity in Soils[J]. Appl Phycol, 1993, 5 (9): 297-306.
    19. Darzynkiewicz Z, Bruno S, Del Bino G, et al. Features of apopotic cells measured by flow cytometry, 1992, 13: 795.
    20. Ddft, M., Sterwart W D P. Ecological studies on algal-lysing bacteria in fresh water[J]. Fresh water Biol, 1975, 5 (1): 577-596.
    21. Doucette G J, Megovern E R, Babinchak J A. Algicidal bacteria active against Gymnodinium breve. (dinophyceae) 1. bacterial isolation and characteriazation of killing activity[J]. J phycol. 1999, 35 (1): 1447-1454.
    22. Eppley R.W. Some observation on the vertical migration of dinoflagellates. J Phycol, 1968, 4: 333-340.
    23. Fernandez Botran R, Vetvicka V. Methods in cellular immunology[M]. New York: CRC Press, 1995, 29-46.
    24. Fraleigh P.C., Burnham J. C., Myxococcal predation on eyanobacterial populations: nurtrient effects[J]. Limnol Oceanogr, 1988, 33 (3): 476-483.
    25. Franklin N. M, Adams M. S, Stauber J. L, et al. Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry[J]. Arch Enviran Contain Toxicol, 2001, 40: 469-480.
    26. Franklin N. M, Stauber J. L, Lim R. P. Development of flow cytometrybased algal bioassays for assessing toxicity of copper in natural waters[J]. Environ Toxicol Chem, 2001, 20 (1): 160-170.
    27. Fukami K, Nishijima T, Murata H. Distribution of bacteria influential on the development and the decay of Gymnodinium nagasakiense red tide and their effects on algal growth [J]. Nippon Suisan Gakkaishi 1991, 57 (912): 2321-2326.
    
    28. Fukami, K., Yuzawa, A., Nishijima, T. Isolation and Properties of a bacterium inhibiting the growth of Gymnodinium. nagasakiense. Nippon Suisan Gakkaishi, 1992, 58 (6): 1073-1077.
    29. Furuki, M., Kobayashii, M.. Interaction between chattonella and bacteria and prevention of this red tide EMEC, 90. Mar. Pollut. Bull. 1991, 23: 189-193.
    30. Furuya T, Kamada T, Murakami T, et al. Laser scanning cytometry allows stained with PI[J]. Cytometry, 1992, 13: 795.
    31. Gaboriaud F, Bialet S., Dague, E. Surface structure and nanomechanical properties of shewanella pure bacteria at two Ph values (4 to 10) determined by atomic force microscopy. Appl Environ Microbiol, 2005, 187 (11): 3864-3868.
    32. Garry J, Janica E, Lawrence M, et al. A novel virus (HAIV) causes lysis of the toxic bloom-forming Alga Heterosigma Akashiwo (Raphidophyceae) [J]. J Phcology, 2001, 37: 216-222.
    33. Gasol, J. M., Giorgio D. Using flow cytometryfor counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities[J]. Sci. Mar. 2000, 64 (2): 187-224.
    34. Gerhard, C.C. Accumulation and sedimentation of Phaeocystis globosa in the Dutch Wadden Sea. Journal of Sea Research, 1996, 36 (3/4): 321-327.
    35. Hwang J, Gheber LA, Margolis L, et al. Domains in cell plasma membranes investigated by near-field scanning optical microscopy[J]. Biophys. 1998, 74 (5): 2184-2190.
    36. Imai I. , Sunahara T.. Fluctuations of the red tide flagellates Chattonella spp. (Raphidophyceae) and the algicidal bacteria Cytopha sp. In the Seto Inland Sea. Janpan[J]. Marine Biology, 2001, 138 (3): 1043-1049.
    37. Imai, I., Ishida, Y., Hata, Y.. Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan[J]. Marine Biology, 1993, 116: 527-532.
    
    38. Imai, I., Kim M C. Detecion and enumeration of microorganisms that are lethal to harmful phytoplankton in coastal waters[J]. Plankton Biol. E col, 1998, 45 (1): 19-29.
    39. Imail I, Ishadi Y. Isolation of a Marine phytoplankton by a gliding bacterium the kills Chattonella antiqua (Raphidophyceae) [J]. Nippon Suisan Gakkaishi, 1991, 57 (7): 1409-1410. Imai I, Ishadi Y. Sakaguchi K., Algicidal marine bacteria isolated from northern Hiroshima bay[J]. Japan Fish. Sci. 1995, 61 (1): 628-636.
    40. Imamura N, Motoike I, Shimada N. An efficient screening approach for anti-Microcystis compounds based on knowledge of aquatic microbial ecosystem [J]. Antibiotics, 2001, 54 (7): 582-587.
    
    41. Imamura, N., Motoike. I, Noda, M., Adachi, K., Konno, A., Fukami, H., Argimicin A.. A novel anti-cyanobacterial compound produced by an algae-lysing bacterium [J]. Journal of Antibiotics, 2000, 53 (11): 1317-1319.
    42. Jeong J H, Jin J H, Sohn C H, et al. Algae-lysis activity of the seaweed Corallina pilulifera against red tide microalgae[J], J Appl. Phycol., 2000, 12: 37-43.
    43. Jin Q, Dong SL, Wang CY. Allelopathic growth inhibition of Prorocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures[J]. European Journal of Phycology, 2005, 40 (1): 31-37.
    
    44. Keller M.D., Bellows W.K, Guillard R.R.L. DMS production in marine phytoplankton. In: Saltzman, E.S., cooper, W.J. (eds) Biogenic sulfur in the environment. American Chemical Society Washington, D.C, 1989, 393: 167-182.
    45. Kettle, A. J., Andreae, M. O.. Flux of dimethylsulfide from the sea: A comparison of update date sea and flux models[J]. J Geophys Res, 2000, 105: 26793-26808.
    46. Kim M. C., Yoshinaga I, Imai I, et al. A close relationship between algae-lysis bacteria and termination of Heterosigma akashiwo (Raphidophyceae) blooms in HiroshimaBay[J]. Japan Mar Ecol, Prog Ser 1998, 170 (1): 25- 32.
    47. Klein C., Cheutin T., Odonohue M., et al. The three-dimensional study of chromosome and up stream binging factor-immunolabeled nuclear organizer regions demonstates their nonrandom spatial arrangement during mitosis [J]. Mol Biol Cell, 1998, 9 (11): 3147-3159.
    48. Korchev Y E, Raval M, Lab M J, et al. Hybrid scanning ion conductance and scanning near-field optical microscopy for the study of living cells[J]. Biophys. 2000, 78 (5): 2675-2679.
    49. Kressel M, Groscurth P. Distinction of apoptotic and necrotic cell death by in situ labeling of bragmented DNA.Cell Tissue Res, 1994, 278 (3): 549-556.
    50. Kumar H D. Streptomycin and penicillin-induced inhibition of growth and pigment production in blue-green algae and production of strains of Anacystis nidulans resistant to these antibiotics[J]. J Experim. Bot., 1964, 15: 232-250.
    51. Lancelot C, Keller MD, Rousseau V et al. Autecology of the Marine Haptophyte sp. [J]. Physiological Ecology of Harmful Algal Blooms, 1998, 209-224.
    52. Lee S O, Kato j., Takiguchi N.. Involvement of an extra cellular protease in algicidal activity of the marine bacteria Pseudoalte Iteromonas sp. StainA28[J]. Apply Environ Microbiol, 2000, 66 (10): 4334-4339.
    53. Legrand C, Rengefors K, Fistarol GO, et al. Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects[J]. Phycologia, 2003, 42(4): 406-419.
    54. Lovejoy C, Bowman J P.Algae-lysis effects of a novel marine Pseudoalteromonas isolate (class proteobacteria gamma subdivision) on harmful algal bloom species of the Genera Chattonella, Gymnodinium, and Heteroslgma [J]. Appl Environ Microbiol. 1998, 64(8): 2806-2813.
    55. Madhupratap, M., Sawant, S., Gauns M.. A first report on a bloom of the marine nesiophycean, haeocystis globosa from the Arabian Sea. Oceanologica Acta, 2000,23:83-90.
    
    56. Marasovic I, Gacic M, Kovacevic V, et al. Development of the red tide in the Kastela Bay (Adriatic Sea) [J]. Marine Chemistry. 1991, 32: 375-385.
    57. Marie, D., Brassard, R., Thyrhaug, G., Bratbak, D.. Enumeration of marinem ruses in culture and natural samples by flow cytometry[J]. App 1. Environ. Microbiol, 1999, 65: 45-52.
    58. Martin J H, Caole K H, Johnsons K S. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 1994, 371: 123-129.
    59. Martins I, Oliveira J, Flindt M. The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the mondego estuary (west Portugal) [J]. ActaOecol, 1999, 20 (4): 259-265.
    60. Middelboe M. Sondergard M, Letarte Y. Attached and freeliving bacteria: production and polymer hydrolysis during a diatom bloom[J]. Microbial Ecol, 1995, 29 (1): 231-248.
    61. Mitsutani, A., Yamasaki, I., Kitaguchi, H., Kato, J., Ueno, S., Ishida, Y. Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis. Phycologia, 2001, 40 (3): 286-291.
    62. Mullaney , P. F, Dean, P. N. Cell sizing: A small-angle light-scattering method for sizing particles of low relative refractive index[J]. Appl. Optics, 1969, 8: 2361-2362.
    63. Nagasaki K, Turutani K and Yamaguchi M. Growth characteristics of heterosigma akashiwo virus and its possible use as a microbiological anent for red tide control[J]. Applied and Environmental Microbiology, 1999, 4: 898-902.
    64. Nakai S, Moue Y, Hosomi M, et al. Growth inhibition of blue-green algae by allelopathic effects of macrophytes[J]. Water Sci. Technol. 1999, 39(8): 47-53.
    65. Noordkamp. D. J. B., Gieskes, W.W. C., Gottschal, J. C., Forney, L. J., Van Rijssel, M. Acrylate in Phaeocystis colonies does not affect the surrounding bacteria. Journal of Sea Research, 2000, 3: 287-296.
    66. Olson R. J, Zetler E. R. Potential of flow cytometry for pump and probe fluo rescence measurements of phytoplankton photosynthetic characteristics[J]. Limnol Ocean ogra., 1995, 40 (4) : 816-820.
    67. Ormerod MG, Kubbies M.Cell cycle analysis of asynchronous cell populations by flow cytometry using bromide oxyuridine label and Hoechst propidium iodide stain[J] , Cytometry, 1992, 13: 678.
    68. Paul S B, Jinnque R, Haim B G Bacterial suppression of chlorella by hydroxylamine production[J]. Water Research, 1979, 13 (1): 267-2731.
    69. Phinney, D.A., Cucci, T. L. Flow cytometry and phytoplankton[J]. Cytometry, 1989, 10: 511-521.
    70. Pierce Richard H., Henry Michael S., Higham Christopher J., Blum Patricia, Sengco Mario R.. Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation. Harmful Algae Volume, 2004, 4 (2): 141-148.
    71. Pinkel, D., Stovel, R. Flow chambers and sample handling. In: Flow. Cytometry: Instrumentation and Data Analysis. Van Dilla MA, Dean PN, Laerum OD, Melamed MR (eds) [M]. Academic Press, London, 1985.
    
    72. Proctor L M, Fuhrman J A. Viral mortality of marine bacteria and cyanobacteria [J]. Nature, 1990, 34 (3): 60-62.
    
    73. Rashidan K K. Role of Predatory Bacteria in the Cyanobacteria bloom. Microbial Ecology[J]. 2001, 41: 97-105.
    
    74. Redhead K, Wright S J. Isolation and properties of fungi that lyse blue-green algae [J]. Appl. Environm Microbiol, 1978, 35 (5): 962-969.
    75. Riegman R, Boekel W. van. The ecophysiology of Phaeochystis globosa: a review[J]. Journal of Sea Research, 1996, 35 (4): 235-242.
    76. Safferman R. S, Cannon R. E, Desjardins P. R, et al. Classification and nomenclature of viruses of cyanobacteria[J]. Intervirology, 1983, 19: 61~66.
    77. Santschi P., Balnois, E., Guo, L., et al.. Fibrillar polysaccharide in marine macromolecular organic matter as image by atomic force microscopy and transmission electron microscopy. Limmol Oceanogr, 43 (5): 896-908.
    78. ShiloM. Lysis of Blue-Green by Myxobacter[J]. J Bacteriol, 1970, 104 (1): 453-461.
    79. Smaal, A., Twisk, F. Filtration and absorption of Phaeocystis of globosa by the mussel Mytilus edulis L. Journal fo Experiment Matine Biology and Ecology, 1997, 209: 33-46.
    80. Sohn H., Lee H., Yi H.. Kordia algicida gen. nov., sp, an algicidal bacterium isolated from red tide[J]. Int J Syst Evol Microbiol, 2004, 66(2): 718-722.
    81. Sosik H M, Olson R J, Chisholm S W. Chlorophyl fluorescence from single cells: interpretation of cytometric signals. Limnol. Oceanogr. 1989, 34 (17): 49-61.
    82. Suzuki Y, Takabayashi T, Kawaguchi T, et al. Isolation of an allelo pathic substance from the crustose coralline algae, Lithopllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta) [J]. J Exp. Mar. Biol. Ecol. 1998, 225(1), 69-77.
    83. Takeda S, Kurihara Y. Preliminary study of management of red tide water by the filter feeder mytilus edulis galloprovincialis[J]. Marine pollution bulletin, 1994, 28 (11) : 662-667.
    84. Van D E, Gulati R D, Ledema A, et al. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in biomani pulated shallow lake[J]. Hydrobiologia,1993,251:19-26.
    85.Van D E,Ringelherg H.The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen Ⅰ(The Netherlands)[J].Freshwater.Biol.1983,13:241-251.
    86.Van Rijssel,M.,Hamm,C.E.,Gieskes,W.C.Phaeocystis globosa(Prymnesiophyceae)colonies:hollow structures built with small amounts of polysaccharides.Eur.J.Phycol,1997,32:185-192.
    87.Van Rijssel,M.,Winfried,J.Temperature,light,and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi(Prymnesiophyceae).Journal of Sea Research,2002,48:17-27.
    88.Vandervoot H.T.,Brankenhoff G.J.Three-dimensional visualization methods for confocal microscopy[J].J of microscopy,1989,153(2):123-132.
    89.Veal D A,Deere D B.Ferrari,S.D.Fluorescence staining and flow cytometry for monitoring microbial cells[J].Journal of Immunological Methods.2000,243:191-210.
    90.Veldhuis,W.,Cucci,M.E.Sieracki.Cellular DNA content of marine phytoplankton using two new fluorochromes:taxonomic and ecological implications[J].Phycol.,1997,33:527-4.
    91.Veronique,S.,Becquevort,S.,Stefels,J.,Rousseau,V.,Lancelot,C.Phaeocystis blooms in the global ocean and their controlling mechanisms:a review.Journal of Sea Research,2005,53:43-66.
    92.Yamamoto Y,Kouchiwa T,Hodoki Y.Distribution and identification of actinomycetes lysing cyanobacteria in a eutrotrophic lake[J].App Phycol,1998,10(2):391-397.
    93.Yoshikawa K,Adachi K,Nishijima M,et al..β-Cyanoalanine production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacter[J].Appl Environ Microbiol,2000,66(2):718-722.
    94.Yu Z M,Zou J Z,Ma X N.Application of clays to removal of red tide organisms Ⅲ.The coagulation of kaolin on red tide organisms.Chin.J Oceanol Limnol,1995,13(1):62-70
    95.白春礼,纳米科学和技术[M].昆明:云南科技出版社,1995.
    96.白春礼,田芳,罗克,扫描力显微术[M].北京:科学出版社,2000.
    97.白希尧,白敏冬,周晓见.羟基药剂治理赤潮研究[J].科技进展,2002,24(1):26-32.
    98.毕远溥,李润寅,宋辛.赤潮及其防治途径[J].水产科学,2001,3(20):31-32.
    99.曹西华,俞志明.有机改性粘土去除有害赤潮藻的研究[J].应用生态学报,2003,7:1169-1172.
    100.陈菊芳,徐宁,江天久.中国赤潮新记录种--球形棕囊藻(Phaeocystis globosa)[J].暨南大学学报(自然科学版),1999,20(3),124-129.
    101.陈鸣钊,王沛芳,许京怀.应用浮动生物滤清器除藻研究[J].上海环境科学,2000,19(8):385-387.
    102.陈勇,蔡继业,邢少憬.多种肿瘤细胞表面超微结构的原子力显微镜观察及药物对细胞膜表面超微结构影响的初步研究[J].电子显微学报,2003,22(2):100-104.
    103.高洁,杨维东,刘洁生,张珩,谭炳华.利用小麦秸控制赤潮生物生长的研究[J].海洋环境科学,2005,24(1):5-8
    104.高亚辉,荆红梅,黄德强,杨心宁.海洋微藻胞外产物研究进展[J].海洋科学,2002,26(3):35-38.
    105.郭吉,浦跃化,尹立红,范凯红,梁戈玉,吕锡武,李先宁.太湖溶藻细菌的分离和评价[J].东南大学学报(自然科学版),2006,36(2):293-296.
    106.郭沛涌,沈焕庭,张利华.淡水微型浮游植物的FCM研究[J].中国环境科学,2002,22(2):101-104.
    107.国家海洋局.2000年中国海洋环境质量公报,北京:国家海洋局,2001,4.
    108.国家海洋局.2002年中国海洋环境质量公报,北京:国家海洋局,2003,1.
    109.国家海洋局.2003年中国海洋灾害公报,北京:国家海洋局,2004,1.
    110.国家海洋局.2003中国海洋环境质量公报,北京:国家海洋局,2004,1.
    111.国家海洋局.2004年中国海洋环境质量公报,北京:国家海洋局,2005,1.
    112.何池全,叶居新.石曹蒲克藻效应的研究[J].生态学报,1999,19(5):754-758.
    113.洪爱华,尹平河,赵玲,黄云峰.碘伏和异唾哇琳酮对球形棕囊去除的研究[J].应用生态学报,2003,14(7):1177-1180.
    114.洪爱华,尹平河,赵玲.新洁而灭对海洋原甲藻赤潮生物的灭杀与抑制[J].海洋环境科学,2003,22(5):64-67.
    115.洪爱华,尹平河,赵玲,吕颂辉,黄智诚,林潮平.碘伏和异噻唑啉酮灭杀球形棕囊藻机理的初步研究[J].2005,26(3):396-490
    116.胡晗华.测定浮游植物中色素的高效液相色谱与二极管阵列分光光度计联用的方法[J].植物生理学通讯,2003,39(6):658-660.
    117.胡洪营,门玉洁,李锋民.植物化感作用抑制藻类生长的研究进展[J].生态环境,2006,15(1):153-157.
    118.华泽爱.赤潮灾害[M].北京:海洋出版社,1994.
    119.黄长江.赤潮研究及其展望[J].生命科学,1999,6(11):114-118.
    120.焦念志.海洋微型生物生态学[M].北京,科学出版社,2006.
    121.李锋民,胡洪营.植物化感作用控制天然水体中有害藻类的机理与应用[J].给水排水,2004,30(2):1-4.
    122.李锋民,胡洪营.大型水生植物浸出液对藻类的化感抑制作用[J].中国给水排水,2004,20(11):18-21.
    123.李建宏.电子水处理器灭藻效果的研究[J].工业水处理,1998,18(1):26-27.
    124.李楠,尹岭,苏振伦.激光扫描共聚焦显微术[M].北京:人民军医出版社,1997.
    125.李士虎,吴建新,李庭古,朱明,郑伟.赤潮的危害、成因及对策[J].水利渔业,2003,06:38-54.
    126.郦和生,庞如振.杀菌灭藻剂“1227”质量评价[J].工业水处理,1995,15(1):17-19.
    127.连玉武,王艳丽,郑天凌,洪华生.赤潮科学中藻菌关系研究的若干进展[J].海洋科学,1999,23(1):35-38.
    128.梁松,钱宏林,齐雨藻.中国沿海的赤潮问题[J].生态科学,2000,19(4),44-50.
    129.梁想,尹平河,赵铃,杨培慧.生物载体除藻剂去除海洋赤潮藻[J].中国环境科学,2001,21(1):15-17.
    130.裴海燕,李富胜,汤浅晶.藻细胞破碎释放有机物特性[J],中国环境科学,2003,23(3):272-275.
    131.彭超,吴刚,席宇,夏燕华,张婷,赵以军.3株溶藻细菌的分离鉴定及其溶藻效应[J].环境科学研究,2003,16(1):37-40.
    132.齐雨藻.赤潮[M].广东科技出版社,1999.
    133.萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南[M].金冬雁,黎孟枫灯译,第二版.北京:科学出版社,1992,957-959.
    134.沈萍萍,王艳,齐雨藻.球形棕囊藻的生长特性及生活史研究[J].水生生物学报,2000,24(6):635-643.
    135.宋秀贤,俞志明,孙晓霞.粘土MMH体系絮凝赤潮生物的动力学研究[J].海洋与湖沼,2000,4:434-440.
    136.苏纪兰,唐启升.我国海洋生态系统基础研究的发展[J].地球科学进展,2005,20(2):139-143.
    137.孙冷,黄朝迎.赤潮及其影响[J].灾害学,1999,02:51-54.
    138.孙枢,李晓波.我国资源与环境科学近期发展战略[J].地球科学进展,2001,16(5):726-733.
    139.唐萍,吴国荣,陆长梅,等.凤眼莲根系分泌物对栅藻结构及代谢的影响[J].环境科学学报,2000,20(3):355-359.
    140.王朝晖,吕颂辉,陈菊芳.广东沿海几种赤潮生物的分类学研究[J].武汉植物学研究,1998,16(4):310-314.
    141.王春梅,黄晓峰,杨家骥,陈志南.激光扫描共聚焦显微镜技术[M].西安:第四军医大学出版社,2004.
    142.王书奎,周正英.实用流式细胞术彩色图谱[M].上海:第二军医大学出版社,2004.
    143.王艳,齐雨藻,沈萍萍.温度和盐度对球形棕囊藻细胞DMSP产量的影响[J].水生生物学报,2003,27(4):367-341.
    144.吴刚,席宇,赵以军.环境科学研究,溶藻细菌研究的最新进展[J].2002,15(5):43-46.
    145.吴为中,安成才,刘新尧.溶藻细菌B5的溶藻效果与溶藻特性的初步研究[J].北京大学学报(自然科学版),2003,39(4):489-493.
    146.席宇,吴刚,张勇,等.一株淡水溶藻细菌的分离及初步研究[J].华中师范人学学报(自然科学版),2003,37(2):222-226.
    147.席宇.一株欧文氏菌的分离及其溶藻特性的研究[M].华中师范大学硕士学位论文,2003.
    148.徐金森,郑天凌,陈霞,连玉武.塔马亚历山大藻与细菌的共培养及其微生态效应[J].应用与环境生物学报,2002,8(2):111-114.
    149.许忠能,林小涛.营养盐因子对细基江蓠繁枝变种氮、磷吸收速率的影响[J].生态学报,2002(3):366-374.
    150.杨晓新,林小涛,计新丽.温度、盐度和光照条件对翡翠贻贝滤水率的影响[J].海洋科学,2000(6):36-39.
    151.杨晓新,尹平河,晏荣军.溶藻细菌对棕囊藻溶藻过程的电子显微镜研究[J].海洋环境科学,2008,27(2):9-13.
    152.杨晓新,尹平河.两株溶藻细菌对棕囊藻溶藻作用的原子力显微镜研究[J].暨南大学学 报,2008,29(1):90-94.
    153.尹平河,赵玲,李坤平,齐雨藻.缓释铜离子法去除海洋原甲藻赤潮生物的研究[J].环境科学,2000,21(5):12-16.
    154.尹伊伟,王朝晖,江天久.海洋赤潮毒素对鱼类的毒害[J].海洋环境科学,2000,19(2):62-65.
    155.余国忠、望占生.藻毒性的特性与净化工艺研究[J].水生生物学报,1997,21(1):1-5.
    156.于洋,孔繁翔,钱蕾蕾,等.流式细胞术在铜对藻类生态毒理[J].环境化学,2004,23(5):525-528.
    157.俞志明,邹景忠,马锡年.治理赤潮的化学方法[J].海洋与湖沼,1993,24(3):213-218
    158.袁兰主编,激光扫描共聚焦显微镜技术教程[M].北京:北京大学医学出版社,2004.
    159.张勇,席宇,吴刚.溶藻细菌杀藻物质的研究进展[J].微生物学通报,2004,31(1):127-131.
    160.赵传鹏,浦跃朴,尹立红.溶藻细菌及其测定评价方法的研究进展[J].东南大学学报,2005,25(3):202-206.
    161.赵玲,尹平河,李坤平,YU Qiming.掺铜可容玻璃微粒去除海洋原甲藻赤潮生物的研究[J].海洋环境科学,2001,20(1):7-11.
    162.赵以军,石正丽,程凯.蓝藻病毒(噬藻体)的研究进展[J].中国病毒学,1999,14(2):100-105.
    163.赵以军,刘永定.有害藻类及其微生物防治的基础--藻菌关系的研究动态[J].水生生物学报,1996,20(2):173-181.
    164.郑天凌,徐金森,徐美珠,胡忠.微生物调控赤潮原因种塔玛历山大藻的实验研究[J].海洋学报,2003,25(增刊2):221-225.
    165.郑天凌,苏建强.海洋微生物在赤潮生消中作用[J].水生生物学报,2003,27(3):291-295
    166.郑天凌,田蕴,苏建强.海洋赤潮生物与厦门海域几种细菌的生态关系研究[J].生态学报,2007,12(1),124-129.
    167.郑天凌,徐美珠,俞志明,宋秀贤.菌-藻相互作用下胞外酶活性变化研究[J].Marine Science,2002,26(12):41-44.
    168.郑天凌,徐美珠,张瑶.EEA---一种新的重要的海洋生态学参数及其应用[J].台湾海峡,2001.20(4):454-461.
    169.郑天凌,薛雄志,李福东,等.海洋微生物在环境生态中的作用[J].海洋科学,1994(3):35-38.
    170.郑天凌.贻贝的细菌污染模式研究[J].厦门大学学报(自然科学版),1990,29(1):104-107.
    171.郑小平,谢骏,刘波等.一株溶藻细菌的分离鉴定及其溶藻效应初探[J].淮海工学院学报(自然科学版),2005,14(1):69-71.
    172.周名江,朱明远,张经.中国赤潮的发生趋势和研究进展[J].生命科学,2001,13(2):54-60.
    173.周子元,罗屿,马文漪.太湖中四种细菌的分离、鉴定及生长曲线的测定[J].湖泊科学,1998,10(4):60-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700